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Abstract—We present the new class of non-uniform Rowhammer
access patterns that bypass undocumented, proprietary in-DRAM
Target Row Refresh (TRR) while operating in a production setting.
We show that these patterns trigger bit flips on all 40 DDR4
DRAM devices in our test pool. We make a key observation that all
published Rowhammer access patterns always hammer “aggressor”
rows uniformly. While uniform accesses maximize the number of
aggressor activations, we find that in-DRAM TRR exploits this
behavior to catch aggressor rows and refresh neighboring “victims”
before they fail. There is no reason, however, to limit Rowhammer
attacks to uniform access patterns: smaller technology nodes make
underlying DRAM technologies more vulnerable, and significantly
fewer accesses are nowadays required to trigger bit flips, making
it interesting to investigate less predictable access patterns.

The search space for non-uniform access patterns, however, is
tremendous. We design experiments to explore this space with
respect to the deployed mitigations, highlighting the importance
of the order, regularity, and intensity of accessing aggressor
rows in non-uniform access patterns. We show how randomizing
parameters in the frequency domain captures these aspects and
use this insight in the design of Blacksmith, a scalable Rowhammer
fuzzer that generates access patterns that hammer aggressor rows
with different phases, frequencies, and amplitudes. Blacksmith
finds complex patterns that trigger Rowhammer bit flips on all 40
of our recently purchased DDR4 DIMMs, 2.6× more than state
of the art, and generating on average 87× more bit flips. We also
demonstrate the effectiveness of these patterns on Low Power
DDR4X devices. Our extensive analysis using Blacksmith further
provides new insights on the properties of currently deployed
TRR mitigations. We conclude that after almost a decade of
research and deployed in-DRAM mitigations, we are perhaps in
a worse situation than when Rowhammer was first discovered.

I. INTRODUCTION

A dangerous mistake when designing a mitigation is as-
suming that attackers will operate the same way after the
deployment of the new mitigation. This is especially true for
in-DRAM Target Row Refresh (TRR), a selection of defense
mechanisms for stopping the ever-worsening Rowhammer
effect in the DRAM substrate. Proprietary, undocumented
in-DRAM TRR is currently the only mitigation that stands
between Rowhammer and attackers exploiting it in various
scenarios such as browsers, mobile phones, the cloud, and
even over the network [1]–[11]. In this paper, we show how
deviations from known uniform Rowhammer access patterns
allow attackers to flip bits on all 40 recently-acquired DDR4
DIMMs, 2.6× more than the state of the art [12]. The
effectiveness of these new non-uniform patterns in bypassing
TRR highlights the need for a more principled approach to
address Rowhammer.

Existing Rowhammer patterns. Data in DRAM is stored
in rows of cells. These cells consist of capacitors that leak
charge over time. For preserving the data, the charge needs
to be restored by refreshing the cells regularly. However, it is
possible to leak charge from these cells with the Rowhammer
vulnerability before they have a chance to get refreshed [13].
Existing approaches trigger Rowhammer by selecting one to
many different “aggressor” rows to hammer [1], [12], [14].
These aggressor rows are repeatedly accessed in a short duration
before cells get refreshed, causing bit flips in “victim” rows that
are adjacent to these aggressors. As an example, the double-
sided Rowhammer access pattern sandwiches a victim row with
two aggressor rows, maximizing charge leakage in the victim
row. To leak as much charge from victim rows as possible,
such patterns hammer aggressors as often as possible before
their victims have a chance to get refreshed.

Target Row Refresh. Target Row Refresh (TRR) is an
umbrella term for hardware mitigations against the Rowhammer
vulnerability, with recent variants operating entirely inside
DRAM chips [12]. At a high level, TRR aims to detect rows
that are frequently accessed (i.e., hammered) and refresh their
neighbors before their charge leak results in data corruptions.
The challenge is finding the frequent items in a stream of
DRAM accesses. However, as precise frequent item counting is
expensive in hardware, TRR implementations try to estimate the
frequent items (i.e., the aggressors). Recent work shows that by
increasing the number of aggressors, certain implementations
of TRR are unable to keep track of all aggressors and
corruptions resurface [12]. A majority of TRR implementations
(roughly 70%), however, remain secure since they can detect
all aggressors given that they are hammered frequently enough.

Non-uniform Rowhammer patterns. We make the key obser-
vation that prior Rowhammer attacks always access aggressors
uniformly. From a frequent item counting perspective, this is a
straightforward case for estimating frequent items. However,
there is, of course, no need for attackers to hammer in
the space where TRR implementations operate effectively.
Given the increasing (physical) susceptibility of DRAM to
Rowhammer [15], aggressors no longer need many accesses:
attackers are free to choose from many hammering strategies
between the times a victim row is refreshed. While this provides
many possibilities to fool the TRR’s estimation of the frequent
items, at the same time, it creates a problem for attackers since
the search space for non-uniform patterns is huge.

We design a series of experiments that start by randomizing



the patterns and gradually discovering the essential properties
that make them successful. This exploration ultimately results
in a set of parameters for constructing non-uniform patterns
that can effectively explore the weaknesses in existing TRR
mechanisms. Notably, we find three temporal properties,
namely order, regularity, and intensity, play a crucial role
in constructing non-uniform patterns that can escape various
TRR mechanisms.

Rowhammering in the frequency domain. To capture these
temporal parameters, we propose constructing non-uniform
patterns in the frequency domain. Signal properties such as
phase, frequency, and amplitude conveniently map to the
parameters that are important in exploring the blind spots of
TRR. Based on this insight, we build Blacksmith — a scalable
Rowhammer fuzzer capable of generating access patterns by
randomizing parameters in the frequency domain for randomly
selected aggressors. In contrast to previous work [12], our novel
patterns are highly complex, making it difficult for humans
to explore manually. Furthermore, our scalable fuzzing-based
approach makes it easy to test a large number of DRAM devices
against Rowhammer, without the need for time-consuming
reverse engineering. On top of generating non-uniform patterns,
we can distinguish interesting DRAM-dependent temporal
properties by analyzing patterns that triggered bit flips.

Our evaluation shows that Blacksmith can generate patterns
that can trigger bit flips on all 40 recently purchased DRR4
DIMMs from the three major DRAM vendors (Samsung,
Micron, and Hynix), a factor of 2.6× more than state-of-the-art
many-sided patterns [12]. We also demonstrate the effectiveness
of these patterns on 16 out of 19 Low Power DDR4X devices.
These results show that instead of obscure TRR mitigations, we
need to invest in principled mitigations with clear guarantees.
To gain more insights into these non-uniform patterns, we
systematically evaluate how Blacksmith converges to the
specific values of the different spatial and temporal parameters.
Using the bit flips triggered by these patterns, we uncover
interesting new properties of deployed TRR mitigations such
as the number of aggressors that they track, the importance
of the aggressors’ addresses, and significant differences in the
number of triggered bit flips on different chips of the same
device. Furthermore, we reverse-engineer properties of the
TRR implementation on one of the Low Power DDRX devices
where Blacksmith could not trigger bit flips and show how a
different configuration of Blacksmith could trigger bit flips on
these devices.

Contributions. We make the following contributions:
(1) We present novel non-uniform Rowhammer patterns

that make it difficult for TRR to estimate the potential
aggressor rows accurately.

(2) We design Blacksmith, a new Rowhammer fuzzer that can
effectively explore the important parameters of these non-
uniform patterns by hammering in the frequency domain.

(3) We evaluate Blacksmith on 40 DDR4 DIMMs from all
three major DRAM vendors, showing that it is possible to
trigger bit flips on 100% of them by using non-uniform
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Fig. 1: DRAM structure. Low-level view on a DRAM bank.

patterns. We also show Blacksmith’s ability to trigger bit
flips on 16 out of 19 LPDDR4X DRAM chips.

(4) We conduct an extensive analysis of the effective patterns
and bit flips found by Blacksmith to gain insights on pat-
terns and deployed mitigations. Furthermore, we reverse-
engineer the TRR mechanism of one of the LPDDR4X
devices where Blacksmith could not trigger any bit flips
to show how it can better be configured.

Reproducibility. To enable reproducibility, we publish the
source code of Blacksmith on this URL: https://github.com/
comsec-group/blacksmith.

Responsible disclosure. We reported our findings to affected
parties by following a responsible disclosure process. In Q1-
2021, we initiated the process with the NCSC Switzerland
(NCSC-CH). In Q2-2021, NCSC-CH informed affected parties
and shared our results with DRAM vendors, OEMs, and cloud
providers. In Q3-2021, NCSC-CH sent affected parties an up-
dated version of our work and announced the public disclosure
date. In Q4-2021, we have been assigned a CVE (CVE-2021-
42114) and publicly disclosed Blacksmith on November 15,
2021. The three DRAM manufacturers (Samsung, SK Hynix,
and Micron), Intel, AMD, Microsoft, Oracle, and Google
confirmed the receipt of our findings. SK Hynix got in touch
with us to discuss the LPDDR4X results. We discussed a
possible mitigation with Intel and our findings more in detail
with Google. None of the contacted parties informed us of
their mitigation plans.

II. BACKGROUND

This section gives an overview of DRAM, including its
internal organization and interaction with the memory controller.
We also introduce the Rowhammer attack, widely-deployed
mitigations against it, and describe common access patterns.

A. DRAM Organization
While there are different DRAM types for PCs, servers, and

laptops, they share a common organization discussed here.

Addressing & Geometry. A DRAM address is composed of
a channel, bank, rank, row, and column. Each channel is
connected to one or multiple DIMMs, of which each can
operate independently. A DIMM is equipped with multiple
DRAM chips that are grouped into ranks and these, in turn,
consist of multiple banks that can operate in parallel [16]. A
bank is made of many DRAM cells, of which each contains a
capacitor, which stores a single data bit as electrical charge,

https://github.com/comsec-group/blacksmith
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and an access transistor. These cells are arranged in a two-
dimensional grid (see Figure 1) and connected row- and column-
wise by a word- and a bitline, respectively. Every bank has a
row buffer, an array of sense amplifiers connected to the bit
lines involved in reading/writing data from/to rows.

DRAM Commands [16]. Before reading or writing data
to a DRAM address, the memory controller (MC) puts
the associated bank in a precharged state by issuing the
PRECHARGE command to DRAM, deactivating the row buffer.
Next, the MC issues an ACTIVATE command, after which the
requested row is loaded into the row buffer. Now, data can
be read (READ) or written (WRITE); both require specifying
the targeted column(s) of the loaded row. Additionally, the
MC must issue REFRESH commands regularly, on average
every 7.8 µs (the refresh interval or tREFI) [17], to preserve
a cell’s value since the capacitors leak charge over time [18].
The REFRESH only refreshes a small subset of rows at a time,
which are determined by the DRAM chip, based a row’s last
refresh time. Related to that is the retention time, typically
64ms in DDR4 [18], [19], the minimum time that DRAM
cells must be able to hold data without losing information.

B. Rowhammer

While the industry has been aware of the Rowhammer
vulnerability in DRAM since at least 2012 [20], Kim et
al. [13] studied the problem rigorously for the first time in
their seminal paper in 2014. They observed that commodity
DRAM chips from all major vendors suffer from disturbance
errors induced by repeatedly opening (ACTIVATE) and closing
(PRECHARGE) a DRAM row (i.e., aggressor row) in a short
period of time. This action causes some cells in neighboring
rows (i.e., victim rows) to leak charge at a faster pace than usual.
Consequently, these cells can no longer retain their charge for
the period they are supposed to before the cell is refreshed,
resulting in their bits flipping.

