
Branch Privilege Injection: Compromising Spectre v2 Hardware
Mitigations by Exploiting Branch Predictor Race Conditions

Sandro Rüegge
ETH Zurich

Johannes Wikner
ETH Zurich

Kaveh Razavi
ETH Zurich

Abstract
Modern branch predictors prevent Spectre v2 attacks by as-
sociating predictions with the privilege domain they should
be restricted to, or by providing barriers for invalidating pre-
dictions when switching contexts. Such branch predictors
receive branch resolution and privilege domain feedback asyn-
chronously, but it is unclear whether they always consider the
correct order of events. In this paper, we introduce Branch
Predictor Race Conditions (BPRC), a class of vulnerabili-
ties where asynchronous branch predictor operations violate
hardware-enforced privilege and context separation mecha-
nisms in all recent Intel CPUs. Our analysis reveals three
variants, breaching the security boundaries between user and
kernel, guest and hypervisor, and across indirect branch pre-
dictor barriers. Leveraging BPRC, we introduce Branch Priv-
ilege Injection (BPI), a new Spectre v2 primitive that injects
arbitrary branch predictions tagged with kernel privilege from
user mode. Our end-to-end BPI exploit leaks arbitrary kernel
memory from up-to-date Linux systems across six generations
of Intel CPUs, at 5.6 KiB/s on Intel Raptor Cove.

1 Introduction

The most reliable countermeasures against Branch Target In-
jection (BTI) attacks (also known as Spectre v2) [8, 26, 28,
42, 43, 45] are enforced directly by processor microarchitec-
ture or microcode (i.e., hardware-enforced) [7, 18, 34]. These
hardware-enforced countermeasures operate on highly asyn-
chronous state inside the processor pipeline, resulting in a
fertile breeding ground for race conditions. This paper intro-
duces Branch Predictor Race Conditions (BPRC), a class of
branch predictor vulnerabilities resulting from race conditions
in recording asynchronous prediction feedback. BPRC vari-
ants evade hardware-enforced countermeasures on all recent
Intel CPUs which we showcase with an end-to-end exploit
that leaks arbitrary kernel memory on Intel Raptor Cove.

Hardware-enforced countermeasures. Hardware-enforced
BTI defenses may either restrict or invalidate exploitable

branch predictions. Indirect Branch Restricted Speculation
(IBRS) is a collective name for BTI defenses that restrict
newly learned indirect branch target predictions to the cur-
rent privilege domain, mitigating cross-privilege BTI attacks.
Legacy IBRS relies on slow, microcoded Model Specific Reg-
ister (MSR) writes on privilege domain transitions, gravely
impacting software performance [14]. Later processor gener-
ations provide enhanced/Automatic IBRS (eIBRS [18], Au-
toIBRS [34]) as the more efficient successor that remains
always-active after a single MSR write at boot-time, making
it the recommended option for operating systems and hyper-
visors. If the victim runs in the same privilege domain as the
attacker, a software-issued Indirect Branch Prediction Bar-
rier (IBPB) can instead invalidate predictions. While eIBRS
and AutoIBRS have certain specification-related shortcom-
ings [8, 38, 42, 45], they have so far been successful at enforc-
ing their basic policy that indirect branch predictions learned
in less privileged domains must be restricted from being used
in more privileged domains.

Branch Predictor Race Conditions (BPRC). To study
BPRC, we design experiments to determine when branch
predictions are inserted in the branch predictor and what privi-
lege domain restriction they take. We observe inconsistencies
in the privilege domain restriction held by newly inserted
indirect branch target predictions. In particular, we show that
indirect branch target resolution feedback is managed asyn-
chronously by the microarchitecture and is not synchronized
by, for example, dispatch serializing instructions, like lfence.
In fact, a delay occurs before feedback from a newly executed
indirect branch is made available for future predictions of
the same branch. Following this observation, we find that
privilege domain transitions may occur before new predic-
tions are inserted in the branch predictor and that such pre-
dictions may consequently associate with the wrong privilege
domain on Intel CPUs. These results surface two concrete
variants of BPRC on Intel eIBRS-enabled CPUs, which we
call BPRCU→K and BPRCG→H : injecting branch target pre-
dictions from user mode into the kernel and from the guest

into the hypervisor, respectively. We further investigate IBPB
and find a third variant called BPRCIBPB: injecting targets
that remain valid after an IBPB. Our analysis also shows that
BPRC is not newly introduced. In fact, the vulnerability is
present across at least six different generations of Intel proces-
sor microarchitectures since Spectre v2 hardware mitigations
were first introduced.

Branch Privilege Injection (BPI). To investigate the condi-
tions under which BPRCU→K becomes exploitable, we design
further reverse engineering experiments that show the predic-
tions that are inserted in the Branch Target Buffer (BTB) (as
opposed to the Indirect Branch Predictor (IBP) [28]) are the
ones that take the incorrect privilege. We use this insight
to craft Branch Privilege Injection (BPI), a new BTI primi-
tive that allows an attacker to inject a branch prediction into
a more privileged domain with high precision. Demonstrat-
ing BPI in a realistic setting, we construct an end-to-end
exploit on Intel Raptor Cove that leaks arbitrary memory on
Linux at 5.6 KiB/s with 99.8 % accuracy. To mitigate BPRC,
we propose two directions: eliminating exploitable branches
and preventing harmful indirect branch prediction via model-
specific speculation controls. To eliminate exploitable indirect
branches and returns, we suggest Retpoline [39] combined
with disabling of alternate return target prediction in super-
visor mode [20]. We measure an overhead of up to 3.1 %
and 8.3 % with UnixBench and lmbench, respectively. For
preventing harmful indirect branch prediction, we propose de-
activating all indirect branch predictions in supervisor mode.
While only supported on newer processors, this approach re-
sults in a lower overhead of up to 1.7 % in UnixBench and
6.4 % in lmbench. Furthermore, Intel provided us with a mi-
crocode patch to mitigate this issue which we also evaluate.

Contributions. In summary, our contributions are:

• We introduce BPRC, a new class of microarchitectural
vulnerabilities where asynchronous branch predictor up-
dates race against other operations, like privilege domain
transitions and prediction invalidation.

• We demonstrate three concrete variants of BPRC on Intel
CPUs with eIBRS protection where we bypass user-to-
kernel (BPRCU→K), guest-to-hypervisor (BPRCG→H),
and IBPB (BPRCIBPB) security boundaries.

• Leveraging BPRCU→K , we introduce BPI, a new BTI
primitive that can inject indirect branch target predic-
tions tagged with a privileged domain from an unprivi-
leged process. Our example end-to-end exploit based on
BPI can leak hashes from / etc /shadow on Intel’s recent
Raptor Cove microarchitecture within 21 s.

• We evaluate two mitigation directions combining soft-
ware defenses with model-specific speculation controls
for addressing BPRC.

Responsible disclosure. We disclosed BPRC to Intel PSIRT
in September 2024 and provided proof-of-concept code upon
request. They confirmed that we are the first to report BPRC
and assigned it CVE-2024-45332. Intel stated that a mi-
crocode update is required for full mitigation of the is-
sue. To provide sufficient time to develop and test the mi-
crocode update, our findings were held under embargo un-
til May 13, 2025. We also informed AMD and ARM who
agree with our assessment that their processors appear not
to be affected by BPRC. Additional information, including
the source code for all the experiments, can be found at
https://comsec.ethz.ch/bprc.

2 Background

We provide background on branch prediction, branch target
injection attacks and relevant mitigations required to better
understand this work.

2.1 Indirect branch prediction

In the ubiquitous x86 architecture, indirect branches are
control-flow instructions that receive their branch target ad-
dress from either a register or memory operand. The address
of the branching instruction itself is the branch source address.
Throughout program execution, as new branches and branch-
ing patterns are encountered, a Branch Prediction Unit (BPU)
learns about their outcomes. Over time, the BPU gains in-
creasingly refined understanding of the control flow of the pro-
gram and can provide accurate predictions of future control
flows, allowing better processor utilization. Processors em-
ploy both static and dynamic predictions for indirect branches.
Static predictions are based on the Instruction Pointer (IP)
of the branch source (i.e., IP-based), whereas dynamic pre-
dictions are additionally based on the path-history preceding
the branch source (i.e., path-based) [44]. On Intel, as shown
in Figure 1, IP-based predictions are served from the BTB,
whereas path-based predictions are served from the IBP [28].
Branch-history is recorded in a Branch History Buffer (BHB).
Similarly, AMD processors serve static predictions from a
BTB and dynamic predictions from an Indirect Target Ar-
ray (ITA) [3].

BTB. The Branch Target Buffer (BTB) is a set-associative
structure, where the branch source maps to a particular BTB
set and tag. On the recent Intel Golden and Raptor Cove mi-
croarchitectures, set and tag is derived from the lower 24 bits
of the branch source [26, 28]. On AMD and Intel microar-
chitectures before Golden Cove, also higher bits are used to
derive a BTB index [12, 45]. Because the majority of branch
targets are near their respective branch sources, storing the
full branch target address is redundant with 48-bit (even 57-
bit on servers) virtual address spaces. In fact, the x86-64 ISA
specifies at most a signed 32-bit displacement operand for

https://comsec.ethz.ch/bprc

BTB IBP

BHB

BPU logic new IP

IP
BPU

Figure 1: Branch prediction involving an IP-based (BTB) pre-
dictor and a path-based (IBP) predictor using branch history
(BHB).

direct branch instructions. Hence, BTBs typically only store
the lower portion of the branch target [48]. Besides the target,
the BTB also stores other information, including branch type
information [45]. Based on this type, the branch predictor
decides whether an IBP-lookup should be performed for a
dynamic prediction [28].

IBP. Unlike the BTB, the Indirect Branch Predictor (IBP)
manages predictions for indirect branches with multiple tar-
gets. To predict the correct target, IBP uses branch his-
tory [28]. Intel CPUs records this branch history in the Branch
History Buffer (BHB), and it is likely that AMD processors
use a similar structure for their ITA-based predictions. The
BHB is a shift-register that records a footprint of recently
taken branches. This footprint consists of a few bits of in-
formation from each recorded branch source and branch tar-
get address. The IBP is an ITTAGE-like predictor, where
predictions may correlate with an increasingly larger BHB
footprint [37]. On Intel Golden Cove and Raptor Cove mi-
croarchitectures, a prediction may correlate with the last 34,
66 and 194 branches [28]. A hit in the IBP takes precedence
over the BTB and provides a full 48-bit target address.

