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Abstract—The past decade has seen a plethora of side-channel
attacks on various CPU components. Each new attack typically
follows a whitebox analysis approach, which involves (i) identify-
ing a specific shared CPU component, (ii) reversing its behavior
on a specific microarchitecture, and (iii) surgically exploiting
such knowledge to leak information (e.g., by actively evicting
shared entries to monitor victim accesses). This approach requires
lengthy reverse engineering, repeated for every component and
microarchitecture, and does not allow for attacking unknown
shared resources.

In this paper, we present ABSynthe, a system that takes a
target program and a microarchitecture as inputs and auto-
matically synthesizes new side channels. The key insight is that
by limiting ourselves to (typically on-core) contention-based side
channels, we can treat the target CPU microarchitecture as a
black box, enabling automation. To make ABSynthe possible,
we have automatically generated leakage maps for a variety of
x86_64 microarchitectures. These leakage maps show a complex
picture of interaction between different x86_64 instructions and
justify a black box approach to finding the best sequence of
instructions that cause information to leak from a given software
target, which we also treat as a black box. To recover the
secret information using the optimized sequence of instructions,
ABSynthe relies on a recurrent neural network to craft practical
side-channel attacks that recover a secret bit stream. Our
evaluation shows that ABSynthe can synthesize better attacks
by exploiting contention on multiple components at the same
time compared to state of the art contention-based attacks that
focus on a single component. Furthermore, the automation made
possible by ABSynthe allows us to synthesize cross-thread attacks
for a variety of microarchitectures (from Intel, AMD and ARM)
on four different cryptographic software targets, in both native
and virtualized environments. The results show that ABSynthe
can recover cryptographic key bit streams with high accuracy. As
an example, ABSynthe recovers a full 256-bit EdDSA key from
just a single trace capture with 100% success rate on one of our
test beds.

I. INTRODUCTION

Modern processors provide strong isolation guarantees be-
tween distrusting execution contexts at the architectural level
of abstraction. These guarantees are unfortunately not enforced
at the microarchitectural level. A plenitude of existing side-
channel attacks show one can leak secret information (e.g.,

cryptographic keys) by examining changes made by a victim’s
execution to the state of shared microarchitectural components
such as caches [1, 2, 3, 4, 5], cache directories [6], TLBs [7],
and branch predictors [8, 9]. Such attacks are typically based
on whitebox side-channel analyses which require heroic reverse
engineering efforts to gain a deep understanding of the tar-
get component and then craft component-specific exploitation
primitives (e.g., the ability to track victim cache accesses by
actively forcing evictions). Such manual efforts need to be re-
peated for each new component and each (micro)architecture,
in search of new, dedicated exploitation primitives.

In this paper, we present ABSynthe, an automatic, black
box approach towards synthesizing microarchitectural side
channels in a more general and sustainable fashion, by exploit-
ing contention on shared resources. Its blackbox analysis re-
quires no reverse engineering effort on the part of the attacker,
and eschews complicated eviction strategies that require deep
understanding of the dimensions, organization and policies that
govern certain wide-exploited shared resource such as CPU
caches. Instead, ABSynthe exploits the insight that the mere
presence or absence of contention on shared resources often
leads to measurable performance differences.

For efficiency reasons, microarchitectures today include
a large number of shared resources that may, potentially,
serve in side channels attacks. Examples include per-core
caches, execution units, and execution ports, but there are
many others. Since any of these resources may harbor a
side channel, we designed ABSynthe as a generic solution
to measure and optimize the information leakage—for any
component, software, and (micro)architecture. Interestingly,
during our analysis we also found new sources of leakage,
including some that we cannot easily associate with a single
component. By focusing exclusively on contention-based side
channels, ABSynthe can treat the target CPU microarchitecture
and its components as black boxes, while synthesizing side
channels that are stealthy [10, 11], that are easy to regenerate
across different architectures, and that may even combine
multiple microarchitectural components to boost the signal and
outperform state-of-the-art side-channel attacks.

Microarchitectural side-channel attacks Existing microar-
chitectural side-channel attacks rely on leakage primitives
derived from the reverse engineering of a specific microar-
chitectural component. Such whitebox side-channel strategies
often take the form of eviction-based attacks—attacks that
exploit knowledge of the target component to measure modi-
fications made to the microarchitectural state by the victim’s
secret operation. At their core, these measurements involve
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the eviction of certain state from the component of interest.
For example, in FLUSH+RELOAD, the attacker evicts a shared
cache line and later checks whether it is reloaded by the
victim in a secret operation. While attacks on CPU caches
are the most common, attackers may equally target other
microarchitectural components, including cache directories [6],
TLBs [7], and branch predictors [9]. Some recent efforts,
such as PortSmash [10] and SMoTherSpectre [11], show that
one can also leak secret information by crafting contention-
based attacks that exploit contention on execution ports. The
high-level strategy in contention-based attacks is to replace
the active evictions of prior efforts with passive monitoring,
which also vastly improves the stealthiness of the attack [10].
However, these efforts still rely on exploitation primitives spe-
cific to a particular microarchitectural component, in particular
execution ports.

ABSynthe In this paper, we present the first complete Syn-
chronous Multithreading (SMT) leakage maps for different
microarchitectures implementing the x86_64 ISA. These leak-
age maps show complex interactions between different x86_64
instructions and allow us to make a number of observations.
First, there are many different microarchitectural components
that leak secret information and allow for practical contention-
based attacks. Second, by testing different instructions, we
can create contention on arbitrarily different microarchitectural
components without any knowledge of the contended com-
ponent(s) or of the microarchitecture, opening the door for
attack automation. Third, the instructions that create observable
contention on one microarchitecture do not necessarily do
so on others. This means that contention-based attacks are
not always portable across different processors with different
microarchitectures. Building on these insights, we present
ABSynthe, the first system to automatically synthesize new
side-channel attacks on a given microarchitecture and a given
software target.

To build ABSynthe, we combine a number of novel tech-
niques. First, to automatically detect secret-dependent control
flows in a given software target, we employ taint analysis
similar to DATA [12]. We further refine the analysis by relying
on performance monitoring counters to identify the target
branches. Once ABSynthe identifies the target branches, it tries
to find a sequence of instructions from the leakage maps that
maximizes the information leakage from the target branches.
ABSynthe relies on a genetic algorithm to find a combination
of instructions that create the best contention to leak the
maximum amount of information from the target software.
The result is a highly optimized target-specific sequence of
instructions that performs better than any single instruction
used in recent work [10, 11]. Using a number of different
cryptographic functions and commodity CPU architectures
(Intel, AMD, ARM), we show that ABSynthe is effective in
synthesizing practical cross-thread attacks in native and virtu-
alized environments. Lastly, ABSynthe employs a Recurrent
Neural Network (RNN) for complete cryptographic key bit
stream recovery using the synthesized attacks. As we later
show with an example, an analyst armed with ABSynthe’s
results can then recover the final secret key with basic post
processing techniques.

Like fuzzers and other testing techniques, ABSynthe may
primarily serve as a powerful regression testing framework for
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Fig. 1: Simplified diagram of a superscalar, out-of-order ex-
ecution pipeline showing the stream of instructions being
dispatched and retired (green, thick arrows), units that hold
and process them (red, thick boxes), the memory request and
data stream (purple, thin arrows), and their supporting micro-
architectural caches and data structures (blue, thin boxes).

both hardware vendors to find new side channel leakages in
their microarchitectures and software developers to determine
if their, say, crypto algorithm is vulnerable to contention-based
side channels on a target CPU.

Contributions This paper makes the following contributions:

• We present the first complete leakage maps for a number
of x86_64 microarchitectures in SMT settings which
additionally provide us with new insights for building
contention-based side-channel attacks.

• We present ABSynthe, a fully automated approach for
synthesizing side-channel attacks on arbitrary microar-
chitectures and software targets (by treating both as
blackboxes)—eliminating the need for per-component
reverse engineering and enabling a portable, multi-
component side-channel analysis on commodity CPUs.

• We show that ABSynthe can synthesize side-channel
attacks on a variety of cryptographic routines on differ-
ent architectures (Intel, AMD, ARM) and environments
(native, virtualized) by creating contention on different
microarchitectural components. Surprisingly, these attacks
perform even better than creating contention on a single
specific component as done in prior work [10, 11].

II. BACKGROUND

We discuss the microarchitectures of modern processors to
get an overview of shared components across different execu-
tion contexts. We then discuss how some of these components
are prone to contention-based side channels.

A. Microarchitectural components

CPUs implement their Instruction Set Architecture (ISA)
using microarchitectural components. Such components in-
crease in number, size and complexity with each new CPU
generation. Given that these components are not visible to
software, their low-level details can only be uncovered by
careful reverse engineering. Furthermore, the properties of
each of these components can change between CPU revisions,
without posing compatibility problems for the software, but
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prompting new, lengthy reverse engineering efforts every time
for side channel researchers.

Figure 1 shows the high-level overview of some of these
microarchitectural components in a modern CPU, using Intel
terminology as a reference. The micro-architecture can be
divided in two main parts: (a) the frontend, which decodes
the architectural instruction stream operating on architectural
registers from multiple, in this case two, logical processors into
micro-operations (micro-ops) operating on microarchitectural
registers (physical registers), and (b) the backend, which
operates on a stream of micro-ops merged from the 2 thread
streams, allocates the necessary resources, and schedules them
for execution in an out-of-order fashion. We focus on compo-
nents in the CPU backend. While late in the pipeline, these
components operate at the stage where the instruction streams
of the multiple hardware threads have merged and resources
are mostly shared between the threads. Significantly, these
threads can be executing in different security domains.