The Rowhammer attack attracted much attention due to its
devastating impact on systems security. Follow-up research
showed how Rowhammer can be used to compromise users
via JavaScript [2], [3], [8], [11], in the cloud [4], [5] on mobile
phones [6], [7], and even over the network [9], [10].

Target Row Refresh. The industry has responded to Rowham-
mer by deploying a mitigation known as Target Row Refresh
(TRR). Frigo et al. [12] analyzed TRR and found that it refers
to a variety of different solutions with the recent variants all
operating inside the DRAM chips. They further show that in-
DRAM TRR tries to detect which rows are being hammered
using a sampling mechanism and internally refreshes their
victims before these receive their regular refresh. An ideal
TRR sampler needs to keep track of every row that receives an
ACTIVATE command but doing so is expensive in hardware.
Instead, existing TRR mechanisms estimate the rows that are
activated most often. The TRRespass fuzzer [12] shows gaps
in this estimation by increasing the number of aggressor rows,
causing Rowhammer bit flips to resurface on roughly 30% of
modern DDR4 DIMMs. The question that we are trying to
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Fig. 2: Common Rowhammer access patterns. Overview of the most common
Rowhammer access patterns from prior work.

answer in this paper is whether there are more effective ways
of discovering gaps in the estimation of aggressor rows.

Rowhammer Access Patterns. We use the term pattern to
describe memory access sequences and denote patterns as
being effective when they can trigger bit flips. In search of
effective patterns for more DIMMs, we must understand how
existing instances work. Figure 2a shows the three common
Rowhammer access patterns. In the original work [13], the
authors used two far apart aggressor rows for hammering, later
termed as single-sided because, from the victim row’s point of
view, their charge is being leaked from one side. Later, Seaborn
and Dullien [1] showed that if a victim row is sandwiched by
two aggressors, it increases the chance of bit flips (i.e., double-
sided). Frigo et al. [12] introduced n-sided Rowhammer, where
n refers to n − 1 victims being hammered by n aggressors
from both sides. Figure 2a shows an example with n = 4. The
recent SMASH attack [11] shows that it can trigger bit flips in
JavaScript by synchronizing n-sided patterns with the DRAM
REFRESH command. Our experiments with SMASH patterns,
as discussed in Appendix A, show that while aligning with
REFRESH increases the number of effective patterns found on
certain DIMMs, overall, it does not compromise TRR on more
devices than the original n-sided patterns.

We make a key observation that the aggressors in all
these previous patterns are hammered uniformly as shown
in Figure 2b. While hammering uniformly maximizes the
chance of triggering a Rowhammer bit flip, since it maximizes
the frequency in which the aggressors are hammered, it is
also the easiest case for TRR to estimate the rows that are
accessed the most (i.e., hammered). Given the increasing
degree of vulnerability to Rowhammer, the aggressors no
longer need to be hammered as frequently as possible, and a
significantly smaller number of accesses is enough to trigger
Rowhammer [15]. This provides an opportunity to better
exercise the TRR’s estimation of aggressor rows by hammering
non-uniformly. This paper explores the design of non-uniform
patterns against in-DRAM TRR.

III. PROPERTIES OF EFFECTIVE NON-UNIFORM PATTERNS

While non-uniform access patterns will likely make it more
challenging for TRR to estimate the aggressors, at the same



time, they are challenging to craft due to the large design
space. Let us consider the possible number of activations in a
tREFI (≈100 accesses), so we end up with ≈ 819 k possible
activations between two (victim) row refreshes, where each
could potentially be used to hammer our aggressors. Assuming
that we need to hammer 10 k times, it gives us more than 6.7×
1023447 possibilities to distribute our double-sided aggressor
accesses (see Appendix C for details). As this is impractically
large, we explore the important properties of effective non-
uniform patterns to reduce the size of this search space.

One possibility is to reverse-engineer specific details of
various TRR implementations, as has been done in concur-
rent [21] and earlier work [12]. This is a time-consuming
process and needs to be repeated on new devices given that
vendors tend to change their implementations [12]. Instead,
our goal here is to determine the generic properties of existing
TRR implementations. For this purpose, we conduct a series of
experiments on DIMMs A10 and B2 of the two major vendors
in our test pool. We later show how these discovered properties
can help in triggering bit flip on other DIMMs from the same
vendors as well in devices from other vendors.

We start exploring non-uniform patterns by randomizing
the number of aggressors being hammered and their location
(Section III-A). To limit the search space, we try to answer
questions such as when we should hammer an aggressor and
for how long. We first answer these questions for patterns
that fit within a REFRESH interval (Section III-B) and later
extend our search to larger patterns (Section III-C). After we
understand the properties of successful patterns, we discuss
how we can capture these properties when generating effective
non-uniform access patterns (Section III-D).

A. Can non-uniform access patterns bypass mitigations?
We design an experiment to explore the effectiveness of non-

uniform patterns. In this experiment, we assess the importance
of non-uniformity by considering two extremes in the design
space: (i) adding some randomness to n-sided patterns and
(ii) creating randomized patterns.

In the first experiment (i), we introduce non-uniform ag-
gressor accesses (i.e., accesses at random times) into common
n-sided patterns by accessing selected aggressors more or less
often than all others. This means, we access a randomly picked
double-sided aggressor pair at random times during the regular
accesses of an n-sided pattern1.

The naive approach for implementing such random accesses
would be using conditional branching based on some random
value. However, the CPU might speculatively execute the wrong
branch, leading to unwanted memory accesses. Therefore, we
rewrite our branching into a statement that targets different
memory locations depending on the condition’s value. As
depicted in Figure 3, we precompute a bit mask that decides
when and how often our aggressor pair should be hammered.
This bit mask is computed based on existing work [15]
that showed between 10 k and 147.5 k ACTIVATEs (Hammer

1with a randomly picked number of aggressors n ∈ [2, 32], an aggressor
intra-distance d ∈ [0, 16], and an aggressor intra-distance v ∈ [1, 4].
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Fig. 3: Non-uniform patterns experiment. (i) We take a n-sided pattern (e.g.,
n = 6) and based on a precomputed bit mask, randomly replace accesses to a
randomly picked double-sided aggressor pair r1, r2. (ii) We create a randomized
pattern and hammer a randomly-picked double-sided aggressor pair r1, r2 at
random times.

Count) are required on modern DDR4 devices to trigger bit
flips. Ideally, this value should be as small as possible to reduce
the chance of detection by TRR, yet large enough to cause a
bit flip. As we cannot determine this value for our PC-DDR
DIMMs, we randomly pick a value in between 10 k and 147.5 k
for each pattern. While hammering the pattern, we then use the
bit mask to offset an array that points to part of our n-sided
pattern or our randomly-picked double-sided aggressor pair.

In experiment (ii), we follow the same methodology to access
a selected double-sided aggressor pair non-uniformly; however,
instead of a n-sided pattern as a basis, we now randomize
the pattern’s accesses. Note that these random accesses are
spread over the same bank as our aggressors, i.e., there are no
fixed distances in-between aggressors like in n-sided patterns.
Similarly as in experiment (i), we use patterns of length n ∈
[2, 32] but we replace aggressors by our double-sided aggressor
pair at random locations of the pattern. This makes all aggressor
accesses in our pattern non-uniform.

We extended TRRespass [22] by these two new ways of
creating patterns and try these patterns as well as the original n-
sided patterns on all DIMMs of our test pool (see Appendix B)
for 6 h. To see if a pattern is successful, we check all rows
next to accessed rows for bit flips. The randomized approach
was the most successful and could trigger bit flips on 37.5%
of all devices in our test pool, followed by n-sided patterns
(35%), and n-sided patterns with random accesses (27.5%).
Considering all three approaches together, we observed bit
flips on 20 of 40 DIMMs (50%). From these 20 DIMMs, there
are 8 DIMMs where all three approaches triggered bit flips
and 6 DIMMs where one (or both) of the two non-uniform
approaches succeeded. Table VII in Appendix D provides more
detailed results from these experiments.

These experiments confirm our assumption that there are
DIMMs where we need non-uniform patterns to bypass the
mitigation. This shows that non-uniformity is a promising
concept for finding effective Rowhammer access patterns on
more devices.

Observation (O1). Non-uniform accesses can lead to
effective patterns on DIMMs where previous n-sided
patterns could not trigger any bit flips.

However, there are also three opposite cases where only pure
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offset of 91 (red) triggers the most (140) bit flips.

n-sided patterns are effective; this indicates that these simple
approaches for pattern generation are not effective enough.
Besides that, we observe that our pattern search space is not
optimal yet: using n-sided patterns as a base seems to be too
restrictive, whereas the random approach creates an enormous
search space that cannot be explored in sufficient depth within
a reasonable time. Therefore, we aim to identify parameters
of effective patterns that allow us to guide pattern generation
and, as such, reduce the search space.
B. When should we hammer an aggressor and for how long?

Prior work [11], [12] suggests that in-DRAM TRR acts at
the same time of a REFRESH. Based on this, we aim to explore
the parameters of effective non-uniform patterns within two
consecutive REFRESH commands, i.e., a refresh interval.

To verify when we should hammer, we design an exper-
iment where we randomly choose a double-sided aggressor
pair (a1, a2) and generate a pattern of length N , where N
corresponds to the number of memory accesses that fit inside
a refresh interval (determined experimentally beforehand). For
each possible offset t = 0, . . . , N − 2 in that we can place the
two aggressors, we craft a pattern as follows: the aggressors
a1 and a2 are placed at position t and t + 1 in the pattern,
respectively, and the remaining N − |{a1, a2}| = N − 2
accesses, (i.e., positions 0 ≤ i < N for i ̸∈ {t, t+1}) are filled
up by accesses to random rows in the same bank as a1 and a2.
This is depicted in Figure 4: the pattern’s aggressor accesses
are highlighted in yellow and the random accesses in grey. We
repeat hammering each pattern for one million rounds, i.e.,
long enough to see bit flips even with strong DRAM cells [15].
We note that the rows are randomly picked for each offset
(including the aggressors) in each iteration of the experiment.
For improving the reliability, we repeat the experiment ten
times on different locations (i.e., DRAM rows). To ensure that
these patterns remain inside the refresh interval, at the end of
each round, we access two random rows from the same bank
repeatedly until we observe a peak in the access time, which
signals that a REFRESH happened.

Figure 5 depicts the results of our experiment for A10,
aggregated over ten DRAM locations. The best pattern, i.e.,
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Fig. 6: Hammering intensity. Number of observed bit flips when repeating
hammering the aggressors with different intensity (1–5), accumulated over 10
different locations onA10. Hammering with an intensity of two, starting from offset
78, triggers the most (190) bit flips.

the pattern that triggered the highest number of bit flips (red
bar), starts at offset 91 and generates 140 bit flips. We can see
that an arbitrarily chosen aggressor offset may lead to no bit
flips because the TRR sampler on this device considers the
first accesses in a refresh interval, similar to the observations
reported in earlier work [12]. These results suggest that towards
the end of the refresh interval, only certain accesses (at
offsets 80, 84, . . . , 96) are sampled. Hence, we can trigger
bit flips by hammering at specific times in the last ≈23%
of the refresh interval (i.e., offsets 77 − 98). The number
of bit flips that we observe in this range is, on average,
higher than for all other possible offsets within a REFRESH
interval. From that we conclude that our assumption is correct:
carefully choosing when to access aggressors is significant for
maximizing effectiveness.