RSBA. Return target predictions are provided from a ded-
icated Return Stack Buffer (RSB). The RSB has a limited
size and after sufficient return instructions it becomes empty.
This condition is called RSB underflow, at which point return
instructions may be predicted like indirect branches [43]. The
Intel-specific behavior is known as Return Stack Buffer Alter-
nate (RSBA). Although such behavior is not present on AMD
processors [44], it is unclear whether ARM microarchitec-
tures feature it. While new RSB predictions are added on call
instructions, BTB and IBP predictions for return instructions
need to be added on mispredicted return instructions.

2.2 BTI attacks

Branch Target Injection (BTI) is a class of transient execution
attacks that aims to control the predicted target address of an
indirect branch to leak information [26]. The attacker diverts
the speculative control flow by controlling the predicted target
from a speculation gadget, pointing it to a disclosure gadget

that accesses secrets in the victim domain and transmits them
to the attacker via a side channel. The speculation gadget,
residing in the victim domain, contains a victim branch that
the attacker influences through a BTI primitive. If the victim
domain is different from the attacker’s, the BTI procedure
involves a training branch that resides in the domain of the
attacker at an address that maps to the same BTB set and
tag as the victim branch, imposing aliasing [13]. Moreover,
BTI primitives sometimes involve priming the BHB into the
same state as it will be in upon execution of the victim branch.
Advanced BTI primitives include exploitation of Branch Type
Confusion (BTC) [2,43], nested phantom speculation [38,45],
and use of speculative dispatch gadgets [42].

2.3 Spectre defenses

Since the dawn of BTI attacks, a wide variety of hardware and
software defenses have been introduced. We divide hardware
defenses into three categories: (1) restriction of branch pre-
dictions to a certain privilege domain; (2) sanitization of parts
of the branch prediction state; and (3) supplementary specula-
tion controls to limit, disable, or reconfigure specific branch
prediction features. If hardware defenses are not applicable
or otherwise unfeasible, software defenses are employed.

Restriction. Indirect Branch Restricted Speculation (IBRS)
is a BTI mitigation that restricts indirect branch target predic-
tions to certain privilege domains. Branch target predictions
learned in less privileged domains (e.g., user, guest kernel)
may not be used in more privileged domains (e.g., super-
visor, hypervisor). The original, now-legacy, IBRS mitiga-
tion requires software to write to a model-specific specula-
tion control register on every privilege transition [24]. Mod-
ern Intel, AMD and ARM processors offer enhanced IBRS
(eIBRS) [18], AutoIBRS [34], and CSV2 [7], respectively, to
restrict predictions transparently, without such Model-Specific
Register (MSR) writes. For eIBRS/AutoIBRS/CSV2 to re-
strict predictions correctly, knowledge of the current privi-
lege domain is necessary — both when forwarding predic-
tions and when learning about new ones. If branch predictors
are updated asynchronously to the instruction stream, it is
paramount that they track the privilege domain that these
updates originate from.

Sanitization. Sanitization of branch prediction via Indirect
Branch Prediction Barrier (IBPB) [1, 17] is recommended
in scenarios where restrictions do not suffice, such as when
distrusting contexts execute under the same privilege do-
main. Such contexts include distrusting user programs and
distrusting guest virtual machines. IBPB invalidates all indi-
rect branch target predictions in the BTB and IBP such that no
instruction after the barrier will use predictions learned by in-
structions before the barrier. Because of its high performance
penalty, IBPB is often used only as a last resort [28, 38, 44].

Supplementary speculation controls. In many cases, re-
searchers have demonstrated attacks that exploit overlooked
properties of branch prediction restriction [8,42,43] and isola-
tion [38]. To mitigate many of these, vendors expose new spec-
ulation controls to tweak specific microarchitectural behav-
iors. For example, to mitigate Branch History Injection (BHI)
attacks [8, 42], Intel introduced a new speculation control
BHI_DIS_S. When toggled on, the mitigation guarantees that
privileged domains will not use less privileged history for indi-
rect branch predictions in supervisor mode [20]. Complemen-
tary speculation controls include RRSBA_DIS_S to disable
RSBA speculation in supervisor mode and IPRED_DIS_S to
disable indirect branch prediction in supervisor mode alto-
gether.

Other vendors have introduced similar controls that limit,
disable, or reconfigure microarchitectural features in response
to advanced BTI attacks (e.g., AMD [2,5]). Exactly what spec-
ulation controls, such as BHI_DIS_S, do at a microarchitec-
tural level is undisclosed. To assess their security properties,
we must carry out our own reverse engineering.

Software defenses. Software defenses provide an alterna-
tive if hardware mitigations are unavailable [2, 39] or too
costly [14]. Speculation can be inhibited using the lfence in-
struction thanks to its instruction-stream serializing semantics,
effectively forcing ongoing operations to complete before dis-
patching any following operations for execute (i.e., dispatch
serializing) [4, 19]. Predictors can also be sanitized with soft-
ware constructs, for example RSB stuffing [14, 21, 22] and
untrain procedures [2, 33]. Susceptible branches can be re-
duced or eliminated [2, 6, 16, 33, 39]. Retpoline [39] has been
particularly effective against BTI attacks by eliminating in-
direct branches but incurs a performance overhead due to
forced mispredictions. Additionally, defense in depth strate-
gies like Supervisor-Mode Execution Prevention (SMEP)
and Supervisor-Mode Access Prevention (SMAP) can be em-
ployed to restrict supervisor interaction with user pages [22].

3 Threat Model

We assume a local attacker with unprivileged code execution
capabilities on a machine running an up-to-date Linux kernel
on top of Ubuntu 24.04 with all the latest security updates
and mitigations against CPU vulnerabilities (version 6.8.0-47-
generic at the time of this writing). The aim of the attacker is
to leak arbitrary privileged memory by hijacking the specula-
tive control flow despite deployed hardware mitigations such
as eIBRS, AutoIBRS and CSV2 on Intel, AMD and ARM
CPUs. Similar to recent cross-privilege transient execution
attacks [8, 38, 43], we assume that the attacker analyzes the
target kernel in a preliminary offline stage to find suitable
gadgets for their attack.

4 Overview

If supported by the processor, operating systems enable
eIBRS or AutoIBRS to mitigate cross-privilege BTI at-
tacks [19,34]. These mitigations need to keep track of the priv-
ilege domain of branch instructions to work correctly, which
is non-trivial due to the highly complex and asynchronous
nature of branch prediction. For example, previous work has
shown that branch predictions are updated before branches
retire, and in certain cases even before they are decoded [38].
Our first challenge revolves around analyzing the behavior of
restricted branch prediction under race conditions.

Challenge (C1). Exploring the behavior of branch pre-
dictors under race conditions.

In Section 5, we demonstrate that while branch prediction
entries are sometimes created early [38], they are in many
cases inserted in the branch predictor after the branches have
retired. Upon further analysis, it turns out that the branch
predictor also operates asynchronously despite synchroniz-
ing instructions. As such, branch predictions are added under
asynchronous conditions, relying on state of past branch in-
structions, such as the privilege under which these branch
instructions were executed. To investigate whether this state
is correctly reflected under restricted branch speculation, we
then trigger updates of branch predictions, specifically af-
ter privilege domain transitions. We find that when branch
training involves a privilege switch, the injected target is occa-
sionally associated with the wrong privilege domain in Intel
CPUs. We refer to the class of effects caused by the asyn-
chronous operation of the BPU as Branch Predictor Race Con-
ditions (BPRC). Our variant analysis of BPRC demonstrates
three variants which bypass the user-to-kernel (BPRCU→K),
guest-to-hypervisor (BPRCG→H) and IBPB (BPRCIBPB) se-
curity boundaries, respectively.

BPRCU→K and BPRCG→H suggest that eIBRS is not ca-
pable of enforcing its specified security guarantees. Our next
challenge involves understanding the exact conditions under
which we can control the privilege of a branch prediction
entry for creating an exploitation primitive.

Challenge (C2). Understanding the conditions under
which the observed security violations of eIBRS become
exploitable.

In Section 6, we provide a new technique to discern BTB-
and IBP-based branch predictions from one-another, even-
tually enabling us to pinpoint the BTB as the culprit of
BPRCU→K . This allows us to create a new primitive, called
Branch Privilege Injection (BPI), which provides control over
the associated privilege of indirect branch predictions. BPI
resurrects the entire class of cross-privilege BTI attacks that
were deemed dead since the inception of eIBRS.

Table 1: Evaluated Microarchitectures

Vendor CPU Year Codename Code Microarch. Microcode

Intel

Core i7-14700K 2023 Raptor Lake Refresh RPL-R Raptor Cove, Gracemont 0x129
Xeon Silver 4510 2023 Sapphire Rapids SPR Golden Cove 0x2b000590
Core i7-13700K 2022 Raptor Lake RPL Raptor Cove, Gracemont 0x129
Core i7-12700K 2021 Alder Lake ADL Golden Cove, Gracemont 0x037
Core i7-11700K 2021 Rocket Lake RKL Cypress Cove 0x59
Core i7-10700K 2019 Comet Lake CML Skylake 0xfc
Core i9-9900K 2018 Coffee Lake Refresh CFL-R Skylake 0x100

AMD
Ryzen 9 9900X 2024 Granite Ridge – Zen 5 0xb40401c
Ryzen 7 7700X 2022 Raphael – Zen 4 0xa601203

ARM
Google Tensor 2021 Whitechapel – Cortex-X1 –
Google Tensor 2021 Whitechapel – Cortex-A76 –

To demonstrate exploitation using BPI, we employ it
against an indirect branch in kernel as an unprivileged at-
tacker. However, our BPI primitive is ineffective if the victim
branch is not served from the BTB. Hence, our next challenge
is to extend our BPI primitive with an IBP-eviction primitive,
to enable the repeated use of the vulnerable BTB.

Challenge (C3). Making our BPI primitive repeatable in
the presence of current mitigations.

In Section 7, we investigate how MSR-provided specula-
tion controls interact with BPI and find that Intel’s new on-by-
default BHI speculation control, BHI_DIS_S, improves the
reliability of BPI. We find that this is because BHI_DIS_S
disables the BHB-based IBP in the kernel entirely. We further
demonstrate the impact of BPI by building an end-to-end ex-
ploit that leaks arbitrary memory from a recent Linux kernel
despite all state-of-the-art defenses against transient execu-
tion attacks. In summary, we demonstrate how an ineffective
hardware defense mechanism has devastating impact on the
security of modern computer systems.