We will not go into detail for all micro-architectural
components depicted in the figure. After all, the objective
of this paper is to exploit resource sharing without relying
on the knowledge of the workings, or even the existence, of
these components. We nevertheless briefly discuss the use of
execution ports and units by micro-ops, as dispatched from the
reservation station. In particular, the Reservation Station (RS)
holds a collection of in-flight micro-ops which have allocated
resources (e.g., physical registers) and are ready to execute
once their operands are available. Micro-ops in the RS are
mixed from both threads already. Meanwhile, the execution
units run the actual micro-ops that are dispatched from the
RS. After execution, micro-ops are sent to the retirement
unit and retired in-order. Execution units are reached through
execution ports that are typically numbered in a fairly intuitive
manner (P0, P1, P5, etc.) and sometimes one micro-op can
be executed on any of a set of ports (expressed as P06). As
we shall see in Section IV, execution ports and units will play
a large role in contention on shared resources.

B. Simultaneous Multi-Threading (SMT)

SMT, sometimes referred to as hyperthreading, is an archi-
tectural technology that is primarily intended to enable cross-
thread sharing of on-core resources that would otherwise be
unused [13, 14, 15]. When transitioning from a single-threaded
to a multi-threaded core design, on-core resources are owned
in one of three ways [16]:

1) Replicated: there is one instance per thread for private
use. This happens for microarchitectural state such as the
architectural register file and the instruction pointer.

2) Partitioned: there is a static assignment of ownership of
half of the resource to each thread. Examples include the
iTLB [7] and the Physical Register File (PRF) [17].

3) Competitive: there is a full resource pool available to all
threads. Examples include execution slots in the reserva-
tion station, CPU caches, load/store buffers, L1 dTLB,
Shared TLB (STLB) [7], and execution units [10].

As we will see in Section IV, measurable interference
can occur across security boundaries on resources that are
competitively shared, possibly leading to information leaking.

C. Eviction- vs. contention-based attacks

Existing side-channel attacks on microarchitectural com-
ponents are largely eviction-based. That is, they use evictions
to bring the target component to a known state. After the
secret operation, they can then examine the state to infer any
changes that leak information about the secret operation. As an
example, the PRIME+PROBE attack primes the CPU cache by
accessing a set of memory addresses (evicting other addresses).
It then waits for the victim operation to execute. Finally, it
probes the cache by checking whether any of the previously
accessed addresses has been evicted from the cache. These
attacks are powerful, as an attacker can actively control the
microarchitectural behavior of the victim, but also hinge on
(i) intimate knowledge of the target microarchitectural com-
ponent, and on (ii) an active eviction strategy that reduces the
stealthiness of the attack and is amenable to mitigations [18].

To address the latter, some recent attacks [10, 11] rely
on the available bandwidth to execution ports to stealthily
leak information across threads. The attacker simply measures
the bandwidth (i.e., operations per second) over time and,
by observing its fluctuations, can infer information about
the victim’s operation. This contention-based attack relies on
passive monitoring rather than active evictions, improving the
stealthiness and mitigation-resistance of the attack. However,
the exploitation strategy is still targeted to a specific component
and requires assumptions on the underlying microarchitecture
and its interactions with the target software.

This paper’s contribution is twofold. First, we show there
are many more components amenable to contention-based
attacks and it is not clear a-priori which component (or set of
components) is the most effective on a given software target.
Second, we show we can automatically synthesize contention-
based side-channel attacks on any given microarchitecture. We
discuss the first in Section IV and the second in Section V.

III. THREAT MODEL

We assume an attacker who has code execution on the
victim machine. The aim of the attacker is to leak sensitive
data, such as cryptographic keys, from a victim process or VM.
Similar to existing contention-based attacks [10], we primarily
focus on a victim executing on a (sibling) hardware thread on
the same core as the attacker. In Section VIII-A, we discuss
how we can generalize our analysis to non-SMT settings. We
further assume that all state-of-the-art side-channel protections
are enabled, but the target software is vulnerable to side
channels (e.g., due to vulnerable coding practices [19]). The
attacker seeks to automatically synthesize contention-based
side-channel attacks against the given vulnerable software and
microarchitecture. We focus our analysis on recovering the
control flow of a target and use common examples with secret-
dependent control flow.

IV. SIDE CHANNELS ON CONTENDED COMPONENTS

To motivate our work, we systematically study the possibil-
ity of creating contention-based attacks on different shared mi-
croarchitectural components normally accessed by victim soft-
ware. We take a fully black-box, microarchitecture-agnostic

3



Fig. 2: Exhaustive map of instruction interference grouped by 4 different execution port sets on 3 different microarchitectures.
For each microarchitecture, we visualize the matrix CCB,A as constructed using Algorithm 1.

approach by measuring instruction interference of every in-
struction vs. every other instruction, and find significant unex-
plained sources of contention.

A. Creating Contention on CPU Components

As any shared resource can potentially lead to an ex-
ploitable side channel, we wish to map out as many different
sources of contention as possible within a given CPU core.
This later allows us to find the best performing side channel
for a given a software target.

Similar to the Covert Shotgun’s blog post [20], our ap-
proach tries to find whether two instructions create observ-
able contention on various CPU components. Unlike Covert
Shotgun’s handful of carefully picked instructions, however,
ABSynthe’s blackbox strategy covers the entire x86_64 ISA
and synthesizes side-channel attacks rather than much simpler
covert channels. For this purpose, we need to find instruction
sequences that create the largest possible observable con-
tention. To approach this in a principled way, we investigate
measurable contention caused by any single instruction. We
design an experiment that runs on a single physical core and
measures interference CCB,A, which can be read as “Interfer-
ence factor that instruction B experiences under influence of
instruction A.” We call B the reader instruction (we observe
its latency), A the writer instruction (it causes the latency
difference, if any), and the CCB,A matrix the leakage map
for a certain microarchitecture.

To make this possible for all instructions, we build on
the XML file containing an exhaustive list of the instructions
available of each microarchitecture of the uops.info [21]
project to generate an implementation of Algorithm 1 auto-
matically. Our reasoning is that any element CCB,A > 1.0 is
evidence of contention generated by A and experienced by B.
To visualize the results, we group the rows and columns of
CC by execution port usage of the corresponding instruction,
again obtained from [21]. There are two reasons for this.
First, since execution ports can be a source of contention,
we wish to group this influence in contiguous bands in the
visualization. Second, this ordering serves to group together
instructions with similar functions and utilizing the same
sets of execution units. We construct the CCB,A matrix by
measuring the latency of instruction B while instruction A

Data: List of x86 instructions
Result: Matrix CCB,A, the latency increase of each

instruction B under the influence of A
compared to nop.

On a core with SMT1 and SMT2:
for Every x86 instruction A do

On SMT1: start a loop of sequenceA;
for Every x86 instruction B do

On SMT2: LATB,A ←− rdtscp(sequenceB) ;
end

end
for Every x86 instruction pair (A,B) do

Compute CCB,A ←− LATB,A/LATB,nop
end

Algorithm 1: Constructing Covert Channel matrix CCB,A

is executing (denoted LAT (B,A)) concurrently on a sibling
thread, and express this latency as a factor of NOP executing
concurrently: CCB,A = LAT (B,A)/LAT (B,NOP ). The
full procedure is described in Algorithm 1.

We perform Algorithm 1 on two different Intel microarchi-
tectures, Skylake and Broadwell Xeon, and one AMD microar-
chitecture, ZEN+, using the EPYC platform. Figure 2 shows
the leakage maps for these microarchitectures. A column repre-
sents the signature of a single instruction A running on SMT1,
composed of many observations of different instructions B
running on SMT2.

B. Discussion of the Results

Our measurements show that while execution ports are
indeed a source of contention [10, 11], they are hardly unique
and also interfere in more intricate ways than previously
thought. Firstly, the contention pattern is not purely a function
of execution port sets. In particular, instructions that share
execution port sets may equally well show no contention
or high contention. Secondly, instructions that do not share
execution ports show overall low contention, but there are
clusters and streaks of high contention patterns here also—
implying shared microarchitectural resources between SMTs
that are not purely execution ports or even execution units.

Significantly, we note that the contention signature of
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every instruction (shown as a single column in the CC
matrix), is different from that of other instructions. In other
words, the CC matrix does not lend itself for simplification by
grouping together instructions with identical signatures. Even
when already grouped together according to execution ports,
the interference signature is generally different each time,
implying that there are many different causes for contention.

Lesson 1: There are multiple independent sources of
contention.

Examining the CC matrices further, we notice the structure
of resource contention is very different for each leakage map.
Even microarchitectures from the same manufacturer
(Intel) have a different leakage map. This suggests that a
contention-based side-channel attack in one microarchitecture
may not work well in another and this process may need to
be repeated, unless it can be done in a fully black-box manner.

Lesson 2: A contention-based side channel on one
microarchitecture may not work as well on another.

We further see clusters which correspond to shared
resources used by one set of instructions interfering with
other sets of instructions. For instance, the Skylake results
exhibit a small number of clusters in the P0,P0 cell, whereas
Broadwell Xeon shows a large number of clusters in the
P0,P0 cell, and smaller clusters in other cells. Every row
(corresponding to one reader instruction) with a small
number of high contention values on writer instructions,
will show reliable detection for those writer instructions.
These findings suggest that the best possible (within the
possibilities of ABSynthe) side channel may be obtained by
creating contention on many different resources and possibly
on multiple resources at the same time.

Lesson 3: The best contention-based side channel may
require contention from multiple instructions.