Observation (O2). Inserting aggressors at the “right”
location in a pattern enables them to bypass the mitigation.

A natural follow-up question from this result is whether
hammering our aggressor pair with greater intensity (i.e., more
than only once successively) increases the number of observed
bit flips. More bit flips are favorable for attacks as they typically
require bit flips at specific page offsets. Hence, more bit
flips increase the attack’s success rate. However, accessing
an aggressor pair successively too often will likely result in
a TRR. To investigate this, we extend our last experiment
by repeating hammering each possible pattern offset up to
five times for one million rounds in total. This experiment is
depicted in Figure 4. We limit the intensity to five because
higher intensities do not trigger bit flips anymore.

In Figure 6, we show the results of this experiment. We report
observed bit flips within aggressor offset 77−98 (derived from
the previous experiment, see Figure 5). We can see that for
some offsets, an increased hammering intensity leads to more
bit flips. For example, starting from offset 78 and successively
hammering two times is more effective (190 bit flips) than
only a single time (110 bit flips) and also outperforms the
best offset hammered only a single time (offset 91, 140 bit
flips). As expected, hammering the aggressors for too long
triggers a TRR, which results in fewer or no bit flips at all.
This strongly indicates that TRR sampling happens at specific
offsets (80, 84, 88, . . .), but it is not enough for an aggressor
row to get sampled only at one of them. For example, we can
see that at offset 80 with an intensity of 5, our aggressors are
sampled by the mitigation; however, if we use an intensity
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of 4 starting at offset 79, we also do access an aggressor at
offset 80 but we do trigger bit flips. This suggests that the TRR
mechanism on this device deploys a counter and we need to
get sampled multiple times before a TRR. We conclude from
this that there is a sweet spot up to which we can increase the
intensity to induce more bit flips.

Observation (O3). Up to a specific point (sweet spot),
increasing the hammering intensity leads to more bit flips.

These two properties of effective non-uniform patterns allow
us to reduce the search space because the pattern’s length
of one refresh interval implicitly limits possible offsets and
hammering intensities for our aggressors. However, running
the same experiment on B2, required a significantly higher
hammering intensity to trigger bit flips. We tried intensities up
to a whole refresh interval and could trigger only 5 bit flips
with an intensity of 19. Not to risk limiting our search space
by too much, we will also explore whether larger patterns can
be more effective in bypassing certain TRR variants, such as
the one employed in B2.

C. Should our patterns be longer than one refresh interval?
To answer the question of the pattern’s length, we design

the experiment presented in Figure 7. We first hammer two
randomly picked double-sided aggressors with a given intensity
and then issue a varying number of alternating accesses to two
randomly picked rows. In our experiment, we cover intensities
from 1 up to 64 and between 1 and 384 random accesses
because they result in patterns of up to 64 × 2 + 2 × 192 =
512 accesses, which covers five full refresh intervals. Again,
we repeat the experiment for each combination ten times on
different DRAM locations and check the rows around the
double-sided aggressors for bit flips. Unlike before, we do not
synchronize with the REFRESH anymore since our patterns
now grow beyond a single refresh interval. This approach

allows us to investigate how access intensity and regularity
affect a pattern’s effectiveness.

Figure 8 shows the experiment’s result for intensities where
we observed bit flips. As the number of observed bit flips
decreased if we issued more than 200 random accesses in-
between, we focus here on two refresh intervals only. In contrast
to the earlier observation on A10 (Section III-B), the DIMM
B2 considered here requires a higher intensity (≥ 6) to trigger
any bit flips due to its different TRR implementation. The
plot shows notable differences in the number of bit flips for
specific pattern lengths. Interestingly, there are cases where we
hammered almost the whole refresh interval (≈ 85 accesses)
without being captured by the mitigation. For example, with
hammering intensity of 41 and offset of 138, we first issue
41 × 2 aggs. = 78 aggressor accesses (i.e., almost a whole
REFRESH interval), followed by 138 random accesses.

We conclude with two points from these findings. For an
aggressor pair to successfully trigger bit flips, (1) it should
not be hammered in certain (long) periods, and (2) when it
is hammered, it should be with high intensity, even up to a
whole refresh interval. These results naturally imply that we
need to consider patterns larger than a single refresh interval.

Observation (O4). Hammering aggressors with a high
intensity at specific points inside multiple refresh intervals
allows us to bypass the mitigation more effectively.

D. How can we generate new patterns based on these insights?
In this section, we showed that non-uniformity allows finding

effective patterns where previous approaches failed (O1) and
that it is crucial to carefully choose when, within the pattern,
to issue memory accesses to the aggressors (O2). We further
discovered that the number of successive hammering repetitions
can increase the number of bit flips (O3) and that long patterns,
covering multiple refresh intervals, are necessary to discover
patterns triggering bit flips on certain DIMMs (O4).

We leveraged these four observations to design and im-
plement Blacksmith, a new blackbox Rowhammer fuzzer.
Blacksmith generates patterns consisting of aggressors that are
placed in the pattern using concepts from the frequency domain,
such as phase, amplitude, and frequency. This enables us to
distinct aggressors by expressing when we access them (phase),
how often we repeat accessing them successively (amplitude),
and how their accesses are distributed over time (frequency).
By fuzzing these properties, we can compose patterns that
stress TRR mitigations to trigger bit flips successfully. Our
approach finds parameters efficiently by probing multiple
{phase, amplitude, frequency} sets for different aggressors
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Fig. 9: Blacksmith’s architecture. Overview of Blacksmith’s main components,
their interaction, and execution order ( 1 – 5 ).

in a single pattern. This eliminates the need to explicitly select
aggressors given that now the entire pattern is comprised of
potential aggressors, some fooling the mitigations while the
others effectively hammering. To the best of our knowledge,
Blacksmith is the first fuzzer that uses this novel strategy for
generating non-uniform Rowhammer patterns.

IV. BLACKSMITH

We now describe the design and implementation of Black-
smith. We first give a high-level overview of Blacksmith’s archi-
tecture (Section IV-A), followed by describing how Blacksmith
generates Rowhammer patterns, including a formalization of the
underlying concepts (Section IV-B). After that, we introduce
Blacksmith’s parameter-tracking mode that uses bit flips as a
feedback mechanism to learn parameters of effective patterns
(Section IV-C). Finally, we provide selected implementation
details (Section IV-D).

A. High-Level Overview
Figure 9 depicts Blacksmith’s components. The Pattern

Generator 1 implements our non-uniform access patterns,
which randomizes the temporal aspects of the aggressors inside
the pattern (i.e., when within a pattern, for how long succes-
sively, and how often aggressors are accessed). The Aggressor
Mapper 2 maps aggressors to DRAM locations, i.e., assigns
each aggressor of a temporal pattern to a DRAM address by
using known bank/rank address functions [11], [23]. In this
step, aggressors can either be distributed equidistantly over
the same DRAM bank (i.e., same number of rows in between)
or randomly placed with one row in between aggressors that
target the same victim. These mapping parameters are also
randomized during fuzzing. The mapper then derives the virtual
addresses corresponding to all hammered rows and passes them
to the Code Generator 3 to just-in-time (JIT) compile the
hammer instructions into an executable code page. For the same
reason as in Section III-A, we compile access patterns to avoid
conditionals (e.g., if-else) during pattern execution as branches
can be executed speculatively, resulting in unwanted memory
accesses, and thus “break” our pattern’s access order. Also, it
allows us to determine where we need to serialize memory reads
and flushes using fences. We follow a flush-early and fence-late
strategy by flushing aggressors from the cache immediately
after accessing them and fencing immediately before accessing
them again to minimize the performance impact of serialization.
The Executor 4 then runs the compiled code page to execute

the pattern for multiple refresh windows (i.e., multiple 64 ms).
To ensure that we keep accessing rows with their defined
frequency, we synchronize accesses with the REFRESH at
the beginning of each pattern’s repetition (similar to [11]).
Finally, the Memory Scanner 5 verifies if the random data
pattern, written before to memory, changed during hammering.
Because all pattern’s aggressors can potentially trigger bit flips,
the Memory Scanner checks two rows around each of them for
flipped bits; and if it finds any flips, it reports them and restores
the original data pattern. We then either (i) hammer the same
pattern with the same mapping again on a different DRAM
location ( 3 – 5 ), (ii) hammer the same pattern with a new
mapping ( 2 – 5 ), (iii) or generate a new pattern and repeat
the whole procedure ( 1 – 5 ). Probing different locations is
required because we could have been unlucky and tried a
pattern on a memory region where cells are less vulnerable,
thus resulting in no bit flips. The Parameter Manager and
the DRAM Inspector are two supporting components. The
Parameter Manager defines fuzzing parameters, their valid
value ranges, and samples values from these ranges. The
DRAM Inspector loads the proper DRAM address functions
(derived from a DIMM’s number of ranks as all our evaluation
systems are equal) and determines required DIMM-specific
information, such as the number of possible ACTIVATEs in a
refresh interval.

B. Frequency-Based Patterns

Blacksmith crafts access pattern by considering their two
dimensions separately: the temporal dimension, which describes
when we access a row, and the spatial dimension, which
defines where in memory we hammer (i.e., bank and row). Our
non-uniform access patterns focus on the temporal dimension
discussed next. We consider the spatial dimension by testing a
crafted frequency-based pattern on three different (randomly
chosen) memory locations as the vulnerability of different
DRAM cells may vary [15].

Capturing temporal properties. We use a terminology
inspired by the frequency domain as composing signals with
different frequencies can be used as an analogy to crafting
a Rowhammer access pattern with aggressors of different
frequencies.

First, we generalize the idea of aggressors by defining
the notion of an aggressor tuple Ak = (a1, a2, . . . , ak), i.e.,
an ordered access sequence of k aggressors. Our pattern’s
aggressors are not associated with specific DRAM locations but
we map them later to specific DRAM rows. For example, in the
case of A2, we could map them like a double-sided aggressor
pair. Multiple such aggressor tuples fill up a Blacksmith access
pattern to improve the fuzzer’s efficiency while exploring the
parameter space.

Each aggressor tuple Ak has three characteristics: a fre-
quency, a phase, and an amplitude. The frequency f defines
how often the aggressor tuple Ak is accessed within a pattern.
The phase ϕ defines when from the start of the pattern a
specific aggressor tuple Ak will be executed. The amplitude û
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Table I: Blacksmith’s parameter setup. For each pattern, we choose a number of
aggressor tuples and refresh intervals (which results in the pattern’s length N ). For
each aggressor tuple, we pick a number of aggressors, a phase, an amplitude, and
derive a frequency from the base period. The amplitude is limited by ACTtREF, the
number of possible activations in a REFRESH interval.

Parameter Range Sampling Unit

#Aggressor tuples [8, 96] Pattern
#Refresh intervals [1, 16] Pattern
#Aggressors [1, 2] Aggressor tuple
Base period [4, N ] Aggressor tuple
Phase [1, N ] Aggressor tuple
Amplitude
– for B2,8,9

[1,ACTtREF]
[1, 4× ACTtREF]

Aggressor tuple

describes for how long we should hammer a specific tuple, i.e.,
the number of consecutive hammering repetitions of Ak.

Building a pattern. Blacksmith combines multiple aggressor
tuples Ak to form an access pattern. For intertwining these
Ak effectively, we define a global parameter that aids the
construction: the base period. The base period T defines (and
limits) the frequency of an aggressor tuple.