5 Branch Predictor Race Conditions

In this section, we study the behavior of indirect branches
in relation to privilege domain transitions on a variety of
microarchitectures with restricted speculation defenses. We
first try to understand the asynchronous nature of branch
predictor updates (Section 5.1) before experimenting with
privilege transitions during asynchronous branch prediction
updates (Section 5.2). In Section 5.3 we then present two
additional variants of branch predictor race conditions.

Methodology. Table 1 lists all microarchitectures evaluated
in this work. The recent Intel desktop processors feature two
microarchitectures in a single CPU, one optimized for pro-

cessing power (Golden Cove, Raptor Cove) and one providing
low energy consumption (Gracemont). In our microarchitec-
tural experiments we employ a kernel module to run arbitrary
user-mode code with supervisor privileges. We further disable
SMEP and SMAP which allows us to run the exact same code
(history, branches) in different privilege domain. Experiments
using the caches as side channel provide the branch target
of tested control flow instructions from an uncached mem-
ory pointer. This lengthens the speculation window, resulting
in clearer results. To test returns, we use an RSB underflow
snippet as shown in Listing 1 to force RSBA predictions. The
final attack in Section 7 does not require any modifications to
the kernel and runs with all the default mitigations enabled.

1 %rep 32
2 lea r8, qword ptr [rip + 0x3]
3 push r8
4 ret
5 %endrep

Listing 1: Assembly to trigger an RSB underflow condition
by repeatedly executing returns without a matching call.

5.1 Asynchronous branch predictor updates
There are two aspects that are interesting when considering
branch prediction updates: (i) when the branch prediction is
first created and (ii) when it is inserted in the branch predictor
and consequently made available to future branch instructions.
Previous work shows that branch predictions can be created
before branch instructions retire, even before instruction de-
code is done [38]. Creating branch predictions early is par-
ticularly beneficial for complex branch predictors with long
update latency, since the refined prediction can be used sooner.
The second aspect, however, has not been previously studied.

1.0

1.5

2.0

av
g

m
isp

.

Raptor Cove (RPL-R) Golden Cove (SPR) Raptor Cove (RPL) Gracemont (RPL)

1.0

1.5

2.0

av
g

m
isp

.

Golden Cove (ADL) Cypress Cove (RKL) Skylake (CML) Skylake (CFL-R)

0 256 512 768 1024
of NOP instructions

1.0

1.5

2.0

av
g

m
isp

.

Zen 5

0 256 512 768 1024
of NOP instructions

Zen 4

0 256 512 768 1024
of NOP instructions

Cortex-A76

0 256 512 768 1024
of NOP instructions

Cortex-X1

jump* (-0.03) call* (+0.0) ret (+0.03)

Figure 2: Average number of mispredictions (N=100 K) when executing the same branch twice with d NOPs of delay. The data
points are shifted according to their label to improve visibility.

B1 B2d x NOP

t1 t2t0

lfence

updatemiss

Time

B1 B2d x NOP lfence

resolveBPU

Inst. (d=1)

Inst. (d=n)

Figure 3: Branch prediction update timeline for the same
branching instruction executed twice (B1, B2) with short (d =
1) to long (d = n) delay.

In particular, if a branch misprediction occurs, how long does
it take before the correct prediction can be used for future
occurrences of the same branch? Indeed, hardware designs of
branch predictors report multiple cycles of update latency for
new branch predictions [9].

As shown in Figure 3, we aim to detect the latency between
the resolution of a branch instruction and the use of its pre-
diction feedback in subsequent predictions. We execute the
same branch instruction twice (B1, B2) with a variable delay
d in-between, composed of NOP instructions and a dispatch-
serializing lfence. By randomizing the branch source and
target, the first execution of the branch (B1) is set to mispre-
dict. The execution is stalled until t1, where the target of B1 is
resolved, resulting in the BPU adding a new prediction which
becomes available at time t2. The second execution of the

branch (B2) is delayed by d NOP instructions. If d is large
enough (i.e. B2 occurs after t2), B2 will be correctly predicted
with the prediction learned from B1.

We repeat the experiment 100 K times for each d ∈
{1,2,3, . . . ,1023}, for indirect jump (jmp*), indirect call
(call*) and RSBA-predicted return (ret). We measure
the average number of mispredictions by sampling per-
formance counters for the respective instruction. We
use br_misp_retired.all_branches, br_misp_retired.indirect
and br_misp_retired.ret on Intel, ex_ret_brn_ind_misp and
ex_ret_near_ret_misp on AMD, and br_mis_pred_retired on
ARM. As an optional preliminary step, we warm up the in-
struction cache by executing the experiment code. While this
improves the results on most Intel microarchitectures, we omit
this step on Gracemont, ARM, and AMD microarchitectures,
where this step negatively impacts the results.

In Figure 2, we plot the delay (d) against the average num-
ber of mispredictions for both branches (B1 and B2). We ex-
pect all modern processors to be able to predict B2 given B1,
which would appear as an average of 1 misprediction in the
graph as B1 cannot be predicted correctly. However, without
adding any delay between the two branches (i.e., d = 0), we
observe up to an average of 2 mispredictions from B2 on Intel.
With increasing delay, the number of mispredictions reduces
drastically, suggesting that an update latency of branch tar-
get predictions exists. Returns are omitted in the results on
Comet Lake and Coffee Lake Refresh, as they do not support
br_misp_retired.ret. Gracemont, Cypress Cove, Zen 4 and

BHB setup

syscall

jmp rax

load(rbx) lfence

1 2

Architectural

Transient
time(D2)

A: jmp B
 ...
B: jmp C
 ...

rbx = D1 rbx = D2

rax = signal rax = test

user kernel

signal test

Figure 4: (1) Training of an indirect branch to a cache-
signaling gadget, followed by a privilege domain change. (2)
Executing the same branch again, but with a different target.
D1 and D2 are distinct memory addresses.

Zen 5 have no RSBA predictor, resulting in 2 mispredictions
on returns.

We emphasize that B1 has retired before B2 occurs, and
that predictor updates delay until far after dispatch serializing
instructions complete, by using d times lfence instructions
instead of NOPs. This reduces the d, but still shows delayed
updates. The same is true for other instructions that are known
to flush the execution pipeline, like cpuid, or instructions that
take hundreds of cycles like pause instructions. This means
that B1 is fully completed before B2 executes and suggests
branch prediction update latencies of hundreds of cycles. We
call this Intel feature Asynchronous Branch Predictor Updates
(ABPU).

Observation (O1). Branch predictions on Intel are in-
serted after respective branch instructions retire and are
independent of dispatch serializing instructions.

Negative Results. On the evaluated AMD and ARM proces-
sors, we do not find observable ABPU. While Zen 5 does
experience a distinct pattern of mispredictions, emerging with
an increasing number of NOPs, there are no mispredictions for
small d. For Zen 4, we need to take care of additional align-
ment to ensure correct BTB aliasing. In particular, we need to
take the target and type of the preceding branch into account
in addition to the source of a branch. Hence, we narrow down
our scope to Intel parts, which is where we observe ABPU.

5.2 Restricted speculation analysis

As we have seen on Intel processors, branch predictor updates
may occur after branch instructions have completed, and that
these updates are unordered with respect to dispatch serializ-
ing instructions. This observation begs the question whether

Table 2: Percentage of jump locations where a gadget hit was
observed despite eIBRS.

Microarchitecture jump* call* ret noise
Raptor Cove (RPL-R) 81.1% 79.5% 90.7% 0.0%
Gracemont (RPL-R) 5.2% 7.5% 0.0% 0.0%
Golden Cove (SPR) 99.6% 98.0% 99.1% 0.0%
Raptor Cove (RPL) 79.9% 78.7% 87.6% 0.0%
Gracemont (RPL) 5.0% 9.0% 0.0% 0.0%
Golden Cove (ADL) 61.6% 63.2% 87.7% 0.0%
Gracemont (ADL) 27.8% 1.1% a0.2% 0.2%
Cypress Cove (RKL) 3.1% 0.5% 0.0% 0.0%
Skylake (CML) 3.1% 4.0% 0.0% 0.0%
Skylake (CFL-R) 2.7% 3.3% 0.0% 0.0%
a indistinguishable from noise

new predictions staged for insertion maintain all their respec-
tive state, or if supplementary state is gathered as the predic-
tion is inserted. In particular, restricted speculation schemes
(i.e., eIBRS, AutoIBRS and CSV2) depend on the privilege
domain that predictions should be restricted to. Hence, if the
privilege domain at branch instruction retirement time does
not match the privilege domain at prediction insertion time,
and privilege domain state is gathered at insertion time, a
possibility of inserting predictions with incorrect privilege
domain emerges. In particular, since dispatch serializing in-
structions do not wait for predictor updates to complete, we
hypothesize that such is not the case for privilege-domain
changing instructions (e.g., syscall) either.

Investigating this hypothesis, we propose an experiment
where the same branch instruction is executed under different
privilege domains, as illustrated in Figure 4. In (1), we exe-
cute a branch in user mode with a cache-signaling gadget as
target, thereby training the branch predictor. This gadget emits
an observable register-dependent cache signal if this target
ever executes again transiently. After the branch, we trigger
a privilege-domain transition to supervisor mode using the
syscall instruction. From supervisor mode, the branch is
executed again (2) but now with a different target that checks
for the cache signal. Thanks to disabled SMEP, we can run
the exact same instructions as during training. We use a BHB
setup sequence to provide a matching history for both exe-
cutions of the branch such that the BTB or IBP can provide
the target. We run the experiment with the branch config-
ured as an indirect jump (jmp*), indirect call (call*), and
RSBA-predicted return (ret) [18]. For each configuration,
we run the experiment 100 K times, each time randomizing
the locations of the branch and the cache-signaling gadget.
The primitive is repeated 8 times in succession during each
run to warm up all involved microarchitectural components.

The results are presented in Table 2, where for each mi-
croarchitecture and tested branch instruction, we state the

percentage of runs with at least one cache hit from executing
the branch in supervisor mode. We also report the baseline
noise of our cache gadget as the number of hits on a memory
location that was not the one accessed during speculation. On
all Intel parts supporting eIBRS, we observe a cache signal
above the noise for at least two of the three branch instruc-
tions. Because training in user mode should not result in a
cache signal from executing the branch again in supervisor
mode, these observed mispredictions are a clear violation of
the eIBRS security guarantees.

Observation (O2). Intel eIBRS fails to correctly restrict
branch target predictions originating right before a privi-
lege domain change.