We conclude that finding a sequence of instructions that
optimally distinguishes a particular subset of target instruc-
tions, may require particular and non trivial combinations of
reader instructions. Furthermore, the leakage maps for different
microarchitectures do not generalize, and we have to repeat our
black-box synthesis for each microarchitecture separately. We
use these insights in the design of ABSynthe discussed next.

V. AUTOMATED SIDE-CHANNEL SYNTHESIS

Given our earlier observations, we designed ABSynthe, an
automated system that synthesizes, within parameters, the best
possible contention-based side channel for a given software
target by trying different sequences of instructions and creating
the appropriate contention on different microarchitectural com-
ponents. Figure 3 presents a high-level overview of ABSynthe.

In the analysis phase, ABSynthe takes a given microarchi-
tecture and the target software as input. It then automatically
generates an instrumented binary that synchronizes with a
spy program whenever it performs a secret operation. The
spy code is initially based on instructions from the target
microachitecture’s leakage map. For every well-performing
instruction in the leakage map, ABSynthe communicates the
raw contention-based measurements to the synthesis engine.
The synthesis engine aims to improve the quality of the
signal by generating new sequences of instructions based on
the contention-based measurements. These new instruction
sequences repeatedly refine the spy code until the synthesized
side channel can detect the secret information with sufficient
confidence. We find in our evaluation that in many cases
single instructions can achieve an acceptable performance for
side-channel synthesis. In other cases, however, refining the
instruction sequence significantly improves the results.

After the analysis phase, in which ABSynthe uses synchro-
nized steps to classify secret bits, the attack phase uses the spy
code and ABSynthe’s secret recovery engine to leak the secret
information with no synchronization with the victim software
(making it suitable for practical attacks). To realize these two
phases in ABSynthe, we need to address three challenges:

C1 In the analysis phase, ABSynthe needs to automatically
instrument the target software to synchronize the mea-
surements with the spy code for collecting ground truth.

C2 In the analysis phase, ABSynthe needs to automatically
refine the side channel for a given microarchitecture.

C3 In the attack phase, ABSynthe needs to recover secret
information with a non-cooperating victim binary using
the refined side channel.

Section VI describes how we addressed these challenges
in the design of ABSynthe. In summary, to address C1, we
use a combination of taint analysis and a novel technique
that makes use of performance counters. To address C2, we
use a differential evolutionary genetic algorithm relying on a
Gaussian Naive Bayes classifier as its fitness function. Finally,
to address C3, we use an RNN classifier for unsynchronized
key bit stream recovery.
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1 for (j=nbits-1; j >= 0; j--) {
2 CRYPTLOOP_START(0); // pattern start, record ’0’
3 _gcry_mpi_ec_dup_point (result, result, ctx);
4 if (mpi_test_bit (scalar, j)) {
5 CRYPTLOOP_VALUE(1); // bit == 1? pattern: ’01’
6 _gcry_mpi_ec_add_points(result,result,point,ctx);
7 }
8 }

Fig. 5: Secret-dependent control flow: EdDSA 25519 elliptic
curve multiplication, annotated for use in ABSynthe. If the
ABSynthe pattern is ‘01’, the bit value was 1, and if it is ‘0’,
the bit value was 0). The code is simplified.

VI. ABSYNTHE

At a high level, ABSynthe works by finding secret-
dependent control flow in the target program during the
analysis, and then detecting those secret-dependent code paths
being executed, using a tuned measurement algorithm in a spy
process. To do so, we first collect signals with known ground
truth and use them to classify unknown signals. Specifically, as
shown in Figure 4, we collect the ground truth by automatically
instrumenting the target program at places where it processes
a secret bit in order to collect the value of that bit, and then
combine these values with measurements of the contention-
based signal to determine how differently the signal looks
for different values. In this section we discuss how we find
the secret-dependent branches and collect the ground truth
(Section VI-A), synthesize a tuned instruction sequence for
measurements (Section VI-B), and finally map the measured
signals to the secret (Section VI-C).

A. C1: Automatically finding secret-dependent branches

While executing the target program during the analysis
phase, ABSynthe’s Ground Truth Engine explicitly signals the
ground truth about the secret to the spy program. For this
purpose, ABSynthe needs to instrument the target program at
relevant secret-dependent program points. In the common case,

for (j=nbits-1; j >= 0; j--) {
CRYPTLOOP_START(0);
_gcry_mpi_ec_dup_point(result,result,ctx);
_gcry_mpi_ec_add_points(&tmppnt,result,point,ctx);
if (mpi_test_bit (scalar, j)) {

CRYPTLOOP_VALUE(1); // bit == 1? pattern: ’01’
point_set (result, &tmppnt);

}

Fig. 6: Secret-dependent control flow of hardened ED25519
algorithm. We present a simplified sketch.

{
CRYPTLOOP_START(0);
_gcry_mpih_sqr_n (xp, rp, rsize, tspace);
if ((mpi_limb_signed_t)e < 0)
{
CRYPTLOOP_VALUE(1);
_gcry_mpih_mul ( xp, rp, rsize, bp, bsize );

}
}

Fig. 7: Secret-dependent control flow of RSA. We present a
simplified sketch of the RSA code.

such program points will be provided by the analyst (a mode
of operation explicitly supported by ABSynthe), who may
want to attack a very specific secret-dependent computation.
However, assuming the analyst wants to target any computation
dependent on a given secret, ABSynthe can automatically
find the interesting victim instructions by determining branch
instructions in the victim that are secret-dependent (and thus
interesting/vulnerable) and executed often (and thus more side
channel prone). Automatically locating such instructions by
means of information flow tracking and profiling is straightfor-
ward, as we shall see. Moreover, while we make no claims that
we can guarantee that such instructions are always the most
“interesting” from an analyst point of view, this is very often
the case in practice—especially for cryptographic software
(See also Section VIII-B).

In particular, the two properties which guide ABSynthe to
the instrumentation points in a blackbox fashion commonly

for (i=loops-2; i > 0; i--) {
CRYPTLOOP_START(0);
_gcry_mpi_ec_dup_point (result, result, ctx);
if(mpi_test_bit(h,i)==1 && mpi_test_bit(k,i)==0) {

CRYPTLOOP_VALUE(1); // NAF == 1? pattern: ’01’
point_set(&p2,result);
_gcry_mpi_ec_add_points(result,&p2,&p1,ctx);

}
if(mpi_test_bit(h,i)==0 && mpi_test_bit(k,i)==1) {

CRYPTLOOP_VALUE(2); // NAF == -1? pattern: ’02’
point_set(&p2, result);
point_set(&p1inv, &p1);
ec_subm(p1inv.y, ctx->p, p1inv.y, ctx);
_gcry_mpi_ec_add_points(result,&p2,&p1inv,ctx);

}
}

Fig. 8: Secret-dependent control flow: elliptic curve multiplica-
tion NIST P-256. The scalar is represented with NAF, causing
3 cases instead of 2. The code is simplified.
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TABLE I: ABSynthe branch analysis. Number of unique
branches executed by the target code (Executed), selected to
be analyzed using Data Flow Analysis (DFA) for tainting,
found to be tainted (Taint), and finally selected for ABSynthe
instrumentation (Instrumented).

.

Target Executed DFA Taint Instrumented
ED25519 353 70 1 1
ED25519-hardened 353 70 1 1
RSA 472 86 6 1
ECDSA P-256 596 114 3 2

hold for crypto software. First, we assume that the operation
executes the secret-dependent branches for a substantial part of
the execution time in a number of iterations that is related to
the key size. Second, the branch instructions should depend
on the secret. As the public-key algorithms that we target
iterate in multiple rounds over the bits that make up the key,
taking up significant time, and few other algorithms will do
so in a secret-dependent way, these properties hold for most
of the crypto code that is not explicitly designed to not have
secret dependent branches. ABSynthe finds the instrumentation
points by profiling using dynamic taint analysis (in our current
implementation by means of LLVM’s DFSan [22]), while just
requiring an analyst to taint the secret once in the source code.

For example, let us assume, that our target program ex-
ecutes the popular EdDSA 25519 elliptic curve cryptogra-
phy algorithm from libgcrypt. In the implementation, the
secret key is represented by a variable called scalar and
Figure 5 shows the relevant loop with a secret-dependent
branch in line 4. Lines 2 and 5 are part of the ABSynthe
instrumentation and should be ignored for now. Figure 9 shows
a flame graph breakdown for the EdDSA 25519 algorithm,
representing the occurrences of stack traces, of the target
execution as gathered using perf record. The key intuition
behind branch selection revolves around the transition from
gcry_mpi_ec_mul_point, which has nearly full cumu-
lative execution time, to gcry_mpi_ec_add_points, and
gcry_mpi_ec_dup_point. These two functions split the
execution time in a way that depends on the secret key (as
confirmed by the snippet in Figure 5). While we illustrated this
for EdDSA 255519, it is a typical pattern: secret-dependent
branches divide the execution time between themselves. We
show annotated examples for the hardened version of EdDSA
25519 (Figure 6), RSA (Figure 7), and the NIST-P256 curve
(Figure 8).

We now combine the flame graph with taint analysis to
find the secret-dependent branches automatically, as follows:

1) We first build the code using LLVM with DFSan enabled
and let ABSynthe taint all the data in the key file.

2) ABSynthe profiles the target program using
perf record to find all functions with significant
cumulative execution time, and instruments them with
code that tests if the condition of the branch is tainted.

3) For the final ground-truth instrumentation, ABSynthe
selects all branches that are tainted and that executed a
significant number of times with respect to the key size
(and did not have the same branch outcome every time).

4) Finally, ABSynthe also instruments the top of the parent
loops of instrumented branches to let the spy differentiate

between a varying number of non-taken secret branches.