We depict the pattern creation in Figure 10. Before starting
to fuzz, assume we determined that we can issue 64 accesses
in a refresh interval, and we want our pattern to cover four
refresh intervals (i.e., 4 × 64 = 256 accesses). As a result,
we can choose any of {2, 4, . . . , 256} as the base period. Let
us pick 8 so that the frequency f of any aggressor tuple is
now a multiple (or divisor) of T = 8. For instance, if f = 1
we execute the aggressor tuple once every base period, while
if f = 2/8 we execute it every 4 (= 8/2) base periods. In
Figure 10 we fill the pattern with an aggressor tuple A2 with
(f = 1/2, ϕ = 3, û = 2) meaning that A2 is executed every
two base periods (f = 1/2), it is displaced by 2 from the
start of the pattern (ϕ = 2), and the aggressor tuple is always
hammered two times sequentially (û = 2).

Once a tuple is inserted, other aggressor tuples are inserted
following the same logic avoiding access slots that are already
occupied by previously declared aggressor tuples. For instance,
after adding A2 above, we cannot introduce another A2 with
ϕ = 5 since such time slot is already filled. We refer the
interested reader to Appendix E for a more detailed description
of the pattern generation algorithm.

Unlike in previous work (e.g., [12], [13], [24], [25]), all
accesses in our patterns can potentially trigger bit flips. That
means all rows are treated as aggressors as we do not
distinguish the rows that are only accessed to bypass TRR.
After hammering a pattern, we can measure the distance
between accessed rows and flipped rows to estimate the effective
aggressors, i.e., the ones that most likely caused the bit flip.
This property also implies that we need to check for bit flips
around every accessed row of a pattern.

C. Parameter-Tracking Mode
To understand how Blacksmith parameters impact a pattern’s

effectiveness, we implemented a parameter-tracking mode. This
feature uses a pattern’s effectiveness (bit flip count) and rarity
(how hard it is to find) in a feedback mechanism to learn which
parameter sets are most successful. The parameter-tracking
mode starts with a uniform distribution for each parameter and
gradually learns, based on the aforementioned indicators, which
parameter values work best for specific DIMMs. It uses the
feedback to modify the parameter distributions by increasing
the probabilities of parameter outcomes that were successful.
Using this, we can learn what parameters and values are most
important to bypass mitigations. Furthermore, it allows us to
derive interesting insights, as we show in Appendix F.

We used our parameter-tracking mode to determine a golden
set of parameter ranges that can find effective patterns on 37/40
DIMMs of our test pool. For three DIMMs (B2,8,9), we had
to slightly increase the amplitude from (up to) one to four
refresh intervals. To determine these generic parameters, we
performed a 24 h run using large parameter ranges to determine
the common ranges based on the discovered effective patterns.
Table I shows the final ranges used in our evaluation.
D. Implementation

Our Blacksmith fuzzer was implemented from scratch in
C++11 in around 6.7 k lines of code. It uses several open-source
libraries such as asmjit [26] for JIT compiling a pattern’s ac-
cesses and nlohmann/json [27] for im- and exporting JSON data
(e.g., parameters) needed for analyzing and replaying effective
patterns, and also for analyzing bit flips. The source code can
be found on https://github.com/comsec-group/blacksmith.

V. EVALUATION

In this section, we evaluate the qualities of non-uniform
access patterns. In Section V-A, we describe our test devices
and infrastructure. After that, we present our large-scale
analysis results on 40 DDR4 DIMMs in Section V-B. In
Section V-C, we evaluate how our Blacksmith-generated
patterns facilitate Rowhammer exploitation. For completeness,
we also evaluate the effectiveness of non-uniform patterns
on LPDDR4X in Section V-D. Lastly, we provide concrete
examples of Blacksmith patterns in Section V-E.
A. Hardware and Fuzzer Setup

Our DDR4 DRAM test pool (Appendix B) consists of 40
DIMMs acquired in July 2020 with varying sizes, module
speeds, and timings. We cover all three major DRAM vendors,
abbreviated by A (20×), B (10×), and C (6×). DIMMs denoted
by D (4×) do not report their DRAM vendor properly. To show
that Blacksmith works in a real-world setup, we do not directly
interface with DRAM devices (e.g., FPGA), but we use a
traditional PC setup: ten machines equipped with an Intel i7-
8700K and running Ubuntu 18.04 LTS (4.15.0). We evaluate
LPDDR4X DRAM chips using an in-house, JEDEC-compliant
development board that allows us to test DRAM chips from
vendors A (6×), B (5×), and C (8×) while operating at 1.5GHz.
Similar to previous work [12], we use a pseudorandom, non-
repeating data pattern in all our evaluation runs.

https://github.com/comsec-group/blacksmith


B. Blacksmith Results on DDR4
We aim to evaluate the generality and effectiveness of

Blacksmith by answering the question: Is our approach better
at finding effective patterns on DIMMs where the state-of-the-
art cannot trigger any bit flip? To answer this question, we
perform a large-scale Rowhammer test and compare Blacksmith
results against the data that we obtained using TRRespass [12].
We use the following evaluation methodology: (1) we run
Blacksmith for 12 h on each DIMM, i.e., we generate patterns
and try each on three different DRAM locations to determine if
it triggers bit flips, (2) we “sweep” each effective pattern over
(the same) contiguous memory region of 2MB to determine
the best pattern (i.e., most effective) based on the number
of observed bit flips, (3) we “sweep” the best pattern over
a contiguous memory region of 256MB to report the best
pattern’s effectiveness. By “sweeping” we refer to repeatedly
moving each row of a pattern by one, hammering the pattern,
and checking for flipped bits. For TRRespass, we skip step (2)
and use its own definition of the best pattern based on the
number of triggered bit flips during the fuzzing run. We remark
that the optimality of the best pattern is relative to a fuzzing run,
and it might be that there are better patterns that Blacksmith
could not find within 12 hours.

Table II shows the results of our large-scale evaluation run.
TRRespass found effective patterns on 15 of 40 tested DIMMs
(37.5%), similar to the results from prior work (13 of 42
DIMMs, ≈ 31%) [12]. In contrast, Blacksmith found effective
Rowhammer patterns on all of our 40 DIMMs (100%).

These results demonstrate Blacksmith’s effectiveness and
scalability in triggering corruptions — answering our initial
question positively. Blacksmith could find effective patterns
that trigger, on average, 87× more bit flips than TRRespass.
We show how this massive increase in the number of bit flips
allows for more practical exploitation in Section V-C. Table II
also suggests that while there is a trend in DRAM devices
from different vendors, there are also outliers.
C. Exploitation with Non-Uniform Patterns

We discuss the consequences of these better access patterns
found by Blacksmith by analyzing their effect on three existing
Rowhammer exploits. For this purpose, we followed prior
work [12], [25] and analyzed (i) the first Rowhammer exploit
targeting page tables to gain a kernel read/write primitive [1];
(ii) the exploit from Razavi et al. [4] triggering bit flips in public
RSA 2048 bit keys to allow their factorization and private key
recovery; and (iii) the exploit by Gruss et al. [14] flipping bits
on the sudoers.so library to avoid root permission checks.

In our analysis, we briefly summarize each exploit; we refer
to the original descriptions [1], [4], [14] for more details. We
measure the number of exploitable bit flips when sweeping over
a 256MB chunk of memory and report the mean time to find
them by relying on a port of the Hammertime framework [28].
We show the results for all DIMMs in Table III.

In the attack from Seaborn and Dullien [1], the aggressor
triggers a bit flip on a page frame number (PFN) in a page
table page, “hoping” to pivot its pointer to another (attacker-
controlled) page table page. This gives an attacker read/write

access to their page tables, i.e., full access to all physical
memory. On a system with 16GB memory, this results in
23 out of every 64 bit words to be possibly exploitable (i.e.,
log2 16GB− log2 4 kB). This large number of exploitable bits
makes it possible to carry out an attack even on a module
that manifests very few bit flips; e.g., B3 with only 111 bit
flips can be exploited in around 1 hour. The time to find
an exploitable bit flips then dramatically decreases for more
vulnerable modules, e.g., 22 s on average on D3. The exploit
from Razavi et al. [4] gains SSH access to a co-hosted VM by
flipping bits on the modulus n of a RSA-2048 public key and
factoring the much easier factorable n′ ( ̸= n) to recover the
private key. We could identify exploitable bit flips on 30 out of
our 40 DIMMs (75%). Finally, Gruss et al. [14] exploit specific
bit flips on code pages of the sudoers.so library, stored in
the page cache, to gain root privileges. Their opcode flipping
technique induces bit flips in cached binary files that often
lead to valid opcodes with a different semantic. This technique
can break the password verification logic in the sudoers.so.
Only 29/(4096 ∗ 8) bits in a 4 kB page are exploitable for this
attack. Still, 15 out of our 40 DIMMs (37.5%) are susceptible
to such attack within at most 38min 35 s (A12). These results
show how non-uniform patterns largely ease exploitation. In
fact, even when considering the more difficult attack (i.e.,
sudo [14]) we could still build an end-to-end exploit on 15 / 40
DIMMs, which is the total number of DIMMs that TRRespass
could trigger bit flips on (see Table II).

Given the large number of bit flip on some devices, we
would have expected to see more exploitable bit flips, e.g., in
the PTE attack. We investigated this further in Section VI-A,
where we show that this is due to the large variance in the
number of flips in different chips from the same DIMM.

D. Blacksmith on LPDDR4X

We evaluate the impact of our non-uniform patterns on
LPDDR4X memory. Due to power and die area restrictions,
there are key differences compared to regular DDR DRAM
that make LPDDR an interesting target for Rowhammer
analysis: (i) LPDDR’s default refresh window is 32ms, com-
pared to 64ms for standard DDR4; (ii) it supports dynamic
temperature-based refresh changing through the MR4 Mode
Register [29]; and (iii) recent devices deploy on-die ECC [15].

We applied the test methodology outlined in Section V-B
to evaluate Blacksmith on 19 LPDDR4X devices. As our
LPDDR4X platform is fragile, which makes it difficult to
perform longer runs, we had to reduce the run time to 6 h;
even then, we had to restart multiple times until we accumulated
in total 6 h (this is equivalent as Blacksmith’s fuzzing is
stateless). Table IV summarizes our results. We observe that
Blacksmith can trigger up to two orders of magnitude more
bit flips on LPDDR4X compared to DDR4 DRAM, often
finding multiple bit flips in every row of every bank. This
confirms previous results that indicated the lower Rowhammer
tolerance of LP devices, likely a direct result of the area and
power restrictions [15]. However, in contrast to DDR4, for
some LPDDR4X DRAM modules from vendor B Blacksmith



Table II: Blacksmith results for DDR4 DRAM compared to TRRespass. For each
DIMM, we report the number of effective patterns found (|P+|), i.e., patterns that
triggered any bit flip during fuzzing; and the total number of bit flips found during
fuzzing (|Ftotal

fuzz |). For a DIMM’s best pattern, we do a sweep over 256MB and
report the same (|Ftotal

swp |), plus the number of zero-to-one bit flips (|F0 )1
swp|). On

three DIMMs, marked by †, we used an amplitude of up to 4 refresh intervals, see
Table I.