The observed security violations constitute an instance
of the novel class of vulnerabilities which we term Branch
Predictor Race Conditions (BPRC).

5.3 BPRC variants
We refer to instances of BPRC by the boundary which they
are violating, i.e. BPRCU→K for the user-to-kernel violation
from Section 5.2. We proceed to analyze additional instances
of BPRC that violate security boundaries. In particular, we are
considering the guest-to-hypervisor (BPRCG→H) and IBPB
(BPRCIBPB) boundaries in this section. We provide a sum-
mary of results here while leaving detailed results in Section 8.

BPRCG→H . To test for BPRCG→H , we port the experiment
from Section 5.2 to the Linux KVM selftest framework where
we have a lot of control over guest and host memory place-
ment. The BPRCG→H boundary, called VMExit, can occur
explicitly due to guest instructions like vmcall or implicitly,
for example due to hypervisor-intercepted instructions like
cpuid, or guest physical page faults.

We replace the syscall with a VMExit using either a
vmcall instruction, a cpuid instruction or by having the
branch target guest physical page unmapped. By again look-
ing for cache gadget hits, we find that BPRCG→H affects all
evaluated Intel microarchitectures, except for Gracemont.

BPRCIBPB. We evaluate BPRCIBPB again in a way similar
to Section 5.2 by replacing syscall with an IBPB MSR
write. As this MSR write is restricted to supervisor mode, the
experiment has to run in the kernel using a kernel module. It
turns out that even the IBPB, which is an explicit barrier, is
not always synchronized with the BPU updates. While IBPB
appears to be synchronized on the Gracemont, we can cause
a race condition on all other Intel microarchitectures. Thus,
IBPB, which is an expensive last resort mitigation, fails to
protect against BPRC.

Observation (O3). In addition to BPRCU→K , Intel is
also affected by at least BPRCG→H and BPRCIBPB.

P1

P2

X

X

training

victim

P1 Y

P2 Y

IBP

BTB

32-bit24-bit16-bit

source address target address

16-bit

training

architectural transient

Figure 5: Discerning IBP from BTB predictions. With distinct
upper 16 bits of the training and victim branch sources, the
two predictors produce distinct predictions from the victim
branch source.

Next, we find the conditions under which BPRCU→K be-
comes exploitable. We leave the exploitation of BPRCG→H
and BPRCIBPB to future work.

6 Branch Privilege Injection

In Section 5, we found a security violation in eIBRS related to
privilege transitions. In this section, we construct a new prim-
itive, called Branch Privilege Injection (BPI), for exploiting
BPRCU→K .

6.1 Discerning between predictors
To accurately inject privileged predictions, we need to under-
stand which predictors are providing branch targets when they
should not. Differences in the BTB and IBP can be exploited
to trace back a prediction to its source predictor. The BTB
only provides a partial target address, whereas the IBP pro-
vides a full target address. Figure 5 illustrates how we exploit
this property to discern between BTB and IBP predictions on
Intel CPUs:

1. The training source and training target addresses share
the same upper 16 bits (P1), thereby enabling creation of
both a BTB entry and an IBP entry.

2. Assigning the victim branch source an address match-
ing the lower 24 bits of the training branch source (X)
causes aliasing in the BTB, and assuming same preced-
ing branch histories, also in the IBP [28].

3. With non-matching upper 16 bits for the victim branch
source (P2) and training branch source (P1), a BTB-based
prediction at the victim branch produces a branch target
different from the IBP-based target.

For the IBP, the target becomes the concatenation P1 ∥ Y , and
for the BTB, the target becomes P2 ∥ Y . With this procedure,
we can detect whether a mispredicted target used the BTB or
the IBP by assigning the two possible branch targets (P1 ∥ Y
and P2 ∥ Y) with different cache-signaling gadgets. On Intel

Hr
E1

E2

B1

Hs

Hs

Hs

load(DIBP)

BTB

IBP

architectural transient

@P1∥X

B2 load(DBTB)

@P1∥Y

@P2∥X @P2∥Y

load(DBTB) @P2∥Y

load(DIBP) @P1∥YB1 @P1∥X

B2 @P2∥X

Figure 6: Two experiments to detect single-target branch
insertion policy for the BTB and IBP on Intel CPUs. Hr and
Hs are two different branch histories.

processors pre Golden Cove, BTB addressing can involve
additional bits [12] but the approach still applies.

We run the two experiments (E1 and E2), illustrated in
Figure 6, to determine when a prediction is inserted in the
BTB and IBP. In both experiments, we first train a single-
target indirect branch B1 and then execute an aliasing indirect
branch B2. Using the technique introduced in this section, we
can detect which predictor provided the target prediction for
B2. In E1, we run B1 and B2 with different branch histories Hr
and Hs. This results in a miss in the IBP and causes a fallback
to the BTB. In E2, B1 and B2 both use Hs which results in a
prediction from the IBP. This means that both BTB and IBP
get updated when there is a branch misprediction, even for
single-target branches unlike what has been reported in [28].

Observation (O4). Upon misprediction, a new predic-
tion is inserted into the Intel BTB and the IBP.

Based on this observation and the ability to discern the
originating predictor, we can determine the culprit for BPRC.
Hence, we repeat the experiments from Section 5.2 with dif-
ferent cache-signaling gadgets for BTB and IBP prediction.
We find that the observed cache signals originate from BTB-
based mispredictions.

Observation (O5). All observed eIBRS security viola-
tions originate from the BTB.

Following this observation, the next section focuses exclu-
sively on the Intel BTB.

6.2 BPI breaking points

The further improve our understanding of BPI, we attempt to
find breaking points in BPRCU→K by inserting delays either
during or after training the branch predictor. First, we want to
test the hypothesis that there is a temporal proximity depen-
dency between the privilege transition of the syscall and
training branch, analogous to the delay derived in Section 5.1.

B1 d x NOP syscall
B2

B2

H1

H2

H2

U

K

training victim

Figure 7: Experimental setup to determine in which privilege
domain a branch target is available for a given delay d.

0 64 128 192 256 320 384 448 512
of NOP instructions delay

0%

25%

50%

75%

100%

ga
dg

et
 h

it
ra

te

Raptor Cove (RPL)

kernel user

Figure 8: Evaluation of what privilege domain restriction a
newly trained jmp* prediction gets associated with in relation
to the delay of a following syscall. The syscall forms
a key-component of the BPI primitive and needs to happen
within a time-window given by 300–400 NOPs.

Second, while we hypothesize that BPI results in incorrect
privilege domain associated with a BTB prediction, we want
to ensure that the violation is not of transient nature and not
only exploitable during a short time window.

We proceed with an in-depth analysis of the experiment
from Section 5.2 that resulted in BPRC (Figure 4). We modify
the experiment to match Figure 7, where training and victim
branch executions are separated into two independent proce-
dures. The training (B1) and victim (B2) branches now reside
at two different addresses that alias in the BTB, with B1 and
B2 in the address ranges of user mode and kernel mode, re-
spectively. To avoid IBP hits, we randomize two different
branch histories (H1, H2) before B1 and B2. To evaluate the
timing dependency of the training procedure, between B1 and
the syscall, we use a controllable delay of d NOPs between
them. For each d ∈ {0,1,2, . . . ,512}, we run the training pro-
cedure and then test the prediction of B2 under user (U) or
kernel (K) mode. After training, we always return to user
mode before executing B2. This experiment allows us to de-
tect whether the prediction learned from B1 gets restricted
to user mode or kernel mode for a given d. To avoid cache
misses and other factors that may impair the experiment, as a
preliminary warm up step, we first run the experiment without
taking any measurements.

We show the results for jmp* on Raptor Cove in Figure 8,
but a similar effect emerges on all susceptible microarchitec-
tures. The results expose a correlation between the delay of

5 10 15
repetition

0%

25%

50%

75%

100%

ga
dg

et
 h

it
ra

te

eIBRS

5 10 15
repetition

eIBRS + BHI_DIS_S

Raptor Cove (RPL) Golden Cove (ADL)

Figure 9: Leak primitive success rate over successive repeti-
tions for jmp* instructions with and without the BHI_DIS_S
mitigation.

the training syscall instruction and the privilege domain a
prediction gets associated with. As such, the syscall follow-
ing B1 is a key-component of our BPI primitive, dependent on
the temporal proximity between the two. This does not pose
an issue for attackers since this delay is under their control.

Once the corrupted prediction is learned, no timing depen-
dence between B1 and B2 exists. The prediction is persisted
in the BTB until it is overwritten or evicted.

Observation (O6). The eIBRS violation is independent
of the temporal proximity between the training and vic-
tim branches.

Evidently, we are observing inconsistent privilege domain
restrictions associated with branch predictions that occur in
temporal proximity to privilege transitions. These predictions
are persisted in the BTB indefinitely, until they are evicted
or overwritten. Hence, we have acquired an in-depth under-
standing of the constraints associated with BPI, which is a
first-of-its-kind primitive to exploit BPRCU→K .

7 Practical Exploitation with BPI

To demonstrate the impact of the BPI primitive, introduced in
Section 6, we build an arbitrary kernel memory leak exploit.
The default Ubuntu 24.04 kernel version at the time of writing
is 6.8.0-47-generic, and we leave all the default security miti-
gations enabled. To leak arbitrary memory from the kernel,
we overcome the following four challenges.

1. Achieve a repeatable BPI primitive (Section 7.1).
2. Inject a kernel branch target (Section 7.2).
3. Find speculation and disclosure gadgets (Section 7.3).
4. Break KASLR (Section 7.4).

Similar types of user-to-kernel exploits have been described
in prior work [8, 38, 42, 43].

Table 3: IBP misprediction percentage for the eighth execu-
tion of kernel branches with and without BHI_DIS_S. Grace-
mont does not support (RSBA) ret. Green signifies few mis-
predictions and red signifies only mispredictions.

Microarch.
No Mitigation BHI_DIS_S

jump* call* ret jump* call* ret
Raptor Cove (RPL-R) 0% 1% 1% 100% 100% 100%
Golden Cove (SPR) 0% 2% 1% 100% 100% 100%
Raptor Cove (RPL) 0% 0% 1% 100% 100% 100%
Gracemont (RPL) 1% 2% - 100% 100% -
Golden Cove (ADL) 0% 0% 1% 100% 100% 100%

7.1 Repeatable BPI

We need a repeatable and reliable injection primitive to
achieve high bandwidth. During the analysis of BPRCU→K
in Section 6.2, we assumed full control of branch history
at the victim branch. However, a speculation gadget in the
kernel will have multiple branches preceding it that we do
not control. In Figure 9-left, we show that with consistent
branch history, the success rate of BPI decreases over succes-
sive repetitions. To understand why, we recall that the BTB
only provides branch target predictions for indirect branches
if there is no hit in the IBP. If the BTB predicts an indirect
branch, and there is an IBP hit, the IBP-based prediction takes
precedence [28], regardless of the outcome of the BPI.