An overview of the analyzed branches for different target
programs can be seen in Table I. We see the total number
of branches in the binary, and the selection process that leads
to the final number of secret-dependent, instrumented branches
to collect the ground truth. We verified that the found branches
are indeed exactly the desired secret-dependent branches.

This approach generalizes to secret values that are larger
than a single bit. In the general case, the ground-truth instru-
mentation records a unique pattern for each secret value. We
give the spy code all the information needed to reconstruct the
control flow, and with that, reconstruct the secret values.

As an example of the instrumentation for one of the EdDSA
25519 target, consider again Figure 5. The instrumentation
in the top of the loop, CRYPTLOOP_START(), signals the
start of the processing of a key bit by writing a marker to
shared memory. Whenever a secret-dependent branch is taken,
we signal that with a CRYPTLOOP_VALUE(1) by simply
writing the corresponding value to shared memory. The spy
code will read these values and collect them together with the
side channel signal for training and evaluating.

Collecting the Ground Truth Given the instrumentation,
ABSynthe extracts additional ground truth, namely how dif-
ferently the contention-based signal looks when the target
software is processing a particular secret bit value.

In the previous section, we explained how we instrument
the target software to report when the target is taking or
not taking secret-dependent branches. Our spy process, in
turn, stores the contention-based measurements during the
processing of these secret bits.

Synchronizing when the target is processing a particular
secret value with the spy code is challenging since the synchro-
nization itself can introduce noise into the measurements. To
address this challenge, instead of using hard synchronization,
ABSynthe’s Ground Truth Engine relies on a soft synchroniza-
tion strategy between the software target and the spy code. In
particular, our design uses an efficient shared memory channel
and signaling protocol between the target software and the spy
code. To implement the shared memory channel, we simply
allocate a single shared memory page. We design our signaling
protocol to be asynchronous and minimalistic.

The spy code constantly monitors the target shared memory
location and tags each latency measurement with the sampled
value. This simple mechanism provides us with a reliable way
to derive the ground truth of what a side channel signal looks
like for the processing of the different secret key bits.

Virtualization support Our prototype implementation ex-
pands support to virtual environments by running both the
target binary and the spy code in VMs. Instead of the native
shared memory, we use a guest-accessible shared memory
implementation, IVSHMEM [23], on KVM/Linux to facilitate
the communication between the instrumented target software
and the spy code. Our end-to-end strategy addresses C1.

B. C2: Side-channel Refinement

We seek to synthesize, within parameters, the best perform-
ing side-channel attack by creating contention on potentially
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Fig. 9: Secret-dependent branches divide the execution time between themselves. This flame graph of execution of ed25519
shows this property which we found to be common across other cryptographic targets.

REPEAT
NUMBER

BARRIER
BEFORE
START

BARRIER
BEFORE
END

INSTR1 INSTR2 INSTR3 INSTR4 COMBINE
MODE

11 True False 4 3 6 5
INTER
LEAVE

Fig. 10: Recipe for a combination of side channel primi-
tives. The four best performing single instructions are INSTR1
through INSTR4. The recipe states that 4 INSTR1 instructions
are used, 3 INSTR2 instructions, and so on. That they are
combined in an interleaving fashion. Further a memory fence
instruction should be emitted before the code starts, and the
whole snippet should be repeated 11 times.

multiple resources at the same time. To do this, we need to find
the right sequence of instructions for a software target that we
instrumented in the previous step. To find such a sequence, we
choose a guided search algorithm that uses classification reli-
ability (i.e., detecting correct information) as its optimization
metric. The input to this algorithm are instructions that can
create contention on various microarchitectural components.
We use the best performing instructions as seeding set.

We wish to give the search algorithm freedom in choosing
the final instruction sequence. The only requirement is that the
instructions remain valid. Meeting both of these criteria, we
design recipes that the system uses for synthesizing instruction
sequences. Our evolutionary search algorithm mutates these
recipes when looking for the best-performing solution. Before
providing more details on the search algorithm, we first discuss
the format of the recipes shown in Figure 10. Each recipe
consists of a short string of integer parameters, each with a
specific range that the search algorithm must respect.

Repeat number This parameter defines the number of iter-
ations (between 1 and 20) the complete code needs to run.
The execution time of the entire loop provides the raw signal
for detecting the secret operation. We wish to strike a balance
between observing a meaningful stretch of time and having
a high-resolution measurement. The optimal value for this
parameter depends on the synthesized code and on the target
program.

Barriers These parameters define whether or not there is a
memory barrier 1) before executing the instruction sequence
or 2) after the instruction sequence is executed. Memory-
dependent side channels benefit from these barriers, since

they prevent the memory traffic from creating noise on the
instructions that measure the execution time due to out-of-
order execution. Barriers, however, may come at a cost of
lowering the temporal resolution, due to the incurred latency of
draining the memory pipeline. Hence, they can have adverse
effects on the instructions that do not exercise the memory
subsystem, and we don’t want to force them, and leave their
inclusion as a parameter.

Instruction blocks These parameters are each aimed at cre-
ating contention. Currently, for each parameter, we use an
architecture-dependent sequence of instructions that yields a
covert channel, as discussed in Section IV. Each parameter
defines the number of instructions that is desired from a
specific covert channel.

Combine mode This parameter specifies the method for
combining the instruction blocks. We identify three possibil-
ities: concatenation, interleaving, and a random shuffle after
concatenation. With concatenation, we simply concatenate the
instruction blocks in the recipe. With interleaving, we inter-
leave instructions from different blocks. Finally, with random
shuffling, we first concatenate different instruction blocks and
then do a random shuffle of these instructions.

Evolutionary search algorithms require a fitness function
that evaluates the fitness of the current population of solu-
tions. We use a Gaussian Naive Bayes (GNB) classifier to
decide whether a given sequence of instructions gives a signal
measurement that is able to differentiate between the various
code paths the target is executing.

To do this, we train the classifier on the signal values,
a vector of 220 latency measurements. We label them with
the ground truth obtained from the target instrumentation. The
ground truth is the code path being executed by the target when
the signal was measured. As an example we label these code
paths 0 and 1.

To increase accuracy, we first apply a normalization step
on the raw measurements from a given instruction sequence.
We subtract the mean latency from all measurements, and then
divide each measure in order to give the signal unit variance.

Finally, we then train the GNB using 75 target executions
(providing empirically accurate results). Typically each exe-
cution gives us hundreds of code path samples, giving us a
training set of e.g. 19200 ’0’ values and 9600 ’1’ values. We
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then and observe how well the trained GNB classifier performs
on a separate training set of 25 target executions. From this
test, we compute the f1 score. We use this f1 score as the
fitness function for the genetic algorithm. As an example of
the raw signals, and of the effect of the signal preprocessing
step, see Figure 11.

We chose the GNB classifier since it performs well without
tuning parameters, and its training and evaluation have linear-
time complexity which allows for our evolutionary algorithm
to quickly progress.

We select Differential Evolution [24] (DE) for our evolu-
tionary search algorithm. This choice is motivated by DE’s
ability of treating the optimized function as a black box, for
not relying on a well-defined gradient to exist, and also for
its resistance to a noisy fitness function, which is the case
for our GNB classifier. The algorithm works by assembling
a population of candidate solutions, described by a set of
parameters for each candidate, and continuously trying to
improve the candidates’ fitness functions by combining their
parameters into a new generation of the population. We define
the discussed recipes as candidates which the DE strives to
optimize using the GNB classifier.

We will show the effectiveness of our search strategy and
a sample of refined sequence of instructions in Section VII.

C. C3: Secret Recovery

The ground truth captured in the training phase includes
synchronization information. This means we can train and
test on signals with known equal starting points and length.
Under such assumptions, the classifier can easily tells us the
corresponding secret value. However, a realistic attack requires
processing a captured signal with many consecutive such sub-
signals starting at unknown position. In order to obtain secret
recovery in practical settings, we need to recognize the sub-
signals of many samples that correspond to a particular secret
value and extract just the single value. A 2-label classifier,
while fast to train and evaluate, is not equipped for this
purpose, nor can it easily be adapted to reliably do so. The
primary reason is the fact that we express a time series of
samples, as a vector, to which the classifier assigns the same
meaning in each position. However, the samples may easily
desynchronize over time when analyzing a long capture.

Unsynchronized key recovery To detect signals correspond-
ing to secret values in absence of synchronization, we turn to
a sequence classification algorithm that is intended for time
series data and is robust in the face of imperfect synchro-
nization: a Long Short-Term Memory [25] (LSTM) Recurrent
Neural Network (RNN). Not only does this network improve
the synchronized classification significantly, it is also robust in
face of small time shifts in the signal, allowing unsynchronized
secret recovery.

LSTM models For robustness reasons that we will discuss
later in this section, we design two different LSTM models,
each with different detection characteristics. Model 1 consists
of 3 stacked LSTM layers with decreasing number of cells
(400, 300, 200). In order to avoid over-fitting, we have set
a dropout of 0.2 on each layer. The first 2 LSTM layers

propagate their hidden state to the subsequent layer. As we
have a 3-label classification, we use a softmax layer to cal-
culate the output probabilities. Model 2 is more complex in
comparison to model 1, totaling six layers. We engineered
the model so that after an LSTM layer, a fully connected
layer with RELU activation follows, which we find to work
well in practice. We use three such layer packets, again with
decreasing numbers of cells (400, 256, 300, 128, 200). The
LSTM layers also propagate their hidden state to the RELU
layers. Therefore the RELU layers have input dimension 3.
Similar to model 1, we use dropout to encourage resistance
to over-fitting and a softmax layer for classification. The two
models are the result of engineering various models of different
shapes and parameters and selecting the ones that provided the
best test-score. In most cases, model 1 performs slightly better
than model 2. However, we use the two deep neural networks
in a stacked ensemble, which results in a better performing
classifier. We implement our models using the Keras [26]
interface to Tensorflow [27].