DIMM Blacksmith TRRespass [12]

|P+| |Ftotal
fuzz | |F

total
swp | |F0 )1

swp| |P+| |Ftotal
fuzz | |F

total
swp | |F0 )1

swp|

A0 47 1,061 82,183 41,471 0 – – –
A1 116 2,125 12,134 6,095 12 12 5 5
A2 462 106,815 134,702 68,801 715 16,054 7,404 4,563
A3 82 239 1,746 890 326 852 114 58
A4 460 1,604 5,132 2,602 78 105 22 9
A5 42 7,771 113,190 57,655 0 – – –
A6 102 17,790 98,425 49,296 4 11 4 4
A7 66 3,415 32,090 15,988 0 – – –
A8 83 11,105 92,660 46,914 0 – – –
A9 349 1,176 4,889 2,461 14 844 1 1
A10 350 1,282 3,051 1,532 367 961 505 280
A11 202 632 3,171 1,630 261 479 38 25
A12 74 13,641 43,581 22,149 0 – – –
A13 72 9,889 59,721 30,320 0 – – –
A14 51 9,729 64,083 32,543 1 1 4 0
A15 67 8,333 52,580 26,483 0 – – –
A16 372 61,493 99,552 51,029 688 5,499 1,450 983
A17 425 57,245 138,601 70,902 711 12,196 3,871 2,690
A18 126 12,689 80,601 40,876 14 14 1 1
A19 107 2,543 11,599 5,736 0 – – –

B0 9 11 63 22 0 – – –
B1 7 14 506 256 0 – – –
B2† 9 41 15 7 7 8 5 3
B3 1 2 111 58 0 – – –
B4 101 177 1,107 577 0 – – –
B5 19 24 14 6 0 – – –
B6 18 41 78 46 0 – – –
B7 4 4 70 34 0 – – –
B8† 4 6 258 131 0 – – –
B9† 40 86 1,223 625 0 – – –

C0 1 3 26 16 0 – – –
C1 16 29 28 8 0 – – –
C2 82 282 2,551 1,242 0 – – –
C3 6 7 636 296 0 – – –
C4 31 57 769 385 0 – – –
C5 23 58 1,028 516 0 – – –

D0 26 250 10,646 5,329 0 – – –
D1 37 458 6,655 3,406 3 3 0 –
D2 3 16 2,030 1,008 0 – – –
D3 41 463 6,797 3,475 8 8 1 1∑

4,133 1.168 M 3,209 13,425

Table III: Analysis of exploitation of our DRAM modules. Given the bit flips found
by Blacksmith’s best pattern, we evaluate how many of these bit flips are exploitable
(#Expl.) when considering three exploits. For each DIMM, we then computed the
average time to find an exploitable bit flip (Time). We mark (*) values where a single
measurement is available only.

DIMM PTE [1] RSA-2048 [4] sudo [14]

#Expl. Time #Expl. Time #Expl. Time

A0 7604 4s 210 30s 17 5m
A1 – – 28 4m 12s – –
A2 9198 6s 306 21s 13 6m 43s
A3 73 2m 21s 3 47m 37s – –
A4 214 33s 7 13m 16s – –
A5 99 1m 27s 269 34s 12 11m 41s
A6 52 2m 12s 220 32s 9 11m 55s
A7 6043 6s 69 2m 5s 8 11m 11s
A8 64 2m 24s 184 54s 15 10m 5s
A9 136 28s 6 9m 45s – –
A10 216 24s 7 12m 4s – –
A11 197 2m 8s 13 23m 21s – –
A12 6596 7s 116 55s 2 38m 35s
A13 4520 8s 144 49s 7 13m 44s
A14 5172 8s 151 44s 7 14m 19s
A15 4567 8s 105 1m 3s 7 14m 7s
A16 6572 6s 231 27s 13 6m 30s
A17 9775 3s 324 11s 10 5m 1s
A18 11124 5s 182 44s 23 5m 28s
A19 832 3s 20 1m 18s 3 6m 21s

B0 – – – – – –
B1 1 1h 44m* 1 2h 31m* – –
B2 – – – – – –
B3 3 1h 16m – – – –
B4 2 1h 27m 4 34m 7s – –
B5 – – – – – –
B6 – – – – – –
B7 – – – – – –
B8 – – 1 26m 50s* – –
B9 3 1h 3m – – – –

C0 1 2h 8m* – – – –
C1 – – – – – –
C2 1 1h* 3 59m 39s – –
C3 – – – – – –
C4 4 59m 19s 2 2h 5m – –
C5 – – 1 4h 2m* – –

D0 5202 4s 23 3m 43s 4 19m 56s
D1 4 19m 33s 15 5m 25s – –
D2 135 40s 6 11m 41s – –
D3 760 22s 32 5m 49s – –

was unable to trigger any bit flip. These DRAM devices were
produced recently (in 2020), likely deploying an improved
mitigation scheme. To understand why Blacksmith failed to
find any effective patterns on the devices B0−3, we reverse-
engineered the TRR mechanism of one of them (B0) in
Section VI-C.

E. Pattern’s Complexity

We analyzed the effective patterns discovered by Blacksmith
on the tested DIMMs. In Figure 11, we present three examples
to show that patterns have significant differences in their
parameters. Considering the complexity of these patterns, we
argue that it is difficult to come up with them manually. We
note that these patterns all have only one effective aggressor

tuple, but we have also observed instances with more than one.

The best pattern of B2, given in Figure 11a, consists of 6
aggressor tuples that all share the same period (104) but a5,6
that caused the bit flips has a significantly higher intensity
(35×). This very well represents how one would expect a
Rowhammer pattern: the most hammered aggressors trigger
bit flips. However, this is not always the case. The effective
pattern in Figure 11b from A10 consists of 9 aggressor tuples,
and the aggressors a1,2 causing the bit flips are hammered with
a lower intensity (22) than the pattern’s highest (35) but more
often (period of 96). This agrees with the observation made in
our experiments (see Section III-C), showing hammering for
too long (high intensity) might be counterproductive. Lastly,



Table IV: Blacksmith results for LPDDR4X DRAM. We report for each chip
(DRAM) the no. of effective patterns found (|P+|, or max and the elapsed time to
find the first 128 effective patterns), and for the best pattern, we report the total
no. of observed bit flips (#Flips) and the no. of zero-to-one flips (|F0 )1

swp|) for a
sweep over 16MB. Additionally, we report the total capacity (GB) and refresh
rate changes during the experiment; e.g., 4x→2x indicates a refresh interval of
4x tREFI (4x 3.904µs≈ 15.6µs) during test initialization and early fuzzing, but an
increasing temperature eventually resulted in a lower refresh interval of 2x tREFI
(≈ 7.8µs). For C4, the refresh interval kept alternating between 2x and 4x. All
DRAM devices are from 2018, except for B0–B2 from 2020 (marked with †).

DRAM GB |P+| (mm:ss) #Flips |F0 )1
swp| Rate

A0 6 max (17:24) 361 K 209 K 4x
A1 6 max (13:57) 946 K 604 K 4x
A2 8 max (21:54) 993 K 572 K 4x
A3 8 max (15:04) 1.633 M 963 K 4x
A4 12 max (14:53) 844 K 531 K 4x
A5 12 max (15:05) 1.207 M 752 K 4x

B0
† 6 0 – – 4x

B1
† 6 0 – – 4x→2x

B2
† 6 0 – – 4x→2x

B3 8 max (29:27) 225 K 119 K 4x→2x
B4 8 max (11:28) 1.516 M 797 K 4x→2x

C0 4 max (51:18) 140 K 78 K 4x→2x
C1 4 max (05:44) 6.560 M 3.050 M 4x
C2 6 max (05:22) 363 K 239 K 4x
C3 6 max (05:24) 12.242 M 5.092 M 4x
C4 8 max (05:11) 3.125 M 1.423 M 4x→2x/4x
C5 10 24 1,447 1,022 2x
C6 10 5 14,386 8,689 2x
C7 10 53 2,623 1,649 2x

a1,2: (104,0,3×)
a3,4: (104,6,7×)

a5,6: (104,20,35×)
a7: (104,90,7×)

a8: (104,97,1×)
a9,10: (104,98,4×)Period

104
0 104 208 312

(a) Best pattern found on DIMM B2.

a1,2: (96,0,22×)
a3: (288,44,35×)
a4: (288,140,35×)

a5: (288,236,35×)
a6,7: (96,79,6×)
a8: (96,91,1×)

a9,10: (96,92,1×)
a11,12: (192,94,1×)
a13,14: (192,190,1×)

288
Period

192
96

0 96 192 188 284

(b) Best pattern found on DIMM A10.

Period

46
92

0 46 92 138 184

a1,2: (46,0,1×)
a3,4: (46,2,7×)
a5,6: (46,16,2×)
a7,8: (92,20,5×)

a9,10: (92,66,5×)
a11,12: (46,30,2×)
a13,14: (46,34,1×)

a15,16: (46,36,3×)
a17,18: (92,42,2×)
a19,20: (92,88,2×)

(c) Best pattern found on DIMM D1.

Fig. 11: Best patterns. The best patterns of DIMMs B2,A10,D1 with (frequency,
phase, amplitude) for each aggressor tuple. After a pattern’s end, we show how the
pattern is repeated during its execution (grey x-axis values). The aggressor tuple
that triggers bit flips is depicted in red ( ).

we show the best pattern from D1 in Figure 11c. This shows
how intermixing our effective aggressors with other aggressors
allows us to evade TRR in this instance.

F. Blacksmith on Devices From Another Vendor

A fourth DRAM vendor contacted us to test three of their
DRAM devices against Rowhammer after the responsible
disclosure. Although we have not studied these devices before,
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Fig. 12: Chip dependence. The distribution of bit flips over byte offsets (0-7) based
on the DIMM’s sweep with its best pattern.

Blacksmith was able to trigger the first bit flips on them after
13m 19s, 28m 8s, and 3h 43m. This shows the strength of our
scalable black-box fuzzing approach for testing DRAM devices
compared to traditional reverse-engineering, which would have
taken many weeks, if not months, to yield effective results.

G. Other Insights
We also investigated other properties of effective patterns

like their temporal properties (Appendix F), their portability be-
tween different DIMMs (Appendix G), and the reproducibility
of bit flips triggered by these patterns (Appendix H).

VI. INSIGHTS ON TRR

In this section, we investigate properties of TRR using
effective patterns found by Blacksmith. In Section VI-A we
start by looking into the low exploitability of some devices
despite many triggered bit flips. As we wanted to understand
better how TRR implementations differ across devices, we
studied two characteristic properties in Section VI-B: the TRR
sampler size and the TRR’s dependence on DRAM addresses.
Lastly, we reverse-engineered certain aspects of TRR on B0 in
Section VI-C to find out why Blacksmith could not trigger bit
flips on three of our LPDDR4X devices (B0, B1, and B2) and
show how it can be better configured to find effective patterns
on these devices.

A. Chip Dependence
Motivated by the low number of exploitable bit flips on

some devices, despite that the best pattern triggered many
bit flips, we started looking more into the bit flips from our
fuzzing. An analysis of them revealed that on certain DRAM
devices, some offsets show significantly more bit flips than
others, as depicted in Figure 12. As an example, on A1 we
observe that the best pattern can trigger bit flips exclusively in
byte offset 6 during our sweep. Further experiments showed
that using effective patterns other than the best pattern leads
to bit flips on other DRAM chips but not nearly as many as
when using the best pattern. Given that, we conclude that this
effect is likely due to TRR rather than the chip’s underlying
Rowhammer vulnerability. The analysis based on the bit flips
from our fuzzing shows that this effect is present on 65% of
devices in our test pool. The existence of this chip-dependent
variation has been confirmed by concurrent work [30].