Since kernel branch history can be manipulated and ex-
ploited from user mode [8], the newly introduced on-by-
default BHI_DIS_S speculation control prevents user code
from controlling path-based branch target predictions in ker-
nel mode [20]. To avoid IBP hits in kernel mode, we reverse
engineer branch prediction behavior when BHI_DIS_S is set.
We execute the same branch with the same branch history
eight times in kernel mode and measure the misprediction rate
for the last execution. By placing the branch target > 4 GiB
from the branch source, we ensure only the IBP can provide
a prediction. Table 3 shows the misprediction percentage for
jmp*, call* and (RSBA) ret with and without BHI_DIS_S
set. Surprisingly, all branches mispredict with BHI_DIS_S
set, suggesting it disables the IBP in kernel mode entirely,
rather than only isolating or invalidating the BHB.

Observation (O7). BHI_DIS_S on Intel Golden Cove,
Raptor Cove and Gracemont cores disables path-based
indirect branch prediction (IBP) in kernel mode.

Figure 9-right presents the substantially improved repeata-
bility of BPI provided by BHI_DIS_S. An unprivileged at-
tacker cannot enable the mitigation themselves but Linux
enables it by default to prevent BHI attacks. This serves as a
reminder of how a mitigation against one attack can inadver-
tently improve the effectiveness of another.

7.2 Injecting a kernel branch target

Because of SMEP [23] (enabled by default), our cross-
privilege BTI exploit must inject a kernel target rather than
a user target into the BTB. Linux splits the address space
between user and kernel using the highest address bit, making
it non-trivial for an unprivileged attacker to inject a full kernel
target into the branch predictor by branching to it. However,
the BTB provides partial target addresses [28], so the attacker
only needs to branch to an address where the lower portion
matches the desired kernel target. The upper bits of the BTB
target are provided by the victim branch source, which will
be in the kernel address range. The technique follows the one
we used in Section 6.1 and Figure 5.

7.3 Gadgets

BTI attacks use a speculation gadget with a victim branch that
mis-speculates to a disclosure gadget to transmit secrets [43].
As BPI works for all types of indirect branches and RSBA-
predicted returns, the speculation gadget may use any of these
as victim branch. To transmit secrets with Flush+Reload [46],
the disclosure gadget accesses a reload buffer with a secret-
dependent offset. A reload buffer [40] is some arbitrary mem-
ory that is shared between the attacker and victim, acting as
a side-channel transmission medium. In this case the victim
(kernel) accesses the reload buffer through physmap which
maps the attacker’s user space reload buffer in kernel space.

Speculation gadget. The speculation gadget needs attacker-
controllable secret and reload buffer pointers at the victim
branch source. We can provide these from user mode as sys-
tem call arguments. Many system call handlers accept arbi-
trary 64-bit values as arguments (although the system call
might return an error code). Because returns are only vulner-
able under RSB underflow, we look for speculation gadgets
containing an indirect branch, where at least two registers are
controllable via system call arguments.

1 static long __keyctl_read_key(struct key *key,
char *buffer, size_t buflen)

2 {
3 long ret;
4
5 down_read(&key->sem);
6 ret = key_validate(key);
7 if (ret == 0)
8 ret = key->type->read(key, buffer, buflen);
9 up_read(&key->sem);

10 return ret;
11 }

Listing 2: Linux snippet of keyctl calling read. The caller
function gets inlined, resulting in registers r13 (buffer) and
r12 (buflen) under attacker control.

To find such speculation gadgets, we use a regular expres-
sion matching function-pointer calls (typically compiled to
indirect calls) in the source code. We then check if these calls
are reachable from system call handlers. Such is the case for
the keyctl system call, which leads to a function-pointer call
(victim branch) to the function read, shown in Listing 2. More-
over, the buffer and buflen arguments at the victim branch are
fully controllable via system call arguments and have been
assigned to r12 and r13. The chain of pointer dereferences,
necessary for the function-pointer call, is likely to produce a
long transient execution window of the disclosure gadget.

1 HUF_compress1X_usingCTable_internal_default:
2 ;...
3 movzx edx, byte ptr [r12]
4 mov rbx, qword ptr [r13 + rdx*8]
5 ;...

Listing 3: Disclosure gadget found in the Linux kernel in
HUF_compress1X_usingCTable_internal_default.

Disclosure gadget. The disclosure gadget needs to use the
two attacker-controlled registers to leak and transmit the se-
cret via Flush+Reload. For Flush+Reload, we need to consider
hardware prefetching, which may transparently fetch cache
lines before we can measure their access times, inhibiting the
side channel. An ideal disclosure gadget avoids prefetchers by
transmitting the secret by multiplying it by 4096 before using
it as the reload buffer offset, as most of prefetchers do not
operate across page boundaries [35]. While we were unable to
find an ideal gadget, Wikner and Razavi demonstrated that the
secret can instead be deduced by offsetting the reload buffer
pointer until the secret-dependent reload-buffer access lands
in a consecutive page [43]. Considering this technique, we
search for a disclosure gadget that dereferences one byte of
the first attacker-controlled register (secret pointer), offsets a
second attacker-controlled register (reload buffer) with this
byte, and dereferences the resulting address. A suitable disclo-
sure gadget is located in the Linux kernel ZSTD compression
code, shown in Listing 3.

7.4 Breaking KASLR

Kernel Address Space Layout Randomization (KASLR) ran-
domizes the base addresses of various kernel memory re-
gions [27]. The kernel image region includes our gadgets
and references to the other regions. With SMAP (enabled
by default), the kernel can only access the reload buffer via
the physmap memory region, which references all available
physical memory. Hence, by breaking KASLR, the attacker
derandomizes the kernel image and physmap regions and the
physmap offset of the reload buffer.

Table 4: Summary of the observed primitives for all evaluated platforms.

Vendor Microarch. Year Defense
Primitive

Exploitable
ABPUa BPRCU→K BPRCG→H BPRCIBPB Bypass Mitig.b

Intel

Raptor Cove (RPL-R) ✓ ✓ ✓ ✓ ✓

Gracemont (RPL-R)
2023 eIBRS

✓ ✓ ✗ ✗ ✓c ✓

Golden Cove (SPR) 2023 eIBRS ✓ ✓ ✓ ✓ ✓ ✓

Raptor Cove (RPL) ✓ ✓ ✓ ✓ ✓

Gracemont (RPL)
2022 eIBRS

✓ ✓ ✗ ✗ ✓c ✓

Golden Cove (ADL) ✓ ✓ ✓ ✓ ✓

Gracemont (ADL)
2021 eIBRS

✓ ✓ ✗ ✗ ✓c ✓

Cypress Cove (RKL) 2021 eIBRS ✓ ✓ ✓ ✓ –d ✓

Skylake (CML) 2019 eIBRS ✓ ✓ ✓ ✓ –d ✓

Skylake (CFL-R) 2018 eIBRS ✓ ✓ ✓ ✓ –d ✓

AMD
Zen 5 2024 AutoIBRS ✗ – – – – ✗

Zen 4 2022 AutoIBRS ✗ – – – – ✗

ARM
Cortex-X1 2021 CSV2 ✗ – – – – ✗

Cortex-A76 2021 CSV2 ✗ – – – – ✗
a Asynchronous Branch Predictor Updates; b BPI exploitable despite BHI_DIS_S; c mitigation reduces success rate; d mitigation unavailable

Kernel image. The kernel image base is randomized with 9
bits of entropy (i.e., bits [29,21]). As in previous work [12],
we use BTB collisions to derandomize its location. However,
recent Intel CPUs use insufficient BTB addressing bits (i.e.,
bits [23,0]) to recover the location using their exact technique
(Intel Haswell in [12] uses bits [30,0]). Instead, we recall that
BTB targets are 32 bits wide, and that transiently executed
branch instructions update the BTB [30, 38]. We can detect
these BTB updates, as they may overwrite branch predictions
from branches aliasing in the BTB (i.e., matching lower 24
bits). Hence, for all possible kernel image locations, we use
BPI on an indirect branch with a target that contains a second
branch. Only if we guess the correct kernel base, the second
branch executes and overwrites the prediction of an aliasing
branch that we allocate in user space. We detect whether the
prediction of our aliasing branch is still present in the BTB
using a cache gadget at the trained target of the branch.

1 acpi_ns_check_sorted_list.part.0.isra.0:
2 ;...
3 mov rax, qword ptr [r13 + 8]
4 mov rdx, qword ptr [rax + r12]
5 ;...

Listing 4: Disclosure gadget for loading a 64-bit secret, useful
to retrieve an address like the physmap base pointer and access
it at an offset.

Reload buffer. We now need a kernel pointer to the reload
buffer via physmap. The attacker maps the reload buffer to a
Transparent Huge Page (THP) (enabled by default in Ubuntu),
which reduces its possible locations by a factor of 512, since

THP forces it to a 2 MiB-aligned physmap offset. We will first
find the reload buffer physical address (i.e., its physmap off-
set), then derandomize the physmap base address, as in [43].

Since we have recovered the kernel image base, we
have a pointer to a pointer to physmap via the symbol
page_offset_base. We pass the address of this symbol in
(attacker-controllable) r13 to the disclosure gadget in List-
ing 4. The gadget loads a full 64-bit value in the first in-
struction (unlike Listing 3), allowing us to load the physmap
pointer from memory and combine it with another attacker-
controlled offset in r12. By controlling r12, we scan through
physmap for the physmap offset of the reload buffer. When
r12 matches this offset, it will emit a cache hit after executing
the gadget. Finally, we derandomize the physmap base by
testing all its possible locations (15 bits of entropy [27]), with
the reload buffer’s offset added to it, in r13 until we observe
a reload buffer cache hit.

8 Evaluation

We first evaluate the presence of BPRC variants and
if they can be exploited by BPI across a variety of
eIBRS/AutoIBRS/CSV2-enabled processors. Next, we evalu-
ate the KASLR exploit and the arbitrary memory leak prim-
itive. Finally, we evaluate our end-to-end exploit that leaks
/ etc /shadow to an unprivileged user, demonstrating the impact
of BPI. We run the exploits on an Intel Raptor Lake processor
with Ubuntu 24.04 and an up-to-date default kernel (version
6.8.0-47-generic at the time of writing).