We combine the results from two different models in a
stacked ensemble in order to be more resistant to miss-guessing
secret values, as not guessing any secret value is much less
damaging than guessing the wrong value. We fully detail
this design decision when discussing the brute force tradeoff,
below. We train the weights on the models as follows.

1) We assemble a labeled training set. The features of the
training samples are latency values, which have been
processed for normalization, in the same way as in the
Gaussian Naive-Bayes classifier described above.

2) We include 2 types of samples in the training set. The first
type is a signal of latencies, where the start time coincides
with the moment a code path is being processed by the
target according to the ground truth data. The second type
is a signal that starts somewhere between the start of one
path and the start of the next. We label this with a special,
extra label that is not used by the instrumentation.

3) As with the Gaussian classifier, we train the models on 75
executions of the target, typically giving 384 code paths
each execution of the first, synchronized type. Added to
these is a equal number of special training samples that
are not synchronized.

Brute force tradeoff A recovered secret is frequently not
exactly correct. A reasonable amount of brute-force search
performed by the analyst is acceptable in order to get to the
correct key from a recovered key bit stream. We assume we
can verify a candidate secret, which we can do if the secret is,
say, a cryptographic key that is used in a signing operation.
This leads to a crucial observation.

The secret recovery algorithm will return a sequence of
(time, secret) pairs. Whenever a secret is miss-detected as a
wrong value, brute forcing means we have to try hundreds of
positions to find the wrong bit. For a 384-position guess and
N wrong guesses, brute forcing leads to a 384N work factor
for every bit. The approach quickly becomes infeasible.

However, we can reliably detect whenever a secret value is
missing (deletion), or whenever a spurious value was inserted
(insertion), because of the time series information. Deleted bits
leave a large gap, and inserted bits create very narrow gaps.
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For deletions, it is clear where to insert a trial bit, or not, giving
3 possibilities: ignore, insert 0, insert 1. For insertions, assume
one of the three bits forming the two narrow gaps is to blame,
and try to delete each of them, also leading to 3 possibilities.
We can tolerate quite a few insertions and deletions before
brute force becomes infeasible—for a total of N insertions
plus deletions, we have to do 3N trials.

This means we should design our detection algorithm to be
conservative in secret value predictions. We can compensate
missing values with brute force to a large degree. This is the
key reason we train 2 different LSTM models and only accept
a secret value prediction when they both predict the same one.

This approach results in a more reliable classification
system, so robust in classifying time series data that, given
a sufficiently high-quality underlying side channel, a practi-
cal secret recovery system can be built on it. This strategy
addresses C3.

VII. EVALUATION

In this section, we quantify the effectiveness of ABSynthe
in synthesizing practical side-channel attacks. We first discuss
our evaluation environment and our example software targets.
We aim to answer six questions in our evaluation of ABSynthe.

1) Can aligned snippets of execution traces corresponding
to single secret bits be reliably classified into the correct
secret bit by ABSynthe’s spy process? We show that this
the case by presenting our results in Section VII-C.

2) Can a complete capture of a secret key operation, without
any alignment, reliably be mapped back to the original
secret bits? This is a more challenging task than the pre-
vious one. We show how ABSynthe can make predictions
without any alignment information in Section VII-D. We
show how these predictions can easily be turned into
a fully automated secret recovery using a case-specific
heuristic in one of our software targets.

3) How does black-box generation of instruction se-
quences in ABSynthe compare against the state-of-the-
art contention-based attacks such as PortSmash [10] and
SMoTherSpectre [11]? We show that ABSynthe’s DE
algorithm manages to automatically find better sequence
of instructions for leaking information in Section VII-E.

4) Is ABSynthe robust to signal capturing larger than the
execution region of interest? Can we detect where the re-
gion of interest is, namely where secret key bits (which we
have trained our classifiers to detect) are being processed?
We evaluate this using a crypto-as-a-service scenario in a
larger application (i.e., GnuPG) in Section VII-F1.

5) How robust are the synthesized attacks against noise?
We detail the impact of interference from concurrently
executing other processes on key recovery performance
in Section VII-F2.

6) Can we generalize our system to not only detect secret-
dependent code accesses, but also secret-dependent data
accesses? We show the results of extending ABSynthe to
synthesize cache attacks in Section VII-G.

A. Experimental Environments

We use four different testbeds. Two are based on Intel
processors, one with a desktop processor, a 4-core 2-way SMT

Intel Skylake i7-6700K running Ubuntu 18.04 and another with
a server processor, an 8-core 2-way SMT Intel Broadwell E5-
2620 running Debian Buster. We also use a system with a
24-core 2-way SMT AMD EPYC Zen 7401P running Ubuntu
18.04.1. Finally, we report partial results on ARM for a two
sockets machine, each with a 56-core 4-way ARM Cavium
Thunder X2 running Ubuntu 16.04.6 LTS. Note that the results
presented in this paper are the first exploration of SMT-based
side channels on ARM platforms, but since we do not have a
machine-readable ISA for ARM641 for creating its leakage
map, we only apply ABSynthe on hand-written instruction
sequences and report its effectiveness.

To study the effectiveness of ABSynthe in virtualized
environments, we create VMs on the Broadwell and EPYC
testbeds. We run both the spy process and the victim process
in different VM instances locked to different threads on the
same physical core in order to assess cross-VM information
leakage with ABSynthe.

Unless otherwise mentioned, we report median figures. In
all our experiments, ASLR is turned on, which means that
contention-based attacks synthesized by ABSynthe are not
affected by this defense.

B. Software Targets

We use four versions of cryptographic functions in
libgcrypt 1.6.3 and libgcrypt 1.8.5 as targets: EdDSA 25519,
EdDSA 25519-hardened, EdDSA 25519-secure (1.8.5 only),
RSA, and ECDSA P-256. EdDSA 25519-hardened has a
rudimentary side channel mitigation, while the side-channel
mitigation in EdDSA 25519-secure is considered state-of-the-
art. We emphasize that we are not interested in the suscepti-
bility of these algorithms to side channels per se, but rather in
showing that ABSynthe is a generic testing solution to evaluate
any such function. Next, we provide further information on
these software targets.

EdDSA 25519 Figure 5 shows a point-scalar multiplication
with secret-dependent code path. This is an elliptic curve
secret key operation, where the secret is the scalar variable.
The ABSynthe instrumentation has been automatically applied
as explained in Section VI-A. EdDSA 25519 operates on
the Curve25519 elliptic curve. A point-scalar multiplication
proceeds in a series of point doublings and additions, under
control of the secret scalar k. The doublings are unconditional,
but the additions happen only for 1-valued bits in k. As a result,
the control flow can be used to infer the pattern of secret key
bits in the scalar.

EdDSA 25519-hardened This is a variant of EdDSA 25519
which explicitly mitigates against secret-dependent control
flow side-channel attacks. Specifically, it performs the du-
plication and addition operations unconditionally, and only
conditionally uses the result of the addition. While not a
state-of-the-art mitigation anymore (a more secure version
is discussed next), this is an illustrative example of a side
channel mitigation that is less secure than it would seem at
first glance. As we shall see, ABSynthe is able to detect

1Since doing this work, the authors have been made aware of the ARM
Machine Readable Architecture specification [28], and we include a short
discussion of this limitation in Section VIII-B.
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the conditional exchange with high reliability automatically,
proving the value in incorporating ABSynthe into an analysis
cycle when designing side channel mitigations. In our results,
we designate this variant ED25519-hardened.

EdDSA 25519-secure This is a variant of EdDSA 25519 with
state-of-the-art side-channel mitigations for secret-dependent
computations. This variant also does the duplication and ad-
dition operations unconditionally, and conditionally uses the
result of the addition, but without control flow-level condi-
tionals. We expect ABSynthe not to be to able to synthesize
a successful attack against this target. As there is no secret
dependent control flow, we manually annotate the loop with
the secret key bit being processed.

RSA We use the simplified RSA code in libgcrypt that follows
the familiar square-and-multiply pattern while processing a
secret key exponent, usually referred to as d. The squaring
is unconditional, but the multiply is conditional on a 1-bit in
d. Thus, the control flow of the modular exponentiation can
be directly mapped to the secret key bits in d.

ECDSA NIST P-256 Our fifth example target is also ECC
point-scalar multiplication code, but of a different type from
EdDSA 25519. The NIST P-256 curve follows a similar
multiplication procedure, but first converts k to Non-Adjacent
Form (NAF). This is a representation where each position
can be valued 0, -1 or 1, and on average, only one third of
the digits will be non-zero. This allows a multiplication to
be evaluated with fewer point additions (and, for -1 values,
subtractions). Control flow for this multiplication has 3 cases:
the k digit is 0, -1 or 1. In the case of 0, only a doubling is
performed. In the case of 1, a point doubling and addition is
performed. In the case of -1, a point doubling and subtraction.
This means that recovering the control flow of a target gives
us the representation of k in NAF. If desired, it can be trivially
transformed into a binary representation. We show that this 3-
label detection case too can be done in ABSynthe with high
reliability. For more information on NAF, see [29, 30].

The target code is automatically instrumented as explained
in Section VI-A.

C. Classification Reliability

As mentioned earlier, we use the Gaussian Naive Bayes
(GNB) classifier to assess the quality of the synthesized side
channels by ABSynthe. GNB allows fast training and testing
and gives a baseline of reliability for the RNN which we use
to aid complete key recovery later. RNNs take much longer to
train and test, but they typically perform better than the GNB
classifier and do not require synchronization with the target.