B. TRR Sampler Size and Address Dependence
To learn more about how TRR implementations differ across

DIMMs in our test pool, we use the best pattern found by
Blacksmith to determine the number of rows that a sampler
can track at any point in time (i.e., sampler size) and if the
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Fig. 13: TRR Sampler size & address dependence. We used effective patterns
found by Blacksmith to estimate the TRR sampler size (bars) and to detect if TRR
takes DRAM addresses into account (✓) or not (✗). A question mark (?) indicates
an inconclusive sampler size.

aa ab ac ad ae af
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best pattern randomly picked row

Fig. 14: Sampler size estimation. An example showing the sampler size estimation
methodology over 6 iterations (It.). The pattern p6 at the end has the minimum
number of distinct rows to trigger bit flips.

sampler is sensitive to the DRAM address of the rows inside
an effective pattern (i.e., address dependence). For increasing
the reliability of our experiments, we repeat hammering each
pattern ten times, each time for 5 M activations.

We estimate the sampler size using a reduction process
as shown in Figure 14: we iteratively replace aggressors of
the best pattern by one randomly selected row of the same
bank until any further replacement would no longer trigger bit
flips anymore. The number of distinct rows at the end is an
overestimation of the sampler’s size. The results in Figure 13
show the sampler size varies across DRAM devices from just
4 to up to 28 rows. We report the sampler size as inconclusive
in case that our methodology did not lead to a reliable result.

To identify any address dependence on a given DRAM
device, we replace all accessed rows that do not trigger bit flips
in neighboring rows (i.e., all except the effective aggressors)
by randomly selected rows of the same bank. Since these
aggressors in the pattern do not contribute to bit flips, replacing
them should not affect the ability to trigger bit flips. Hence,
if we do not observe bit flips anymore, it indicates that the
sampler is address-dependent. Our results in Figure 13 show
that 55% of samplers in our DIMMs are address-dependent.

C. Understanding Blacksmith’s (In)Effectiveness
Our results show that Blacksmith is able to find effective

patterns on all DDR4 DIMMs of our test pool (see Table II).
There are, however, three LPDDR4X devices (B0, B1, and
B2) where Blacksmith could not find any effective pattern
(see Table IV). To better understand why, we reverse-engineer
aspects of the TRR implementation on device B0. For the
following experiments, we make use of our LPDDR4X-based
test platform where we have control over refresh commands.

TRR distance. In the first experiment, we verify if the distance
between TRRs is regularly repeating on B0. The experiment
uses the fact that a TRR-triggered refresh masks bit flips. That
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Fig. 15: TRR distance experiment. The TRR events over 1056 refresh intervals
for the device B0. The x-axis shows the refresh intervals since the first observed
TRR event. We can see that roughly every 48-th refresh, no TRR is happening.
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Fig. 16: Attack strategy. The refresh interval range 0− 144 of Figure 15 zoomed-
in. We show the distance between TRR-free segments (every 48-th interval, red
lines), the 6 refresh intervals where we target hammering our aggressors ( ), and
the 7× 6 intervals where we hammer two random rows ( ).

Algorithm 1: Experiment to determine the TRR distance.
1 A2 ← PICKRANDOMAGGRESSORPAIR();
2 AC← 1.5×DETERMINERHTHRESHOLD(A2);
3 DISABLEREFRESH();
4 for round← 0 to 8192 do
5 PREPAREVICTIMROW(A2); // restore data, refresh victim
6 for i← 0 to AC/2 do
7 HAMMER(A2);
8 ISSUEREFRESH(); // issues a single REFRESH
9 for i← 0 to AC/2 do

10 HAMMER(A2);
11 CHECKBITFLIPS(A2);
12 ENABLEREFRESH();

means, if we know how often we need to hammer a location
to induce a bit flip, we can determine which REFRESHes
trigger TRRs. The experiment, given in Algorithm 1, works
as follows: we randomly pick a double-sided aggressor pair to
determine its hammer count (HC), i.e., the number of accesses
needed to trigger a bit flip. The HC can be determined by
disabling refreshes and repeating hammering while counting
the number of activations until we observe bit flips. We then
define our target activation count AC = 1.5×HC and hammer
the aggressors for half of the times (AC/2), issue a single
refresh, and again hammer for half of the times (AC/2) before
checking for bit flips. We repeat this experiment for one tREFW,
i.e., 8192 refresh intervals to observe the distance (in units of
refresh intervals) between TRRs to our victim row.

Figure 15 shows the results for the first 1056 refresh intervals.
Our data shows that on average, there is a TRR happening
every 6th refresh interval; however, there are periods where
TRRs happen less frequently — roughly every 48th refresh
interval (red bars) there is one TRR event skipped, resulting in
around 12 consecutive TRR-free intervals. We conclude from
this that Blacksmith, if configured properly, should be able to
bypass this TRR implementation.

Building an effective pattern. Our goal is to demonstrate
that we could use the TRR-free intervals to craft an effective
pattern for B0. Our attack assumes that we are aligned with
the proper refresh interval. Based on our previous observation



0 25 50 75 100 125 150 175 200
Refresh Interval Offset

0
5

10
15
20
25

#
Bi

t F
lip

s

Fig. 17: Attack result of B0. Once synchronized with the proper REFRESH (after
44 tries), our manually-crafted pattern can successfully trigger bit flips every 48-th
refresh interval (red line).

(Figure 15), we access two randomly selected rows in the six
short segments of each 6 intervals, hammer our aggressors in
the TRR-free segment consisting of 12 intervals, and afterward
(for 6 intervals) again access the two randomly selected rows.

However, we first need to align with the right REFRESH
before we start to hammer. By analyzing Figure 15 carefully,
we find out that there are always around 48 refresh intervals
in between the two REFRESHes where TRRs are skipped.
To make this more clear on an example, we focus on the
refresh interval range 0–144 in Figure 16. Here, we can see
that the two REFRESHes without TRR events are around 48
refresh intervals apart. Consequently, by shifting our pattern’s
REFRESH alignment every repetition by one, we need at most
47 tries to find the proper start interval.

We select a double-sided aggressor pair (of the same bank)
to hammer during the long TRR-free segments for 6 intervals.
In theory, we could hammer our double-sided aggressor pair
even longer but we determined that 6 intervals are already
sufficient to trigger bit flips.

Figure 17 shows the result of our hand-crafted pattern. We
can see that it took 44 tries to align with the proper REFRESH,
after which we are synchronized and can trigger bit flips. By
repeating this method a few times, we can see that the distance
between successful offsets matches the estimated distance of
48 in Figure 15.

Effective configuration of Blacksmith for LPDDR. Our
experiment in Section VI-C shows that the TRR distance is
regular, which means that our frequency-based patterns should
be able to bypass this TRR implementation. Comparing our
insights with the fuzzing parameter ranges (see Table I) shows
the distance between where we hammer (48 intervals) is not
in the range of 1 to 16 refresh intervals. Also, we need to
allow hammering an aggressor tuple for at least 6 consecutive
refresh intervals, currently we only allow an amplitude up to
one refresh interval. This explains why Blacksmith could not
find any effective patterns on this device. However, even if
we consider a proper configuration, an effective pattern needs
to start at the right refresh command, which may take a long
time given the larger parameter space.

We assessed Blacksmith’s ability to find effective patterns
on this device. We updated the parameters to consider patterns
of length 36 up to 60 refresh intervals and amplitudes between
1 (i.e., access the aggressors only one time) up to 6 refresh
intervals. As our current Blacksmith implementation does not
consider that the specific REFRESH where we start hammering
matters, we make Blacksmith refresh-aware — we disable

auto-refreshes and try each pattern with 1 to 60 REFRESHes
issued before. While probing the refresh offset is possible in
testing scenarios, an attacker without this capability will need
to try the same pattern multiple times until one starts at the
right refresh offset.

Results. Using the new configuration, Blacksmith could find
effective patterns with the length of 48 refresh intervals
after 19min 1 s (B0), 2 h 5min 52 s (B1), and 6min 27 s (B2).
These results show the adaptability of Blacksmith to new
mitigations, prove the effectiveness of our approach but also
highlight the importance of a proper parameter range selection.

VII. FUTURE WORK

In this section, we discuss the impact of our new findings
on future attacks and mitigations.

Improving the fuzzer’s approach. Our work shows that with
blackbox fuzzing and some assumptions about a pattern’s
structure, we can efficiently generate patterns bypassing TRR
mitigations on a wide range of DIMMs. Although this approach
is scalable and outperforms previous work [12], on certain
DIMMs we could only find very few bit flips. This leaves
improvements to our fuzzing strategy as an attractive direction
for future research.

One possibility is tweaking the parameters of effective
patterns found by Blacksmith to discover new effective pat-
terns that can trigger more bit flips. This, however, assumes
Blacksmith has already found effective patterns.

In situations where Blacksmith does not find effective
patterns, reverse-engineering can provide an alternative. As
adequate reverse-engineering of a DIMM is time-consuming
and does not scale, an interesting approach could be to combine
automated reverse engineering to guide Blacksmith in a grey-
box manner. As an example, reverse-engineering can provide
the distance between TRRs (Section VI-C). This information,
in turn, can be used by Blacksmith to significantly reduce the
size of the search space.

Making TRR more secure. Blacksmith enables scalable
and effective fuzzing of a given DRAM device. Since our
initial disclosure, major companies have already started using
Blacksmith to test their devices and evaluate the effectiveness
of their mitigations. We are confident that this adoption will
directly result in improved future mitigations.

The properties of effective Blacksmith patterns can also guide
the design of better mitigations. Blacksmith can trigger bit flips
on our DRAM devices since their TRR implementations do not
accurately capture aggressor rows. In deterministic mitigations
with strong security guarantees, every access needs to be consid-
ered, unlike in existing in-DRAM mitigations. Recent work [31]
shows how this can be achieved with a reasonably small number
of counters. Our measurements show that currently deployed
mitigations keep track of significantly fewer aggressors than
needed for complete protection. Probabilistic mitigations (e.g.,
PARA [13]) can also be used as secure in-DRAM mitigation,
but recent work shows that additional refreshes have become
prohibitively expensive in recent devices [15].



VIII. RELATED WORK

In this section, we provide an overview of existing work on
Rowhammer attacks and defenses.

Attacks. While initially considered an exotic attack vector,
Rowhammer has since emerged as an effective means to build
a plethora of exploits [32] on a great variety of platforms: on
personal computers [1]–[3], [14], mobile platforms [6]–[8],
and co-located cloud servers [4], [5], [25]. Attacks were not
only demonstrated using native code [1], [4]–[7], [14], [25] but
also from the restricted JavaScript sandbox running in modern
browsers [2], [3], [8], [11] and even over the network [9],
[10]. While TRRespass [12] showed the Rowhammer issue
still affects some DDR4 systems, the patterns generated by
Blacksmith expose how every DDR4 system is still vulnerable
to it — even more so in the case of LPDDR4. Such results
make the case for better mitigations more significant.

Typical Rowhammer attacks consist of three phases [4]:
(i) memory templating, (ii) memory massaging, and (iii) ex-
ploitation. During (i) memory templating, an attacker aims to
find a pattern that triggers a bit flip at an attack-dependent
offset of a page (template). This is where Blacksmith comes
into play and can help to find an effective pattern. Thereafter,
(ii) memory massaging is used to trick the victim into mapping
the target data into one of the attacker’s templates in which
the attacker can trigger a bit flip during the (iii) exploitation.