Primitives. Table 4 summarizes the presence of BPRC vari-
ants for all evaluated systems. We found ABPU on all evalu-
ated Intel microarchitectures. All processors with ABPU (i.e.,

since the introduction of eIBRS) were vulnerable to BPRC
on the user-to-kernel, guest-to-hypervisor, and IBPB bound-
aries. Furthermore, the on-by-default BHI_DIS_S mitigation
on supported Intel CPUs did not prevent BPI. ARM and AMD
processors showed no indication of BPRC issues.

KASLR. We evaluated the KASLR derandomization median
time and accuracy over 1000 executions. Before each execu-
tion, we rebooted the system to re-randomize KASLR. We
derandomized the kernel image offset in 15ms with 98.4% ac-
curacy, and we found the reload buffer and physmap locations
after 21ms and 102ms, respectively, with 98.2% accuracy.

Leakage rate. For the arbitrary memory leak primitive, we
measured the median bandwidth and byte-accuracy over 1000
executions. We leaked a 1 MiB kernel-allocated buffer of
randomized data at 5.6 KiB/s with 99.8 % byte-accuracy.

End-to-end exploit. Our end-to-end exploit demonstrates the
impact of BPI by leaking the root password hash from / etc /
shadow as an unprivileged user. Because this file is normally
read during boot, it often remains present in Linux’s page
cache until there is memory pressure. Otherwise, executing
passwd −S brings it back into page cache. The exploit first
breaks KASLR and then scans physmap for / etc /shadow using
the arbitrary memory leak. We can identify the file, as it
is page-aligned and usually starts with root :$. Over 1000
executions, our end-to-end exploit completed with a median
of 21 s, leaking the full root hash 90.7% of the time. 97.9%
of the time, there were at most 6 errors in the leaked hash.

9 Mitigation

BPRC compromises the security guarantees provided by
eIBRS on modern Intel processors. We suggest different miti-
gation strategies for BPRCU→K and BPRCG→H and empiri-
cally evaluate their performance overhead.

According to our experiments, eIBRS cannot be disabled
on the newest generation of Intel processors. As such, alter-
nate mitigations will have redundant performance overhead
from eIBRS. We measure this overhead for the relevant mit-
igations using the Unixbench 1 and lmbench 2 test suites,
in line with previous work [15, 38, 43]. We choose the cur-
rent defaults in Linux as baseline for the evaluation, and we
accumulate the overhead of our mitigations as in previous
work [38]. For each configuration, we run both test suites
five times and select the median result for each of the bench-
marks in the test suites. We calculate a performance score for
each test suite as the geometric mean over the benchmarks
and report the change in performance score as the overhead.
Table 5 shows the overhead compared to the baseline of the
mitigation strategies, which we discuss in detail next.

1https://github.com/kdlucas/byte-unixbench
2https://github.com/intel/lmbench

Table 5: Mitigation overhead in UnixBench / lmbench.

CPU
Mitigation

IPRED_DIS_S Retpoline
Sapphire Rapids 1.7% / 6.4% 2.4% / 8.0%
Raptor Lake 1.1% / 6.3% 2.2% / 6.6%
Alder Lake 1.5% / 4.7% 2.4% / 8.2%
Rocket Lake - 3.1% / 8.3%
Comet Lake - 0.5% / 2.4%
Coffee Lake Refresh - 0.5% / 1.6%

9.1 Eliminating indirect branches

Retpoline. Retpolines [39] replace indirect branches in an
executable. However, since previous work has shown that
return predictions are also vulnerable to BTI through RSBA
predictions [25, 43], all returns in the program prone to RSB
underflow need to be protected as well. To mitigate BHI in
depth, Intel recommends using Retpolines in combination
with the RRSBA_DIS_S speculation control to remove indi-
rect branches and disable RSBA-predicted returns. The same
approach appears applicable to mitigate BPI as well. While
some processors in our evaluation (RKL, CML, CFL-R) do
not support RRSBA_DIS_S, they also do not seem to be af-
fected by BPRCU→K through the RSBA predictor. This is ei-
ther because they have no RSBA (RKL) or because the RSBA
provides predictions through the IBP (CML, CFL-R) [44].

We empirically validated Retpolines-RRSBA_DIS_S com-
bination by repeating the experiment from Section 5.2 on
ret. The results showed no more cache gadget hits. With up
to 3.1 %/8.3 % (UnixBench/lmbench) overhead, this mitiga-
tion is not as efficient as the isolation approach discussed in
Section 9.2 but is still a viable option.

Alternatives. Alternatives have been proposed to avoid the
forced return mispredictions caused by Retpolines. Jump-
Switches [6] dynamically train a set of targets that can then be
reached using direct jumps while falling back to Retpoline oth-
erwise. Switchpoline [16] for ARM expands this concept by
compiling statically known targets into a switch-like structure
such that only dynamic targets need to be added with just-in-
time compilation. Completely eliminating indirect branches
is particularly interesting since it avoids all the complexity
that arises from the many different microarchitectures, each
of which requires or provides a different mitigation. While
these mitigations seem complete, they assume that mispre-
dicted direct branches never lead to side-channel observable
effects that leak secrets. It remains to be seen whether this
assumption is upheld in the future.

9.2 Isolation

IPRED_DIS_S. Newer Intel CPUs provide a supplementary
speculation control to mitigate speculation attacks on indirect
control flow instructions. IPRED_DIS_S prevents speculative
execution at the predicted target of indirect jumps and indi-
rect calls until the target is resolved. It further prevents the
same for RSBA-predicted returns [20]. We verify the effec-
tiveness of this mitigation empirically by repeating the exper-
iment from Section 5.2 with IPRED_DIS_S enabled and we
observe no more cache gadget hits on any supported microar-
chitecture. Even though this completely disables speculative
execution of indirect branch targets, it incurs a lower overhead
of up to 1.7 %/6.4 % (UnixBench/lmbench) compared with
the Retpolines-RRSBA_DIS_S combination.

IBPB. Using IBPB on kernel/hypervisor entry, like many
AMD parts do [38], is not a viable option. As we found in
Section 5.3, even IBPB can be bypassed by BPRCIBPB.

Microcode Update. According to the response by Intel
PSIRT, a microcode update is required as an in-depth mit-
igation of BPRC. This is due to potential other variants of
BPRC that may exist, and to fix BPRCIBPB. Intel provided
us with a pre-release microcode update for our Alder Lake
processor in January 2025. We found that none of the three
BPRC variants discussed in this paper show a signal anymore
after the microcode update. The overhead turns out to be
1.4 %/2.7 % (UnixBench/lmbench), which is lower than com-
pletely disabling indirect branch prediction in kernel mode.

10 Related Work

Asynchronous microarchitectural flaws. Meltdown [29] ex-
ploits privilege checks asynchronous to data cache accesses,
leading to transient use of memory in dependent operations, re-
gardless of privilege domain restrictions. Foreshadow [10,41]
exploits present-bit checks asynchronous to data cache look-
ups, leading to a cascade of violations. A range of similar
vulnerabilities were discovered under the collective name of
MDS [11, 32, 36, 40], with the common denominator of tran-
siently forwarding uninitialized data from various microarchi-
tectural buffers during asynchronous checking of its presence.
In this paper, we introduced BPRC, a class of vulnerabilities
where asynchronous branch prediction updates cause race
conditions, breaking multiple defenses against BTI attacks.

BTI attacks. BTI attacks were introduced as Spectre Variant
2 [26]. Existing hardware would either use Retpolines [39] or
retrofitted hardware-enforced IBRS restrictions [18] against
BTI, while newer Spectre-aware microarchitectures would
use eIBRS, AutoIBRS or CSV2 [7, 18, 34]. Retbleed demon-
strated vulnerabilities in return target prediction under RSB
underflow on Intel parts without eIBRS, and an instance of
BTC on AMD family 17h [43]. Phantom demonstrated a gen-

eralized view of BTC, including short-lived mispredictions
detected and corrected during instruction decode [45]. Based
on Phantom, the Inception attack injected return target predic-
tions via a confused deputy on modern AMD processors [38].
Milburn et al., presented sibling-thread workloads, exposing
vulnerabilities in AMD-style Retpolines and short-lived BTC
mispredictions [31]. BHI attacks exploited branch history that
is shared across privilege domains [8, 42], allowing limited
attacker-control over indirect branch predictions across privi-
lege domains. While particular dispatch gadgets allowed BHI
to inject arbitrary branch target predictions via a confused
deputy [42], our BPI primitive injects arbitrary branch tar-
get predictions across privilege domains. Wikner and Razavi
showed that Intel’s IBPB failed to invalidate IP-based RSBA
predictions on Golden Cove and Raptor Cove cores and pre-
sented the first real-world cross-process BTI attack [44].

Yavarzadeh et al. [47] reverse engineered the BHB update
function for conditional branches, which was shown to be
identical in follow-up work on indirect branch prediction [28],
enabling a synthetic ASLR derandomization attack. Bunny-
hop [48] showed that the instruction prefetching on Intel
processors is BTB-dependent. In contrast to BPRC, these at-
tacks focus on the fetch and decode stages for exploitation
and the eIBRS guarantees are upheld.

11 Conclusion

We introduced Branch Predictor Race Conditions (BPRC),
an event-misordering effect where asynchronous BPU opera-
tions work independent of the instruction stream. In particular,
we demonstrated BPRC variants where the BPU operates on
incorrect privilege domain state, and showed that it affects
all Intel CPUs with eIBRS-enabled branch predictors. This
insight allowed us to build Branch Privilege Injection (BPI), a
new BTI primitive for injecting predictions tagged with super-
visor privilege from user mode, demonstrating how a broken
hardware defense mechanism has devastating impact on the
security of modern computer systems. Our end-to-end BPI
exploit leaks arbitrary privileged memory from up-to-date
Linux systems across six generations of eIBRS-enabled Intel
CPUs, at 5.6 KiB/s on Intel Raptor Cove, respectively. Fur-
thermore, we demonstrated two additional variants of BPRC
which work accross the guest-to-hypervisor and IBPB secu-
rity boundaries. We proposed and evaluated potential miti-
gations by combining software defenses with model-specific
speculation controls.