We design experiments to obtain contention-based mea-
surements for all instructions available on a processor. For each
instruction, we instantiate a side channel, and collect traces in
the spy program with the associated ground truth. All of this
can be parallelized and since each capture is quite short, this
one-time process just takes around an hour for each software
target and machine combination.

On Intel Broadwell and AMD EPYC Zen, we further
experiment with virtualized environments, where target and
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(a) Signal of best-performing single-instruction side channel on
the Broadwell-NIST-P256 target (no clear separation in PCA).
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(b) Signal of evolved side channel (with clear separation).
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(c) DE algorithm progressively finding better side channels.

Fig. 11: Raw signal processing and classification on Intel
Broadwell, applied to the NIST P-256 target. In (a) and (b),
we use a 2-dimensional PCA to show that the DE algorithm
can better discriminate between 0 and 1 key bits than the best-
performing side-channel primitive (as evidenced by the clear
separation in the PCA plot). The bottom figure shows how DE
can progressively find a better side channel through mixing
different side-channel primitives together.

spy are running in separate KVM instances. We collect 100
traces, give the GNB model 75 training traces (providing
empirically accurate results), and test the reliability on the
remaining 25 traces. It takes around 10 seconds to train the
model for each scenario. Furthermore, we seek to enhance
the performance of the side-channel primitives by combining
instructions using the evolutionary algorithm as discussed in
Section VI-B. We first show the complete results for this
analysis before showing how the evolutionary algorithm can
improve the quality of the signal.

The spy traces that we collect are aligned and correspond
to a small number of secret ground truth values, which are
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TABLE II: F1 score reliability results for best-performing primitive side channels, as well as our evolved side channels. We test
on 4 different microarchitectures (Intel Skylake, Intel Xeon Broadwell, AMD Zen and ARM Cavium Vulcan). For the x86_64
microarchitectures, we test all possible instructions and show the 4 best performing ones (Instr4, Instr3, Instr2 and Instr1, in
order). DE corresponds to our evolved side channel, which is an improvement in some cases. On ARM, we only use hand-written
side channel snippets that stress memory (e.g., loads, but no cache eviction) and ALU operations (e.g., XORs). These classifiers
operate on aligned signals and classify into secrets. The classifier in the LSTM column operates on unaligned secrets (discussed
in Section VII-D.)

Intel Xeon Broadwell Software Target Instr4 F1 Instr3 F1 Instr2 F1 Instr1 F1 DE F1 LSTM F1
native gcrypt 1.6.3 EDDSA 25519 0.97 0.98 0.98 0.98 0.98 0.95
native gcrypt 1.6.3 EDDSA 25519-hardened 0.76 0.77 0.79 0.79 0.84 0.88
native gcrypt 1.6.3 ECDSA P-256 0.94 0.94 0.94 0.97 0.97 0.91
native gcrypt 1.6.3 RSA 0.81 0.81 0.83 0.88 0.88 0.91
Cross-VM (Debian Stretch) gcrypt 1.6.3 EDDSA 25519 0.96 0.97 0.98 0.99 0.99 0.98
Cross-VM (Debian Stretch) gcrypt 1.6.3 EDDSA 25519-hardened 0.66 0.66 0.68 0.68 0.70 0.76
Cross-VM (Debian Stretch) gcrypt 1.6.3 ECDSA P-256 0.97 0.98 0.98 0.98 0.98 0.95
Cross-VM (Debian Stretch) gcrypt 1.6.3 RSA 0.72 0.72 0.73 0.80 0.80 0.88
Intel Skylake Software Target Instr4 F1 Instr3 F1 Instr2 F1 Instr1 F1 DE F1 LSTM F1
native GnuPG 2.2.17/gcrypt 1.6.3 EDDSA 25519 0.98 0.99 0.99 0.99 1.00 0.99
native gcrypt 1.8.5 ECDSA P-256 0.99 0.99 0.99 1.00 1.00 0.99
native gcrypt 1.8.5 EDDSA 25519 0.99 0.99 0.99 0.99 1.00 0.99
native gcrypt 1.8.5 EDDSA 25519-hardened 0.77 0.79 0.79 0.81 0.90 0.92
native gcrypt 1.8.5 EDDSA 25519-secure 0.53 0.53 0.53 0.53 0.53 0.66
native gcrypt 1.8.5 RSA 0.73 0.73 0.73 0.74 0.82 0.82
native gcrypt 1.6.3 ECDSA P-256 0.98 0.98 0.98 0.98 0.99 0.95
native gcrypt 1.6.3 EDDSA 25519 0.99 0.99 0.99 0.99 1.00 0.99
native gcrypt 1.6.3 EDDSA 25519-hardened 0.78 0.78 0.80 0.81 0.91 0.93
native gcrypt 1.6.3 RSA 0.74 0.74 0.75 0.76 0.79 0.81
AMD EPYC Zen+ Software Target Instr4 F1 Instr3 F1 Instr2 F1 Instr1 F1 DE F1 LSTM F1
native gcrypt 1.6.3 EDDSA 25519 0.98 0.98 0.98 0.98 0.99 0.97
native gcrypt 1.6.3 EDDSA 25519-hardened 0.73 0.73 0.74 0.74 0.85 0.80
native gcrypt 1.6.3 ECDSA P-256 0.95 0.95 0.95 0.95 0.96 0.91
native gcrypt 1.6.3 RSA 0.66 0.67 0.68 0.68 0.75 0.79
Cross-VM (Debian Stretch) gcrypt 1.6.3 EDDSA 25519 0.83 0.84 0.84 0.86 0.86 0.80
Cross-VM (Debian Stretch) gcrypt 1.6.3 EDDSA 25519-hardened 0.82 0.83 0.83 0.89 0.89 0.78
Cross-VM (Debian Stretch) gcrypt 1.6.3 ECDSA P-256 0.67 0.67 0.68 0.70 0.70 0.60
Cross-VM (Debian Stretch) gcrypt 1.6.3 RSA 0.53 0.53 0.56 0.57 0.71 0.66
ARM Thunder X2 Vulcan Software Target ALU F1 LOADS F1 DE F1 LSTM F1
native gcrypt 1.6.3 EDDSA 25519 0.79 0.74 0.85 0.84
native gcrypt 1.6.3 EDDSA 25519-hardened 0.51 0.52 0.56 0.66
native gcrypt 1.6.3 RSA 0.51 0.43 0.57 0.68
native gcrypt 1.6.3 ECDSA P-256 0.77 0.33 0.84 0.86

known from our instrumentation code in the training phase.
When evaluating the quality of this side channel, we use the
synchronization information for alignment and run the classi-
fier on the unknown, aligned trace. If the classifier guesses the
right secret most of the time, we have a signal. The quality
of guessing is combined in an F1 score, an accuracy score
corrected for testing set size, where 1.00 denotes a perfect
score.

Given that we exhaustively measured the effect of all
instructions on all architectures on all targets, we are able
to give an interesting overview of these results grouped in
different ways. Figure 13 shows these F1 scores grouped both
by architecture and by software target.

Table II shows how well the 2-label classifier works (or
in the case of NIST P-256, 3-label) when using instruction
sequences found with ABSynthe’s DE algorithm on our eval-
uation platforms in different settings (i.e., native and virtual-
ized). Each classifier distinguishes aligned samples into one
of the secret values. We also include the F1 scores for the
four best-performing instructions we found in our exhaustive,
black-box test. As the results show, ABSynthe successfully
synthesizes side channels on different platforms and software
targets. Furthermore, the ABSynthe’s DE algorithm can in
certain cases synthesize a better side channel by creating
contention at multiple resources at the same time. As expected,

there is not much to gain for EdDSA 25519-secure which
was designed explicitly with side channels in mind, but for
the other algorithms, the signal is significantly improved by
DE, sometimes even across VMs. These results show the
value of using ABSynthe’s automated pipeline for testing the
susceptibility of cryptographic functions against contention-
based side-channel attacks.

On the ARM platform where we currently do not have a
leakage map, we write some snippets by hand that we expect to
generate contention: one snippet that does XOR operations and
exercises the ALU unit and another snippet that does memory
loads and exercises the memory subsystem (without cache
eviction). Clearly, non of this is exhaustive and the F1 scores
are lower in general. However, even without a full instruction
set, ABSynthe’s DE algorithm can synthesize a significantly
better side channel from these primitives than either snippet.

Figure 11 provides more detail on the improvements made
to the synthesized side channel using ABSynthe’s DE algo-
rithm. As an example, we show the improved signals collection
on the NIST P-256 target on an Intel Broadwell machine. NIST
P-256 has 3 secret values due to the NAF representation (see
Figure 8 for more information). We visualize the improvement
using Principal Component Analysis (PCA) on the normalized
signal. This is a more rudimentary technique than our classifier
(GNB), but lends itself better to visualizing the ability for the
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# DB1
DIV CL
IDIV R8
PUSHFQ
DIV CL
IDIV R8
PUSHFQ
DIV CL
IDIV R8
PUSHFQ
DIV CL
IDIV R8
PUSHFQ
IDIV R8
PUSHFQ
IDIV R8
PUSHFQ
IDIV R8
PUSHFQ
PUSHFQ

Fig. 12: An example of an evolved side channel snippet, com-
bining a varying number of 3 different primitive instructions.
The DB1 annotation is a signal to the code synthesis system
that a memory barrier (mfence) must be emitted before the
first rdtscp.

Fig. 13: Histogram of side channel reliability organized by
software target and by platform.

signals to be separated. We visualize the signal by forcing
PCA to express them using just 2 components, and plot these
2 components in a scatter-plot, showing whether or not the
signal can be separated this way.