Concurrent work [21] uses a new reverse engineering
technique based on data retention failures for studying mit-
igations and crafting patterns that effectively bypass TRR.
The methodology leads to very effective patterns but is time-
consuming as it is not automated. Similar to our insights on
mitigations (see Section VI), recent work [30] studied the
Rowhammer sensitivities such as DRAM chip temperature and
the Rowhammer effects of keeping aggressor rows active for
a longer time. Among others, they make a similar observation
regarding the different Rowhammer bit flip distributions across
different DRAM chips on the same device as shown in
Section VI-A.

Defenses. In the past, systems vendors have made several
attempts to mitigate Rowhammer practically, such as an
increased (e.g., doubled) DRAM refresh rate [33], [34] to
reduce the available time to hammer. Besides this being
insufficient [12], [35], it also increases power consumption and
lowers system performance [32]. It has long been believed that
servers with integrity-protected error checking and correction
(ECC) DRAM are safe against Rowhammer, until Cojocar et
al. [25] showed that this is not always the case.

More recent proposals use tailored solutions against Rowham-
mer. For example, Intel’s proprietary MC-based implementation
pseudo-TRR (pTRR) [36] that is available on selected server
systems [12] and requires pTRR-compliant DIMMs. Little is
known about its implementation, but it promises a negligible
performance impact [37]. There have been ongoing standard-
ization efforts for mitigations, such as in the latest generation
of LPDDR (LPDDR5), where TRR is replaced by Refresh
Management [38], [39] — a mechanism that keeps track of

activations in a bank and issues selective refreshes to highly
activated rows once a threshold has been reached. However, this
requires supported DRAM modules and coordination between
DRAM and memory controllers [38].

There has been extensive research on novel software- and
hardware-based defenses that try to implement a more effective
TRR. Software-based defenses may be deployed on systems
with DRAM modules that are already in production [7], [35],
[40], [41]. However, they require support by the OS, do not
always provide complete protection [14], [42], can waste
memory [7], [35], and potentially impact performance more
negatively [41]. In comparison, hardware-based solutions have
a lower performance overhead [13], [31], [43]–[46], but they
require hardware adoption that can take many years.

IX. CONCLUSION

Deployed in-DRAM TRR mitigations against Rowhammer
estimate hammered rows and aim to prevent bit flips by
issuing extra refreshes to their neighbors. Motivated by the
observation that all existing Rowhammer patterns hammer their
aggressors uniformly, and given that this is likely an easy case
to catch by TRR, we explored the novel class of non-uniform
Rowhammer access patterns by randomizing parameters in the
frequency domain, obtained using a number of carefully crafted
experiments. Our scalable Rowhammer fuzzer Blacksmith, is
capable of crafting complex non-uniform patterns that trigger
bit flips on all 40 recently acquired DDR4 DIMMs, 2.6× more
than state-of-the-art Rowhammer patterns. We used results
obtained by Blacksmith to gain insight into the properties
of effective patterns and existing mitigations. Our findings
highlight an urgent need for the deployment of more principled
mitigations against Rowhammer.
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Table V: Synchronized n-sided patterns. Number of effective patterns (|P+|)
and bit flips (|Ftotal

fuzz |) found during fuzzing using n-sided patterns with REFRESH
synchronization (TRRespass + Sync.) compared to regular n-sided patterns
(TRRespass). DIMMs where we could not find any patterns with REFRESH
synchronization are omitted.

DIMM
TRRespass + Sync.

(SMASH) TRRespass

|P+| |Ftotal
fuzz | |P| |Ftotal

fuzz |

A2 2,233 8,131 777 3,279
A3 24 77 53 79
A4 5 15 5 5
A9 40 121 47 65
A10 54 165 57 72
A11 16 48 26 27
A16 25 87 310 499
A17 1,312 4,299 593 1,574
B2 5 16 0 –

APPENDIX A
SYNCHRONIZED n-SIDED HAMMERING

Recent work [11] showed that synchronizing with the
REFRESHes while hammering facilitates bypassing Rowham-
mer mitigations. To investigate whether adding synchronization
to n-sided patterns is enough to find effective patterns on more
devices than previous work [12] did, we added synchronization
to the open-source Rowhammer fuzzer TRRespass.

In Table V, we present the results for a 30 minutes run: we
found effective patterns on only 9 of 40 DIMMs (22.5%)
of our test pool (see Appendix B), which indicates that
synchronization alone is insufficient to find effective patterns on
more DIMMs. Our results show that although we do not always
find more effective patterns, the effective patterns we found
trigger a higher number of bit flips. This matches observations
from previous work [11].

APPENDIX B
PC-DRAM TEST POOL

In Table VI, we provide an overview on the DIMMs in our
test pool based on the DIMM’s reported Serial Presence Detect
(SPD) data. We group DIMMs by their DRAM chip vendor
(e.g., A) and assign to each a sequentially chosen number (e.g.,
A0, A1, . . . , A19) to uniquely identify them.

We check whether DIMMs report being Rowhammer-safe, by
reading out their maximum activate count (MAC): the maximum
number of ACTIVATEs that a row can resist in an interval of
less or equal to the maximum activate window (MAW) without
causing flips in neighboring rows [47]. All modules claim to
be safe against Rowhammer (unlimited MAC value).

Table VI: Data of the DIMMs in our testpool. DIMMs are grouped by their vendor
(A − D). If a DIMM’s SPD chip does not report a manufacturing date (†), we
instead report its purchase date.

Organization
Module Date

(yy-ww)
Freq.
(MHz)

Size
(GB) #Ranks #Banks #Pins

A0 20-03 2666 8 1 16 ×8
A1 20-07† 2400 8 1 16 ×8
A2 20-06 2666 32 2 16 ×8
A3 20-10 2400 8 1 16 ×8
A4 16-51 2132 4 1 16 ×8
A5−10 20-07† 2132 8 1 16 ×8
A11 20-07† 2400 8 1 16 ×8
A12−15 20-07† 2132 16 2 16 ×8
A16 20-23 2666 32 2 16 ×8
A17 20-08 2666 32 2 16 ×8
A18 20-07† 2666 8 1 16 ×8
A19 20-16 2666 16 2 16 ×8

B0 19-38 2400 16 2 16 ×8
B1 20-07† 2132 8 1 16 ×8
B2 19-34 2400 4 1 16 ×8
B3 20-05 2666 8 1 16 ×8
B4 20-07 2400 8 1 16 ×8
B5 19-51 2400 16 2 16 ×8
B6 20-07† 2132 32 2 16 ×8
B7 20-09 2134 8 2 16 ×8
B8 20-07† 2400 4 1 16 ×8
B9 20-07† 2400 8 1 16 ×8

C0 20-07† 2132 16 2 16 ×8
C1−4 20-38 2400 8 1 16 ×8
C5 17-48 2400 4 1 16 ×8

D0 20-15 2400 8 1 16 ×8
D1 20-19 2400 16 2 16 ×8
D2 20-20 2400 16 2 16 ×8
D3 20-20 2400 8 1 16 ×8

APPENDIX C
SEARCH SPACE ESTIMATION

We following present a simple back-of-the-envelope calcula-
tion showing the number of possible combinations for the most
simple case of a Rowhammer pattern. We assume the standard
DDR4 parameters: a tREFI of 7.8125 µs and a retention time
(refresh window) of 64ms, see Section II-A for details. This
gives us 64ms/7.8125 µs = 8192 refresh intervals in each of
which we can issue roughly 100 activations, and thus, in total
around 819200 activations in a refresh window.

Next, we derive the number of distinct patterns that we
can build given these constraints. We assume a Rowhammer
threshold of 10 k activations based on the findings in previous
work [15]. This means there are in total 10 k accesses to
aggressors needed to trigger a bit flip. For simplifying the
calculation, we allow aggressor accesses to be intermixed
with other accesses of the pattern (e.g., accesses required
to bypass TRR). In the case of a double-sided aggressor
pair, this translates to

(
819200
10000

)
= 6.79322× 1023447 possible

combinations to distribute these 10 k accesses.
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This shows that by considering only basic constraints, we
end up with an impractically large pattern design space that
cannot be explored in a reasonable time. Therefore, we need
to define properties that allow us to reduce the search space
while still being general enough to generate patterns that are
effective on many different DIMMs. As discussed in Section III,
examples of such properties are the number of aggressors to
hammer, how often we hammer each of them, and over how
many intervals we spread our hammering effort.

Table VII: Results of our non-uniform accesses experiment. We compare
common n-sided patterns (n-sided) with n-sided patterns where non-uniform
accesses are injected (n-sided + Rnd.) and fully random patterns (Fully Rnd.). We
report for each DIMM if any effective patterns were found (✓) or not (✗). DIMMs
without any effective patterns in all three experiments are omitted for brevity.

Module n-sided n-sided
+ Rnd.

Fully
Rnd.

A1 ✓ ✓ ✗

A2 ✓ ✓ ✓

A3 ✓ ✓ ✓

A4 ✓ ✓ ✓

A6 ✗ ✓ ✗

A7 ✗ ✗ ✓

A9 ✓ ✓ ✓

A10 ✓ ✓ ✓

A11 ✓ ✓ ✓

A14 ✗ ✗ ✓

Module n-sided n-sided
+ Rnd.

Fully
Rnd.

A16 ✓ ✓ ✓

A17 ✓ ✓ ✓

A18 ✓ ✗ ✗

B1 ✓ ✗ ✗

B2 ✓ ✗ ✗

B9 ✗ ✗ ✓

C0 ✓ ✗ ✓

D0 ✓ ✗ ✓

D1 ✗ ✓ ✓

D3 ✗ ✗ ✓

35% 27.5% 37.5%

APPENDIX D
RANDOM ACCESSES EXPERIMENT

We assess three different approaches to generate Rowhammer
access patterns: n-sided patterns from previous work [12], n-
sided patterns with random accesses in between, and patterns
where all except aggressor accesses are fully random. The
results of this experiment are presented in Table VII.

APPENDIX E
PATTERN GENERATION

In this appendix, we explain the technicalities involved in
building patterns. We describe how we determine harmonic
frequencies that respect pattern repetitions, we explain how
matching frequencies can fill up a pattern, and finally, we
present our algorithm for combining different aggressors with
different parameters into a single pattern.

Harmonic Frequencies. There are constraints in the choice of
an aggressor tuple’s frequency. As the whole pattern is repeated
during hammering, we must design it in a way to maintain
frequencies over repetitions. For example, given a pattern of
4 periods (like the one in Figure 10), then choosing f = 1

3
for an aggressor tuple A2, would lead to accessing the tuple
in the first and fourth period. However, repeating the pattern
leads to accessing A2 again in the subsequent (5th) period,
thus deviating from its defined frequency.

As a solution, we define a subset of compatible frequencies,
namely harmonic frequencies. For that, we first define F =
{ 1
i : i ∈ N} as the set of all frequencies. Then, let N be
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Fig. 18: Pattern generation over time. Example showing the pattern generation
over six iterations, where an iteration i is marked by i⃝.

the number of periods the pattern is composed of and let
P = {2x : x ∈ N0} be the powers-of-two. Next, we determine
the largest pi ∈ P such that pi divides N . Consequently, all
elements {p0, . . . , pi−1} ∈ P, smaller than pi, must also divide
N . Then we define the set of harmonic frequencies as F′ =
{ 1
p0
, 1
p1
, . . . , 1

pi
}. For example, for N = 40 we obtain the set

of harmonic frequencies F′ = { 1
1 ,

1
2 ,

1
4 ,

1
8} where all s−1 for

s ∈ F′ are divisors of N .