Acknowledgments

We would like to thank the anonymous reviewers and shep-
herd for their constructive feedback. We would also like to
thank the Intel PSIRT and security research teams for coordi-
nation and collaboration on this issue. In particular, we thank

Alyssa Milburn, Ke Sun, Thaís Moreira Hamasaki from In-
tel STORM and Stephen Haruna and Priya Iyer from Intel
PSIRT. We are grateful to one of our anonymous reviewers
and the Intel STORM team for pointing out BPRCIBPB. This
work was supported in part by the Swiss State Secretariat for
Education, Research and Innovation under contract number
MB22.00057 (ERC-StG PROMISE).

Ethics considerations

The presented work concerns micrarchitectural vulnerabil-
ity research. During this research no human subjects were
involved at any point. Unfortunately, disclosure of security
vulnerabilities always poses a risk to people using affected
systems. To mitigate this risk, we engaged in responsible dis-
closure with Intel. In line with industry practice, the vulner-
abilites were not publicly disclosed before the agreed upon
embargo date (May 13, 2025). Furthermore, we have con-
tacted AMD and ARM such that they can verify their security
in light of BPRC.

We are confident that our research has not violated any
legal standards, is in the interest of computer security around
the world and adheres to the USENIX Security ’25 Ethics
Guidelines.

Open science

In this work, we present a variety of microarchitecture eval-
uation experiments which are based on specialized C code
with hand-written assembly. We ran the experiments using
Ansible to collect additional information about the environ-
ment. Based on the results, we generated all graphs automati-
cally using Python. Furthermore, our work involves proof of
concept code to exploit the presented vulnerabilities end-to-
end on a real system. In line with USENIX Security ’25
open science policy, we make these artifacts available to
the public at https://github.com/comsec-group/bprc and
https://doi.org/10.5281/zenodo.14636810. We are confident
that these artifacts allow the security community to verify and
reproduce the presented results.

References

[1] AMD. Indirect Branch Control Extension. 2018. URL:
https://www.amd.com/content/dam/amd/en/documen
ts/processor-tech-docs/white-papers/111006-architect
ure-guidelines-update-amd64-technology-indirect-bra
nch-control-extension.pdf.

[2] AMD. Technical guidance for mitigating branch type
confusion, 2022. URL: https://www.amd.com/system/f
iles/documents/technical-guidance-for-mitigating-bra
nch-type-confusion_v7_20220712.pdf.

[3] AMD. Software optimization guide for the amd zen4
microarchitecture. 2023.

[4] AMD. Software techniques for managing speculation
on amd processors. 2023.

[5] AMD. Technical update regarding speculative return
stack overflow. 2024. URL: https://www.amd.com/cont
ent/dam/amd/en/documents/corporate/cr/speculative-r
eturn-stack-overflow-whitepaper.pdf.

[6] Nadav Amit, Fred Jacobs, and Michael Wei. Jump-
Switches: Restoring the performance of indirect
branches in the era of spectre. In 2019 USENIX An-
nual Technical Conference (USENIX ATC 19), pages
285–300, Renton, WA, July 2019. USENIX Associa-
tion.

[7] ARM. The Armv8.5 architecture extension. 2024. URL:
https://developer.arm.com/documentation/109697/202
4_12/Feature-descriptions/The-Armv8-5-architectur
e-extension.

[8] Enrico Barberis, Pietro Frigo, Marius Muench, Herbert
Bos, and Cristiano Giuffrida. Branch history injection:
On the effectiveness of hardware mitigations against
Cross-Privilege spectre-v2 attacks. In 31st USENIX
Security Symposium (USENIX Security 22), pages 971–
988, Boston, MA, August 2022. USENIX Association.

[9] Bradley D. Hoyt, Glenn J. Hinton, David B. Papworth,
Ashwani K. Gupta, Michael A. Fetterman, Subramanian
Natarajan, Sunil Shenoy, and Reynold V. D’Sa. Method
and apparatus for implementing a set-associative branch
target buffer. US Patent, 1996.

[10] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel
Genkin, Baris Kasikci, Frank Piessens, Mark Silberstein,
Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.
Foreshadow: Extracting the Keys to the Intel SGX King-
dom with Transient Out-of-Order Execution. In SEC.
USENIX, 2018.

[11] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel
Gruss, Moritz Lipp, Marina Minkin, Daniel Moghimi,
Frank Piessens, Michael Schwarz, Berk Sunar,
Jo Van Bulck, and Yuval Yarom. Fallout: Leaking data
on meltdown-resistant cpus. In CCS. ACM, 2019.

[12] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-
Ghazaleh. Jump over ASLR: Attacking branch predic-
tors to bypass ASLR. In 2016 49th Annual IEEE/ACM
International Symposium on Microarchitecture (MI-
CRO), pages 1–13. IEEE.

[13] Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-
Ghazaleh, ECE, and Dmitry Ponomarev. Branchscope:

https://github.com/comsec-group/bprc
https://doi.org/10.5281/zenodo.14636810
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/white-papers/111006-architecture-guidelines-update-amd64-technology-indirect-branch-control-extension.pdf
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/white-papers/111006-architecture-guidelines-update-amd64-technology-indirect-branch-control-extension.pdf
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/white-papers/111006-architecture-guidelines-update-amd64-technology-indirect-branch-control-extension.pdf
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/white-papers/111006-architecture-guidelines-update-amd64-technology-indirect-branch-control-extension.pdf
https://www.amd.com/system/files/documents/technical-guidance-for-mitigating-branch-type-confusion_v7_20220712.pdf
https://www.amd.com/system/files/documents/technical-guidance-for-mitigating-branch-type-confusion_v7_20220712.pdf
https://www.amd.com/system/files/documents/technical-guidance-for-mitigating-branch-type-confusion_v7_20220712.pdf
https://www.amd.com/content/dam/amd/en/documents/corporate/cr/speculative-return-stack-overflow-whitepaper.pdf
https://www.amd.com/content/dam/amd/en/documents/corporate/cr/speculative-return-stack-overflow-whitepaper.pdf
https://www.amd.com/content/dam/amd/en/documents/corporate/cr/speculative-return-stack-overflow-whitepaper.pdf
https://developer.arm.com/documentation/109697/2024_12/Feature-descriptions/The-Armv8-5-architecture-extension
https://developer.arm.com/documentation/109697/2024_12/Feature-descriptions/The-Armv8-5-architecture-extension
https://developer.arm.com/documentation/109697/2024_12/Feature-descriptions/The-Armv8-5-architecture-extension

A new side-channel attack on directional branch predic-
tor. In Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’18, page
693–707, New York, NY, USA, 2018. Association for
Computing Machinery. doi:10.1145/3173162.
3173204.

[14] Thomas Gleixner. LKML: [patch 00/38] x86/retbleed:
Call depth tracking mitigation, 2022. URL: https://lore
.kernel.org/lkml/f9fd86acac4f49bc8f90b403978e9df
3@AcuMS.aculab.com/t/.

[15] Mathé Hertogh, Manuel Wiesinger, Sebastian Österlund,
Marius Muench, Nadav Amit, Herbert Bos, and Cris-
tiano Giuffrida. Quarantine: Mitigating transient execu-
tion attacks with physical domain isolation. In Proceed-
ings of the 26th International Symposium on Research
in Attacks, Intrusions and Defenses, RAID ’23, pages
207–221, New York, NY, USA, 2023. Association for
Computing Machinery. doi:10.1145/3607199.
3607248.

[16] Lorenz Hetterich, Markus Bauer, Michael Schwarz, and
Christian Rossow. Switchpoline: A software mitigation
for spectre-btb and spectre-bhb on armv8. In Proceed-
ings of the 19th ACM Asia Conference on Computer
and Communications Security, ASIA CCS ’24, page
217–230, New York, NY, USA, 2024. Association for
Computing Machinery.

[17] Intel Corp. Indirect Branch Predictor Barrier. 2018.
URL: https://www.intel.com/content/www/us/en/deve
loper/articles/technical/software-security-guidance/te
chnical-documentation/indirect-branch-predictor-barri
er.html.

[18] Intel Corp. Indirect Branch Restricted Speculation.
2018. URL: https://www.intel.com/content/www/
us/en/developer/articles/technical/software-security-g
uidance/technical-documentation/indirect-branch-restr
icted-speculation.html.

[19] Intel Corp. Speculative Execution Side Channel Mitiga-
tions. 2018. URL: https://www.intel.com/content/ww
w/us/en/developer/articles/technical/software-securit
y-guidance/technical-documentation/speculative-exe
cution-side-channel-mitigations.html.

[20] Intel Corp. Branch History Injection and Intra-mode
Branch Target Injection / CVE-2022-0001, CVE-2022-
0002 / INTEL-SA-00598, 2022. URL: https://www.inte
l.com/content/www/us/en/developer/articles/technical
/software-security-guidance/technical-documentation
/branch-history-injection.html.

[21] Intel Corp. Post-barrier Return Stack Buffer Predictions
/ CVE-2022-26373 / INTEL-SA-00706. 2022. URL:
https://www.intel.com/content/www/us/en/developer/
articles/technical/software-security-guidance/advisory
-guidance/post-barrier-return-stack-buffer-predictions
.html.

[22] Intel Corp. Retpoline: A Branch Target Injection Miti-
gation. 2022. URL: https://www.intel.com/content/ww
w/us/en/developer/articles/technical/software-securit
y-guidance/technical-documentation/retpoline-branc
h-target-injection-mitigation.html.

[23] Intel Corp. Intel® 64 and IA-32 Architectures Software
Developer Manuals. 2024. URL: https://www.intel.co
m/content/www/us/en/developer/articles/technical/int
el-sdm.html.

[24] Manikandan Jagatheesan. Performance Regression in
Linux Kernel 5.19, 2022. URL: https://lore.kernel.or
g/lkml/PH0PR05MB8448A203A909959FAC754B7A
AF439@PH0PR05MB8448.namprd05.prod.outlook.
com/.

[25] Andi Kleen. LKML: Improve retpoline for Skylake,
2018. URL: https://lkml.org/lkml/2018/1/12/605.

[26] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin,
Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre attacks: Exploiting
speculative execution. In 2019 IEEE Symposium on
Security and Privacy (SP), pages 1–19, 2019.

[27] Jakob Koschel, Cristiano Giuffrida, Herbert Bos, and
Kaveh Razavi. Tagbleed: Breaking kaslr on the isolated
kernel address space using tagged tlbs. In EuroS&P.
IEEE, 2020.