Figure 11a shows that with the best-performing instruction
it is difficult to distinguish between -1, 0 and 1 bits, while
Figure 11b shows that the distinction is very clear with our
DE-refined side channel. The improvement is the result of
ABSynthe creating contention on different resources at the
same time. Finally, Figure 12 shows what a sequence of
instructions found by DE may look like, clearly illustrating
that it is difficult (if not impossible) to manually create such
sequences.

D. Unaligned Secret Bit Sequence Recovery

We next show an analyst armed with ABSynthe’s results
is capable of recovering secret bit sequences without synchro-
nization with the victim. We train the LSTM models using 75
training traces, and then evaluate the performance of secret
recovery using 7 additional testing traces. It takes roughly a
one-time session of 15 minutes to train the model for each
scenario.

TABLE III: Unaligned secret bit sequence recovery. These are
all performed on Intel Skylake on the EdDSA 25519 target.
We show the number of trials, success rate, and median brute
force attempts needed. The GnuPG case uses the same software
target, but the full execution trace of GnuPG is processed,
and the secret-dependent region of interest is automatically
identified and analyzed without external cues.

Platform Target Instr Trials Success Med. BF (2N )
Skylake ED25519 DE1 7 1.00 7.9

Skylake ED25519 Instr2 7 1.00 15.8

Skylake ED25519 Instr1 7 1.00 15.8

Skylake GPG/ED25519 DE1 7 0.71 29.7

Skylake GPG/ED25519 Instr2 7 0.86 22.5

Skylake GPG/ED25519 Instr1 7 1.00 17.4

Our LSTM classifiers are expected to classify a signal
into a certain secret (implying alignment), or a special blank
label, implying no alignment. We use the predictions from
the synchronized classifiers as the ground-truth for the unsyn-
chronized classifications. The results of this experiment can
be found in the LSTM F1 column in Table II. In many cases,
the LSTM classifiers achieve a very good F1 score implying
a strong signal for the secret key bits.

To recover the actual secret (key) in an example scenario,
we pick the EdDSA 25519 target on the Skylake architecture,
for its high reliability score in the aligned secret classification
scenario. At this point, an analysis can perform post processing
of the signal to recover the actual secret key bits. We exemplify
this with a basic heuristic. This heuristic assumes that secret
bits are processed in key bit order and uses the density of
the label predictions by the LSTM models as an indication
of the secret key bits. In cases, where the heuristic is not
confident with the predictions, the target secret key bit will
be left for brute-forcing. Given the key value guesses that the
LSTM models made, we needed to do a modest amount of
brute forcing to reach the exact original key. We limit this to
240 brute-forcing trials. If the key guess requires more brute
forcing than that, we call that trial a failure. Otherwise, the
trial is successful and we report the median of how many brute
force trials were needed.

Table III shows the results, including the number of trials
performed in each scenario, the success rate, and the median
number of brute force attempts needed before we could guess
the correct key in the successful cases. ABSynthe’s synthesized
end-to-end side channels were 100% successful in aiding secret
key recovery, using only a single trace capture and a modest
amount of brute forcing, even when the cryptographic function
is embedded inside a full application.

These results demonstrate that a simple case-specific
heuristic is effective for the recovery of arbitrary secret keys
using ABSynthe’s unaligned secret recovery analysis. We leave
the exploration of other signal processing heuristics (e.g., cross
correlation) for other software targets as future work.
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TABLE IV: Classification performance of ABSynthe classifier using PortSmash and SMoTherSpectre instruction sequences. ror
and popcount are unique to SMoTherSpectre. All except popcount are used by PortSmash. On Skylake microarchitecture
in the native environment (non-virtualized).

Software Target add paddb ror andn crc32 vpermd popcnt ABSynthe
gcrypt 1.6.3 ECDSA P-256 0.83 0.84 0.79 0.80 0.54 0.82 0.59 0.99
gcrypt 1.6.3 EDDSA 25519 0.95 0.93 0.95 0.95 0.87 0.95 0.89 1.00
gcrypt 1.6.3 EDDSA 25519-hardened 0.64 0.67 0.65 0.65 0.61 0.70 0.64 0.91
gcrypt 1.6.3 RSA 0.64 0.64 0.59 0.61 0.55 0.65 0.56 0.79
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Fig. 14: Noise resistance heuristic in full GnuPG execution.
We show the heuristic operating correctly in 7 different trials.

E. Comparison with manually discovered sequences

In recent work, PortSmash [10] and SMoTherSpectre [11]
suggested exploiting contention-based side channels using
manually discovered instruction sequences. We now compare
such sequences against the best sequences found by ABSynthe
on our target.

PortSmash uses instructions add, paddb, ror, andn,
crc32, and vpermd, as evidenced from the original source
code repository2. SMoTherSpectre uses ror and popcnt
(the latter missing from PortSmash’s list). For each selected
instruction, we compare its classification performance on each
of our targets to the performance of the best sequence that
ABSynthe found. Table IV presents our results. According
to our classifier, ABSynthe’s automated DE algorithm out-
performs all the other sequences in terms of classification
reliability by a wide margin by finding instructions that create
the maximum contention for a given target.

F. Robustness

In this section, we evaluate two robustness aspects of
ABSynthe. Firstly, if we capture the side channel signal
during the execution of a target program, can we automatically
identify the region of interest, i.e., the region during which
the secret key bits are processed? Secondly, if either the spy
process, the target process, or both, are periodically interrupted
by concurrent computation, can we still perform key recovery
on the resulting signal? We detail, visualize and quantify these
two aspects next.

2https://github.com/bbbrumley/portsmash
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Fig. 15: Interference noise resistance in key recovery. We show
all combinations of 7 different artificially induced interference
levels. We execute an interference process on the same logical
processor as both the target and the spy process, and vary
the amount of CPU time that the interference process claims.
We show the resulting key recovery success rate for each
combination.

1) Automatically finding the region of interest: While it
is straightforward to record our side channel signal, it is
less straightforward to determine when the execution region
of interest, namely the processing of the cryptographic key,
occurs. The detection algorithm will be processing data it is
not trained to handle, and spurious bit predictions may occur.
To show that our algorithm can adequately handle this situation
and detect when the region of interest starts, we record side-
channel samples on a full execution of GnuPG 2.2.17 linked
with libgcrypt 1.8.3, using the non-sidechannel-safe EdDSA
25519 algorithm. We find that, while there are many spurious
cryptographic bit predictions, the density of predictions in
the region of interest is significantly higher. We can use this
pattern as a reliable heuristic to detect the region of interest
without external synchronization. This data is illustrated with
7 different executions of GnuPG in Figure 14.

2) Target and spy executing with interference: We wish
to quantify the effect of imperfect measurement conditions.
What is the effect of other processes executing concurrently
with either the spy process or the target process? To quantify
this, we start two interference processes. One executes on the
same logical processor as the target, while the other executes
on the same logical processor as the spy. The interference
process can be configured to ask for a varying amount of CPU
time, by executing a computation loop and a usleep period
of configurable lengths. We vary the desired CPU time that
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TABLE V: Full, unaligned key recovery with ABSynthe with
increasing amount of noise (concurrent computation) to both
the target and the spy processes.

Platform Target Instr Trials Success Med. BF (2N )
Skylake ED25519 DE1+N01 7 1.00 18.1

Skylake ED25519 DE1+N02 7 0.71 18.1

Skylake ED25519 DE1+N03 7 0.57 25.8

Skylake ED25519 DE1+N04 7 0.14 36.1

Skylake ED25519 DE1+N05 7 0.14 38.0

Skylake ED25519 DE1+N06 7 0.00 -

Skylake ED25519 DE1+N07 7 0.00 -

Skylake ED25519 DE1+N08 7 0.00 -

the interference process asks for from 0.1% to 30.6% in 7
steps, and execute the measurement, training and key recovery
procedures in each possible combination.

The results are visualized in Figure 15 with numbers in
Table V. In Figure 15 we see that only interfering with the spy
process has any effect, as this interferes with signal acquisition,
but interfering with the target process does not have any
significant effect, as the key recovery procedure is robust to
noisy insertions in the signal. We show the numbers in Table V,
where we interfere in steps with both the target and the spy
process in equal amounts in increasing steps. We see that
even minimal interference in the spy has an effect, and the
success-rate gradually decreases as more interference is added.
In summary, assuming the spy has complete control over its
process, ABSynthe can successfully recover the secret keys
even if the victim’s execution is noisy.

G. Secret-Dependent Data Accesses

To demonstrate that the ABSynthe analysis pipeline is flex-
ible enough to distinguish secrets based on secret-dependent
data accesses, we briefly forego our purely blackbox philos-
ophy (designed to target secret-dependent code accesses) and
integrate in ABSynthe an active component that specifically
targets different TLB data cache sets on the Skylake microar-
chitecture. We try all these measurement functions on all our
targets with ASLR disabled this time. In this experiment,
we seek to observe data accesses from the profiled secret-
dependent branches (hence making the data accesses secret-
dependent as well). This allows ABSynthe’s dynamic taint
analysis logic to find explicit secret-dependent data accesses
(memory loads/stores with a tainted address) to extend the
scope of the analysis. Table VI presents our results.

Our results show that, purely by observing cache accesses
and having basic ground truth information, ABSynthe can
distinguish between secrets. ABSynthe’s performance is de-
pendent on the target and its cache set number.