Matching Frequencies. Another difficulty is that we cannot
arbitrarily combine different frequencies in a pattern because
this may lead to overlapping accesses. By means of illustration,
consider a pattern of length 16 and period T = 2, as given in
Figure 18. Before starting to fill up the pattern, we compute
the harmonic frequencies F′ = { 1

1 ,
1
2 ,

1
4 ,

1
8}. In iteration 1⃝,

we can choose any frequency s ∈ F′, for example, f = 1
4

for the aggressor tuple (a1, a2). For the next aggressor tuple
(a3, a4), to be placed in the second period, there are fewer
options available as we cannot choose f = 1 anymore without
overlapping with aggressors (a1, a2). As an example, we
choose f = 1

8 for this tuple (see 2⃝), resulting in two
remaining compatible frequencies (i.e., f = { 1

4 ,
1
8}), for the

next aggressor tuple (a5, a6). If we choose f = 1
8 , we end up

in iteration 3⃝ with three unfilled periods (4, 6, 8) that only
support the frequency f = 1

8 . In iterations 4⃝- 6⃝, we show how
these accesses would be filled up by other aggressor tuples.

To automate selecting only from suitable frequencies, we
proceed as follows: a random frequency s0 ∈ F′ is picked
in the iteration 1⃝. In following iterations ( i⃝ > 0), where
we add another tuple, we restrict ourselves to frequencies
F′′ = {s ∈ F′ : s ≤ si−1}, i.e., the current frequency is the
upper bound for the available frequencies in the next iteration.

Building Patterns. The next step is to combine multiple
aggressor tuples in a pattern (at different phases) to increase
the probability that one of the aggressor tuples can successfully
bypass the mitigation. We could include only one aggressor
tuple with a randomly picked set of parameters (f, ϕ, û) and
randomize all other accesses. Our chosen approach, however,
allows us to simultaneously try out different parameter sets
({(f1, ϕ1, û,1 ), (f2, ϕ2, û,2 ), . . .} and DRAM locations; as
such, we expect it to find effective patterns more quickly.

However, combining aggressor tuples with different parame-
ters in a pattern brings up new challenges: we need to ensure
accesses do not overlap and the parameters of each aggressor
tuple are respected. Additionally, we want to make sure that
we exhaust but not exceed the possible number of accesses in



Alg. 2: Frequency-based pattern generation.
Input : period T , pattern’s length L
Output : access pattern P

1 F′ ← COMPUTEHARMONICFREQUENCIES();
2 P ← CREATEPATTERN(L);
3 for ϕ ← 0 to T do // fill 1st period at phase ϕ

4 n← PICKRANDOMN(T − ϕ);
5 A← PICKRANDOMAGGRESSORS(n);
6 û← PICKRANDOMAMPLITUDE(⌊(T − ϕ )/n⌋);
7 f ← PICKRANDOMFREQUENCY(F′);
8 FILLPATTERNBYAGGRESSORS(A, f , ϕ, û, ϕ, P );
9 F′′ ← F′; // Copy F′ to preserve its value

/* fill remaining periods at offset ϕ using same
values for n, û, ϕ */

10 while not every slot at ϕ in period i > 1 is filled do
11 i← GETNEXTUNFILLEDPERIOD(ϕ);
12 Φ← (i× T ) + ϕ;
13 A← PICKRANDOMAGGRESSORS(n);
14 F′′ ← REMOVEFREQUENCIESLARGERTHAN(F′′ , f );
15 f ← PICKRANDOMFREQUENCY(F′′);
16 FILLPATTERNBYAGGRESSORS(A, f , ϕ, û, Φ, P );
17 ϕ ← n+ û; // update iteration variable
18 return P

1 a1 a2 a1 a2 a15 a16 9 a1 a2 a1 a2 a15 a16
2 a3 a4 a3 a4 a17 a18 10 a3 a4 a3 a4 a17 a18
3 a5 a6 a5 a6 a15 a16 11 a5 a6 a5 a6 a15 a16
4 a7 a8 a7 a8 a19 a20 12 a7 a8 a7 a8 a19 a20
5 a1 a2 a1 a2 a15 a16 13 a1 a2 a1 a2 a15 a16
6 a3 a4 a3 a4 a21 a22 14 a3 a4 a3 a4 a25 a26
7 a8 a9 a8 a9 a15 a16 15 a12 a13 a12 a13 a15 a16
8 a10 a11 a10 a11 a23 a24 16 a14 a15 a14 a15 a27 a28

period execution order

Fig. 19: A frequency-based pattern. Example of a frequency-based pattern with
T = 6, pattern length 96, and 16 periods. Aggressors are colored based on their
frequency f : 1
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8
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16
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each period to stay synchronized with the REFRESH.

To solve this, we implemented a pattern building algorithm.
It uses the fact that a pattern can be expressed as a A × B
matrix, where A refers to the pattern’s number of periods and
B to the base period T . Each index (a, b) ∈ A × B refers
to a single access in the pattern, which we will refer to as a
slot. The algorithm fills up the free slots of an access pattern
by adding an aggressor tuple to the first period (lines 3 to 8)
with a randomly picked set of (f, ϕ, û), and then (lines 10
to 16), fills up the same phase ϕ in all other periods with
another aggressor tuple with the same amplitude û but a second,
randomly picked, compatible frequency f . Reusing the same
amplitude for aggressor tuples in all other periods (at the same
phase only) is a limitation that facilitates patterns’ construction.
However, we believe that it does not impose a severe limitation
because our patterns already consist of aggressor tuples with
potentially many different amplitudes.

Pattern Example. In Figure 19, we provide a complete
example of a pattern with 96 accesses and a period of 6.
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Fig. 20: Temporal properties. We show for each DIMM, grouped by DRAM vendor,
the learned values of the temporal properties frequency, phase, amplitude, and
pattern length.

APPENDIX F
TEMPORAL PROPERTIES

We extended our Blacksmith fuzzer with a parameter-
tracking mode, as described in Section IV-C. Using this mode,
we want to answer whether a correlation between specific
parameter values and vendors exists. In Figure 20, we show for
each DRAM vendor how the temporal properties converged to
certain values. The properties we consider include (a) period,
(b) phase, (c) amplitude, and (d) pattern length.

Looking at the frequencies (Figure 20a) shows that A tends
towards a high frequency (i.e., low period). We can see for A a
period of around 110 (about one refresh interval) up to ≈ 400
(about four refresh intervals). D is similar, although both have
a few outliers. The phase plot (Figure 20b) shows for A and D
a strong preference towards a very low phase, i.e., hammering
at the beginning of a refresh interval. However, this does not
contradict our earlier findings in Section III-B: Blacksmith
also found effective patterns with effective aggressors at the
end of a refresh interval (i.e., high offset). We can see in the
amplitude plot (Figure 20c) that there is a clear preference
for A to an amplitude of one, whereas B favors an amplitude
in the range 18-25. Lastly, the length of effective patterns
(Figure 20d) shows that there is a tendency towards shorter
patterns (≤ 500 accesses) for all vendors. Three ranges clearly
stand out: the peak by A with pattern length 190-220, the peak
by C with 100-130 accesses, and the two instances with very
long patterns (≈ 1500 by D and ≈ 1800 by B).

We can summarize that for some parameters, there is a clear
preference for DIMMs of the same vendor. It is possible to use
this knowledge in future work to tweak the fuzzer’s parameter
search space further. We discuss this more in Section VII.
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Fig. 21: Portability results. We run each DIMM’s best pattern (x-axis) on every
other DIMM (y-axis) and report the factor of more observed bit flips compared to
the DIMM’s best pattern (e.g., 3× for 3 times more bit flips).

APPENDIX G
PORTABILITY OF BLACKSMITH PATTERNS

Our data analysis raised the question if effective patterns are
portable, i.e., can be transferred between DIMMs. Because a
pattern inherently encodes information to bypass the mitigation,
a pattern working on different DIMMs would suggest that
their deployed mitigations work similarly. From an attacker’s
perspective, portability is of interest as it allows to perform
templating on another machine (offline) and later, during the
attack, use the golden patterns found on the victim’s host. This
can drastically reduce the attack execution time as templating
is the most time-consuming step.

We aggregated the best patterns from all DIMMs and
performed a sweep with each of these patterns on each module
over 8MB of contiguous memory. We report the results of this
experiment in a heatmap in Figure 21. The plot shows that the
effective patterns from A are portable: for 17 of 20 DIMMs
we could even find a better pattern by taking an effective
pattern that we found previously on another DIMM. Given that
Blacksmith is performing a randomized search, likely some
executions do not necessarily find the best possible access
patterns. This explains why patterns discovered on certain
DIMMs trigger more bit flips than on others. We observed that
effective patterns from vendor A are more efficient on D1,3

than the best one we found on these DIMMs. Based on that,
we believe that these DIMMs, for which we cannot tell the
DRAM chip vendor, have chips from vendor A. The DIMMs
from vendor B, C generally show a low portability. This could
be because mitigations use DIMM-specific properties that are
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Fig. 22: Bit flip reproducibility. The average time-to-flip (in seconds) and the
average number of hammering repetitions needed (limit: 1000) to retrigger bit flips
with a DIMM’s best pattern. We omit DIMMs where we could not retrigger bit flips
successfully (A3,10, B0, C2,3).

not adjusted when porting a pattern from another DIMM.

APPENDIX H
BIT FLIP REPRODUCIBILITY

We investigated the reproducibility of bit flips for exploita-
tion. For this, we considered the best pattern of each DIMM
and tried to retrigger bit flips ten times while measuring the
number of trials needed and the elapsed time. To limit the total
time of our experiment, we limited the maximum number of
trials in each round to 1000, i.e., in total 10× 1000 trials. As
target DRAM location in the experiment, we use the location
where the best pattern triggered bit flips during fuzzing.

While validating our experiment, we observed that the
starting time of hammering plays a crucial role. In some cases,
our data suggested that our pattern has only been effective in
bypassing TRR because we started executing it at the right
REFRESH. Hence, we improve the chance to reproduce a bit
flip by waiting between 0ms–1ms in between retries. We argue
that this is negligible as it only adds at most 1 s (for 1000
repetitions) to the total time needed to retrigger a bit flip. We
do not try to optimize for the optimal REFRESH where we start
hammering during fuzzing as there exist so many possibilities.
We think it is more efficient to try out more different patterns
considering the limited fuzzing time.

Figure 22 presents the results of our measurements. We can
see that for DIMMs of A a very small number of repetitions
(1 − 2) are needed to retrigger a bit flip successfully. Other
DIMMs (e.g., A2,11, B4−7), in particular those of vendor B,
require much more repetitions (e.g., up to 198 for B2) until
we succeed. However, there are 5 out of 40 DIMMs (A3,10,
B0, C2,3) where we could not retrigger any bit flips over all
repetitions. On B0 we succeeded by increasing the number of
hammering repetitions to 10 (i.e., we hammer longer). We think
that the reason for non-reproducibility on these four DIMMs
is that they require special conditions to retrigger bit flips (e.g.,
proper REFRESH alignment), which are hard to reproduce.

For the DIMMs where we could retrigger bit flips, their
reproducibility allows practical exploitation. Assuming a bit
flip in an exploitable page offset, since retriggering of the bit
flip happens after the memory massaging step in all presented
attacks, and given that the retriggering is on 90% of our DIMMs
successful, the only impact to the end-to-end attack time is an
increase by the average time-to-flip as shown in Figure 22.
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