[28] Luyi Li, Hosein Yavarzadeh, and Dean Tullsen. Indi-
rector: High-Precision branch target injection attacks
exploiting the indirect branch predictor. In 33rd USENIX
Security Symposium (USENIX Security 24), pages 2137–
2154, Philadelphia, PA, August 2024. USENIX Associ-
ation. URL: https://www.usenix.org/conference/usenix
security24/presentation/li-luyi.

[29] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan
Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom,
and Mike Hamburg. Meltdown: Reading kernel memory
from user space. In USENIX Security, 2018.

[30] Andrea Mambretti, Alexandra Sandulescu, Matthias
Neugschwandtner, Alessandro Sorniotti, and Anil Kur-
mus. Two methods for exploiting speculative control
flow hijacks. In 13th USENIX Workshop on Offensive

https://doi.org/10.1145/3173162.3173204
https://doi.org/10.1145/3173162.3173204
https://lore.kernel.org/lkml/f9fd86acac4f49bc8f90b403978e9df3@AcuMS.aculab.com/t/
https://lore.kernel.org/lkml/f9fd86acac4f49bc8f90b403978e9df3@AcuMS.aculab.com/t/
https://lore.kernel.org/lkml/f9fd86acac4f49bc8f90b403978e9df3@AcuMS.aculab.com/t/
https://doi.org/10.1145/3607199.3607248
https://doi.org/10.1145/3607199.3607248
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-predictor-barrier.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-predictor-barrier.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-predictor-barrier.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-predictor-barrier.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-restricted-speculation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-restricted-speculation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-restricted-speculation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-restricted-speculation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/speculative-execution-side-channel-mitigations.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/speculative-execution-side-channel-mitigations.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/speculative-execution-side-channel-mitigations.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/speculative-execution-side-channel-mitigations.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/branch-history-injection.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/branch-history-injection.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/branch-history-injection.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/branch-history-injection.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/post-barrier-return-stack-buffer-predictions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/post-barrier-return-stack-buffer-predictions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/post-barrier-return-stack-buffer-predictions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/post-barrier-return-stack-buffer-predictions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/retpoline-branch-target-injection-mitigation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/retpoline-branch-target-injection-mitigation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/retpoline-branch-target-injection-mitigation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/retpoline-branch-target-injection-mitigation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://lore.kernel.org/lkml/PH0PR05MB8448A203A909959FAC754B7AAF439@PH0PR05MB8448.namprd05.prod.outlook.com/
https://lore.kernel.org/lkml/PH0PR05MB8448A203A909959FAC754B7AAF439@PH0PR05MB8448.namprd05.prod.outlook.com/
https://lore.kernel.org/lkml/PH0PR05MB8448A203A909959FAC754B7AAF439@PH0PR05MB8448.namprd05.prod.outlook.com/
https://lore.kernel.org/lkml/PH0PR05MB8448A203A909959FAC754B7AAF439@PH0PR05MB8448.namprd05.prod.outlook.com/
https://lkml.org/lkml/2018/1/12/605
https://www.usenix.org/conference/usenixsecurity24/presentation/li-luyi
https://www.usenix.org/conference/usenixsecurity24/presentation/li-luyi

Technologies (WOOT 19), Santa Clara, CA, August 2019.
USENIX Association. URL: https://www.usenix.org/c
onference/woot19/presentation/mambretti.

[31] Alyssa Milburn, Ke Sun, and Henrique Kawakami. You
cannot always win the race: Analyzing mitigations for
branch target prediction attacks. In 2023 IEEE 8th Eu-
ropean Symposium on Security and Privacy (EuroS&P),
pages 671–686. IEEE.

[32] Daniel Moghimi. Downfall: Exploiting speculative
data gathering. In 32nd USENIX Security Sympo-
sium (USENIX Security 23), pages 7179–7193, Ana-
heim, CA, August 2023. USENIX Association. URL:
https://www.usenix.org/conference/usenixsecurity23/p
resentation/moghimi.

[33] Borislav Petkov. x86/srso: Add a speculative ras over-
flow mitigation. 2024. URL: https://github.com/torva
lds/linux/commit/fb3bd914b3ec28f5fb697ac55c4846a
c2d542855.

[34] Kim Phillips. LKML: [PATCH 0/3] x86/speculation:
Support Automatic IBRS, 2022. URL: https://lkml.org
/lkml/2022/11/4/1199.

[35] Till Schlüter, Amit Choudhari, Lorenz Hetterich, Leon
Trampert, Hamed Nemati, Ahmad Ibrahim, Michael
Schwarz, Christian Rossow, and Nils Ole Tippenhauer.
Fetchbench: Systematic identification and characteri-
zation of proprietary prefetchers. In Proceedings of
the 2023 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’23, page 975–989, New
York, NY, USA, 2023. Association for Computing Ma-
chinery. doi:10.1145/3576915.3623124.

[36] Michael Schwarz, Moritz Lipp, Daniel Moghimi,
Jo Van Bulck, Julian Stecklina, Thomas Prescher, and
Daniel Gruss. ZombieLoad: Cross-privilege-boundary
data sampling. In CCS. ACM, 2019.

[37] André Seznec and Pierre Michaud. A case for (partially)
tagged geometric history length branch prediction. The
Journal of Instruction-Level Parallelism, 8:23, 2006.

[38] Daniël Trujillo, Johannes Wikner, and Kaveh Razavi.
Inception: Exposing new attack surfaces with training
in transient execution. In 32nd USENIX Security Sym-
posium (USENIX Security 23), pages 7303–7320, Ana-
heim, CA, August 2023. USENIX Association.

[39] Paul Turner. Retpoline: a software construct for pre-
venting branch-target-injection, 2018. URL: https:
//support.google.com/faqs/answer/7625886.

[40] Stephan van Schaik, Alyssa Milburn, Sebastian Öster-
lund, Pietro Frigo, Giorgi Maisuradze, Kaveh Razavi,
Herbert Bos, and Cristiano Giuffrida. RIDL: Rogue
in-flight data load. In S&P. IEEE, 2019.

[41] Ofir Weisse, Jo Van Bulck, Marina Minkin, Daniel
Genkin, Baris Kasikci, Frank Piessens, Mark Silberstein,
Raoul Strackx, Thomas F Wenisch, and Yuval Yarom.
Foreshadow-ng: Breaking the virtual memory abstrac-
tion with transient out-of-order execution. 2018.

[42] Sander Wiebing, Alvise de Faveri Tron, Herbert Bos,
and Cristiano Giuffrida. InSpectre gadget: Inspecting
the residual attack surface of cross-privilege spectre v2.
In 33rd USENIX Security Symposium (USENIX Secu-
rity 24), pages 577–594, Philadelphia, PA, August 2024.
USENIX Association. URL: https://www.usenix.org/c
onference/usenixsecurity24/presentation/wiebing.

[43] Johannes Wikner and Kaveh Razavi. RETBLEED: Arbi-
trary speculative code execution with return instructions.
In 31st USENIX Security Symposium (USENIX Secu-
rity 22), pages 3825–3842, Boston, MA, August 2022.
USENIX Association.

[44] Johannes Wikner and Kaveh Razavi. Breaking the
Barrier: Post-Barrier Spectre Attacks . In 2025 IEEE
Symposium on Security and Privacy (SP), pages 89–89,
Los Alamitos, CA, USA, May 2025. IEEE Computer
Society. URL: https://doi.ieeecomputersociety.org/10.1
109/SP61157.2025.00089, doi:10.1109/SP6115
7.2025.00089.

[45] Johannes Wikner, Daniël Trujillo, and Kaveh Razavi.
Phantom: Exploiting decoder-detectable mispredictions.
In 56th Annual IEEE/ACM International Symposium on
Microarchitecture, pages 49–61. ACM.

[46] Yuval Yarom and Katrina Falkner. FLUSH+RELOAD:
A high resolution, low noise, l3 cache Side-Channel
attack. In 23rd USENIX Security Symposium (USENIX
Security 14), pages 719–732, San Diego, CA, August
2014. USENIX Association. URL: https://www.usenix
.org/conference/usenixsecurity14/technical-sessions/pr
esentation/yarom.

[47] Hosein Yavarzadeh, Mohammadkazem Taram, Shravan
Narayan, Deian Stefan, and Dean Tullsen. Half&half:
Demystifying intel’s directional branch predictors for
fast, secure partitioned execution. In 2023 IEEE Sympo-
sium on Security and Privacy (SP), pages 1220–1237.
IEEE.

[48] Zhiyuan Zhang, Mingtian Tao, Sioli O’Connell,
Chitchanok Chuengsatiansup, Daniel Genkin, and Yu-
val Yarom. BunnyHop: Exploiting the Instruction
Prefetcher. In USENIX Security, 2023.

https://www.usenix.org/conference/woot19/presentation/mambretti
https://www.usenix.org/conference/woot19/presentation/mambretti
https://www.usenix.org/conference/usenixsecurity23/presentation/moghimi
https://www.usenix.org/conference/usenixsecurity23/presentation/moghimi
https://github.com/torvalds/linux/commit/fb3bd914b3ec28f5fb697ac55c4846ac2d542855
https://github.com/torvalds/linux/commit/fb3bd914b3ec28f5fb697ac55c4846ac2d542855
https://github.com/torvalds/linux/commit/fb3bd914b3ec28f5fb697ac55c4846ac2d542855
https://lkml.org/lkml/2022/11/4/1199
https://lkml.org/lkml/2022/11/4/1199
https://doi.org/10.1145/3576915.3623124
https://support.google.com/faqs/answer/7625886
https://support.google.com/faqs/answer/7625886
https://www.usenix.org/conference/usenixsecurity24/presentation/wiebing
https://www.usenix.org/conference/usenixsecurity24/presentation/wiebing
https://doi.ieeecomputersociety.org/10.1109/SP61157.2025.00089
https://doi.ieeecomputersociety.org/10.1109/SP61157.2025.00089
https://doi.org/10.1109/SP61157.2025.00089
https://doi.org/10.1109/SP61157.2025.00089
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom

	Introduction
	Background
	Indirect branch prediction
	BTI attacks
	Spectre defenses

	Threat Model
	Overview
	Branch Predictor Race Conditions
	Asynchronous branch predictor updates
	Restricted speculation analysis
	BPRC variants

	Branch Privilege Injection
	Discerning between predictors
	BPI breaking points

	Practical Exploitation with BPI
	Repeatable BPI
	Injecting a kernel branch target
	Gadgets
	Breaking KASLR

	Evaluation
	Mitigation
	Eliminating indirect branches
	Isolation

	Related Work
	Conclusion