As expected, for the side channel safe implementation of
EdDSA 25519 in libgcrypt 1.8.5, marked ED25519-secure in
the table, the f1 score of at most 0.53 indicates ABSynthe
cannot distinguish between different secrets.
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Fig. 16: DRAM bandwidth available to primary thread at-
tempting to do maximum rate memory reads, as a function
of number of competing physical cores trying to do the same.
Clearly, the DRAM bandwidth is already halved when two
cores are competing, and all bandwidth has to be shared
between cores.

VIII. DISCUSSION

A. Generalization

We designed ABSynthe to automate side-channel analysis,
useful both for software security analysts and CPU designers
in assessing side-channel leakage. The black box approach and
high degree of automation benefit greatly from our focus on
(1) contention-based side channels, and (2) resources that are
shared between logical processors on a physical CPU core. We
see two avenues towards the generalization of ABSynthe.

Eviction-based attacks As explained earlier in this paper,
eviction-based attacks require reverse engineering of the inter-
nal state of the components involved, but this can be amenable
to automation. For example, for resources such as the L1
cache that are set associative, we could incorporate a high-
level model of their behavior in ABSynthe towards supporting
“greybox” synthesis of eviction-based attacks.

Cross-core components ABSynthe can generalize beyond
resources of a single core if we could extend our measurements
beyond the core. We note that such cross-core and even cross-
CPU components actually exist. As an example, Figure 16
shows that it is trivial to observe cross-CPU interference in
DRAM bandwidth. The key challenge is to target a victim
contending on DRAM accesses to find exploitable signals.
Victim software with a sufficiently large working set (and
normally accessing DRAM) is an obvious (but restrictive)
candidate already at reach of ABSynthe. Using automatic
synthesis of eviction-based attacks to create (otherwise-absent)
contention on DRAM and other resources (at the cost of less
stealthy attacks) is a promising direction for future research.

B. Limitations

Some parts of ABSynthe can be extended in the future
to better support new software targets, architectures and key
recovery.

Software targets We assume that the target software spend a
significant amount of its time with secret computation. While
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TABLE VI: Classification performance of ABSynthe when observing 16 different cache sets.

Target 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
GnuPG 2.2.17/gcrypt 1.6.3 25519 0.87 0.98 0.90 0.92 0.98 0.96 0.90 0.97 0.96 0.99 0.97 0.92 0.66 0.96 0.91 0.97
gcrypt 1.6.3 ECDSA P-256 0.94 0.96 0.97 0.97 0.93 0.91 0.73 0.96 0.51 0.92 0.96 0.97 0.81 0.97 0.89 0.91
gcrypt 1.6.3 EDDSA 25519 0.95 0.85 0.93 0.96 0.94 0.95 0.91 0.96 0.95 0.94 0.97 0.99 0.93 0.76 0.96 0.97
gcrypt 1.6.3 EDDSA 25519-hardened 0.65 0.69 0.73 0.80 0.75 0.73 0.66 0.84 0.71 0.69 0.82 0.72 0.71 0.73 0.78 0.74
gcrypt 1.6.3 RSA 0.59 0.54 0.57 0.58 0.58 0.52 0.58 0.58 0.56 0.54 0.51 0.57 0.56 0.57 0.57 0.59
gcrypt 1.8.5 ECDSA P-256 0.98 0.99 0.99 0.99 0.97 0.97 0.92 0.99 0.98 0.96 0.99 0.99 0.78 0.98 0.99 0.99
gcrypt 1.8.5 EDDSA 25519 0.95 0.83 0.96 0.98 0.95 0.96 0.95 0.98 0.97 0.96 0.96 0.99 0.79 0.98 0.98 0.99
gcrypt 1.8.5 EDDSA 25519-hardened 0.70 0.68 0.73 0.83 0.68 0.78 0.69 0.71 0.67 0.67 0.79 0.72 0.63 0.73 0.69 0.72
gcrypt 1.8.5 EDDSA 25519-secure 0.51 0.51 0.51 0.51 0.49 0.51 0.52 0.48 0.49 0.48 0.50 0.49 0.47 0.49 0.50 0.53
gcrypt 1.8.5 RSA 0.60 0.56 0.60 0.60 0.60 0.52 0.60 0.60 0.59 0.53 0.53 0.59 0.56 0.71 0.60 0.61

this is usually the case with cryptographic software as we
showed in this paper, it may not necessarily be the case for
other software targets. In those cases, an analyst may need to
manually annotate the target software. We further assume that
the secret key is loaded from the file system for our automated
taint analysis. This can easily be extended to other sources
of secret information that should be tainted (e.g., network
sockets).

Architectures ABSynthe requires the ISA definition in a
convenient format for building leakage maps for different
microarchitectures. While this was readily available for the
x86_64 [21], supporting new architectures in ABSynthe will
require convenient ISA definitions. Future work can extend
our x86_64 leakage maps to ARM using the ARM Machine
Readable Architecture (MRA) [28].

Key recovery As we showed in our evaluation, our LSTM
model achieves high F1 scores with non-cooperative victims
on different microarchitectures. We presented an example to
show that an analyst armed with ABSynthe’s results, by
performing tailored post-processing, can implement full key
recovery from the ABSynthe-recovered key bit stream even
with a single capture. A promising direction for future work is
to also automate the post-processing, investigating brute-force
heuristics that may apply to a wide variety of (cryptographic)
programs.

IX. RELATED WORK

Microarchitectural and physical side-channels Side chan-
nels have a rich history and have been applied to many
different microarchitectural components. Cache attacks are the
oldest and most widespread microarchitectural side-channel
attacks. Such attacks originally targeted the L1 cache [3,
31, 32, 33], and more recently expanded to higher-level
caches all the way to DRAM [34]. There are different
eviction-based techniques to exploit cache side channels.
The classic variant is PRIME+PROBE, which requires exact
eviction sets but is the most general. Other variants are
EVICT+TIME [3, 35, 36], which allows over-estimating an
eviction set, FLUSH+RELOAD [1], which relies on shared
physical memory but is high-resolution, and easy to use.

Non-software side channels are even older than microar-
chitectural attacks, and can use physical properties of the
device that is doing the computation in order to leak secret
information [37, 38].

The Branch Target Buffer (BTB) has also been heavily
studied in prior work [8, 39, 40, 41, 42]. For instance, it allows

ASLR information to leak from the kernel as well as from other
processes. Recent work has also exploited the Pattern History
Table (PHT) [9]. The PHT is shared across threads and, a spy
thread can leak data by evicting PHT entries and deducing the
direction of a particular branch. The Translation Lookaside
Buffer (TLB) is also a shared resource. Prior work has shown
that the L1 dTLB can be exploited for a reliable side-channel
attack through the TLB [7] using a PRIME+PROBE-style attack.
Memory Order Buffer (MOB) is yet another shared resource
that can leak information by creating a false dependency across
threads [43] and stalling the victim thread while the CPU
decides whether store forwarding should proceed (in case of a
true dependency).

The focus on contention-based side channels is recent and
to our knowledge they have only been applied to execution
ports. PortSmash [10] can leak cryptographic keys on Intel
processors by creating contention on execution ports. Port
contention has also been used to simplify gadgets [11] used
in speculative execution attacks [44]. Previous work show the
possibility of information leakage with port contention [42,
45]. Compared to these attacks that require highly specialized
analysis that is often not portable to other (micro)architectures,
ABSynthe can automatically synthesize contention-based side
channels for a given software target and a microarchitecture.
Instead of focusing on a single component (e.g., execution
ports), ABSynthe automatically discovers the best set resources
that leak information with a blackbox analysis.

Side-channel attack automation Other prior efforts have
proposed systems to automate side-channel attacks, although
none can support the blackbox synthesis strategy proposed
in this paper. For instance, [46] focuses an automating side-
channel attacks with a traditional side-channel analysis tailored
to a specific microarchitectural component (last-level cache).
Covert Shotgun [20] is more related in that it runs many
combinations of instructions to automatically find covert chan-
nels. ABSynthe’s contention-based side channel strategy draws
inspiration from such approach, but covers the entire x86_64
ISA and synthesizes a side-channel attack rather than a much
simpler covert channel.

While not aiming at automatic blackbox synthesis, other
efforts have used machine learning techniques to ease side-
channel exploitation, for instance to differentiate the key-
dependent side channel signals from one another [7, 47, 48,
49]. Recent work has also applied deep learning techniques to
in-browser cache fingerprinting attacks [50].
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X. CONCLUSION

As a result of ever more advanced attacks, side-channel
vulnerabilities have become important attack vectors in recent
years. Most attacks such as PRIME+PROBE rely on targeted
eviction operations on specific components (e.g., caches). Such
whitebox attack strategies require a deep understanding of
the target component, often involving labor-intensive reverse
engineering that must be repeated for each microarchitecture.

In this paper, we created comprehensive leakage maps for
on-core resources on three x86_64 microarchitectures. These
leakage maps show the possibility of creating a variety of
side-channel attacks by creating contention on a variety of
microarchitectural components that are constantly and un-
avoidably used by victim code. We built ABSynthe based
on this key observation for constructing powerful contention-
based attacks in a black box, automated fashion without any
need for labor-intensive reverse engineering. ABSynthe shows
that simply treating the CPU as a black box and evaluating the
information leakage across sequences of instructions is enough
for crafting reliable side-channel attacks. Through extensive
evaluation, we showed that ABSynthe can automatically craft
practical side-channel attacks to recover key bit streams on
different microarchitectures (Intel, AMD, ARM) and execution
environments (native, virtualized) against a variety of software
targets. We also presented a case study where an analyst
armed with ABSynthe’s results can recover the full secret key.
ABSynthe can also be used by hardware designers for microar-
chitecture regression testing purposes (e.g., to automatically
test whether new ISA extensions introduce new side channels)
or by software designers to test for side-channel leakage.
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