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Abstract. Elastic cloud applications rely on fast virtual machine (VM)
startup, e.g. when scaling out for handling increased workload. While
there have been recent studies into the VM startup time in clouds, the
effects of the VM image (VMI) disk size and its contents are little un-
derstood. To fill this gap, we present a detailed study of these factors on
Amazon EC2. Based on our findings, we developed a novel approach for
consolidating size and contents of VMIs. We then evaluated our approach
with the ConPaaS VMI, an open-source Platform-as-a-Service runtime.
Compared to an unmodified ConPaaS VMI, our approach results in up
to four times reduction of the disk size, three times speedup for the VM
startup time, and three times reduction of storage cost.

1 Introduction

Traditionally, program binaries have been the abstraction used for executing
code on a certain computing resource. In contrast, to execute an application
on an Infrastructure-as-a-Service (IaaS) cloud, the user has to provide a virtual
machine image (VMI) that contains all the execution dependencies, typically
containing a fully-featured operating system plus application-specific software.
One can see the VMI as a new abstraction for executing code on computing
resources. The implications of using VMIs should be clearly studied and proper
methods be deployed as necessary.

One of these implications is the fact that VMIs are large and abundant,
existing on behalf of different users. Thus, it is not feasible to store all of the
VMIs on every compute node. In clouds today, a number of storage nodes are
dedicated to storing VMIs. Upon user request to create a new VM from a specific
VMI, the VMI is transfered from the storage node to a designated compute node
either fully and in the beginning, or partially and on demand. In both cases, the
virtual disk size and the contents of the VMI become important factors in terms
of startup time and the consumption of storage and network resources.

While there have been recent studies into the startup of VMs in clouds [8,
12], the effects of the VMI’s disk size and contents are hardly understood. To
fill this gap, we have studied the impact of these factors on Amazon EC21.

1 Similar experiments on our own private cloud based on OpenNebula showed results
consistent with the ones from EC2. We omit them to comply with space limitations.



We use the results of this study to develop a novel approach for consolidating
VMIs. We evaluate our approach with the VMI of ConPaaS [15], an open-source
Platform-as-a-Service (PaaS) runtime.

The structure of this paper is as follows: Section 2 studies the effects of disk
size and contents on the startup time of VMs. We describe how to consolidate
the contents of the ConPaaS service VMI, our primary source of motivation for
this work, in Section 3. We evaluate our approach in Section 4. Related work is
discussed in Section 5, and Section 6 concludes.

2 Analyzing VM startup time in clouds

In this section, we analyze startup delays on Amazon EC2 while varying the
VMI disk size and its contents. We describe the VM startup process on Amazon
EC2, before we present the experimental results.

2.1 VM startup process on Amazon EC2

Upon a user request to start a VM from a VMI, four steps are executed. (1) The
EC2 scheduler identifies a suitable physical machine for the VM. Depending on
the properties of the requested VM (i.e., instance type), the availability of phys-
ical resources, and the number of concurrent requests, this operation can take
different amounts of time [8]. As the scheduler delay is beyond the user’s con-
trol, we can not apply optimizations here. Therefore, we fixed the instance type
to m1.small for the rest of this paper. However, we do report on the estimated
delay of this operation in Section 4.

(2) Next is the transfer of the VMI from the storage node(s) to the designated
compute node. Amazon EC2 has two different types of VMIs: instance-store
(S3-backed) VMIs, and EBS-backed VMIs. S3-backed VMIs are first transferred
from S3 to the compute node before VM startup. With EBS-backed VMIs, the
location of the VMI is mounted on the designated compute node, and the VMI
is read on-demand by the VM. While EBS-backed VMIs offer slightly faster
startup times, each I/O operation from the VM to the VMI will cause a network
transfer that costs a small amount of money and a network delay.

(3) In order to save on required storage (costs) and on network transfer
from S3 to the EC2 compute node, S3-backed images are stored in a compressed
format. This requires a third step, where the S3-backed VMI is decompressed.
EBS-backed VMIs are not compressed on storage and do not need this step.

(4) In the final step, the VM starts booting and reads sectors of data from
its VMI. The VM booting delay depends on the operating system (e.g. Linux),
distribution (e.g. Debian), and on the enabled system services (e.g. a web server).
While it is possible to fiddle with the booting process of a specific operating
system or distribution, users generally avoid making low-level changes to the
operating system stack for reasons of complexity and forward compatibility.
There are, however, standardized distribution-specific tools such as [4, 19] that
can be used to add or remove services from the booting process.
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Fig. 1: EC2/S3 startup delay, varying the disk size and contents of the VMI.

2.2 Startup delay while varying disk size and content

We have used build-debian-cloud [2] to build Debian images that can boot on
Amazon EC2. The tool takes the desired disk size as a parameter (and fills the
image with empty blocks). We start from a Debian distribution and add a file to
the image with random (“compression proof”) content of a given size to change
the compressed size of the image. This way, we can independently study the
effects of the uncompressed and compressed image sizes.

Figure 1 shows the result of the experiments while varying the disk size
(left) and compressed size (right) with S3-backed images. We have repeated each
experiment five times. When varying the disk size, the content size remains the
same (except for some negligible file system metadata for the bigger disk size).
Thus, the reverse of the regression line’s slope estimates the decompression rate
(75.9 MB/sec). While varying the compressed size, the disk size remains constant
(10 GB) and thus, the the reverse of the regression line’s slope gives the S3/EC2
network transfer rate (14.9 MB/sec). These results suggest that, for S3-backed
VMIs, it is important to:

a) Reduce the disk content to save on the network transfers for a faster startup.
The reduced size of the disk contents also saves required S3 storage space.

b) Reduce the disk size to save on the decompression time for a faster startup.

For the EBS-backed VMIs, regardless of the disk size or content, the startup
time remains constant at about 51 seconds. Reduced disk content, and subse-
quently disk size, however, does save on the EBS storage cost. As mentioned
before, the benefit of an S3-backed VMI (vs. EBS-backed) comes from the fact
that VM-generated I/O requests to the VMI do not cause network transfers,
removing network delays and costs.

3 Consolidating the ConPaaS services VM image

Before looking at possible mechanisms to reduce the disk content and size of
VMIs, we look at the ConPaaS VMI as a motivating use-case of a typical cloud



service VMI. This VMI is scaled out frequently depending on the user’s applica-
tion and workload. Thus, an effective VMI optimization strategy will have a big
impact on the perceived performance and/or user experience. To discover promi-
nent optimization strategies, we investigated the process of VMI generation in
ConPaaS.

ConPaaS comes with two scripts to generate VMIs that run on either the
Xen or KVM virtual machine monitors (VMMs). First, an empty disk with the
default size of 3 GB is created and then formatted. Second, using debootstrap [5],
a minimal Debian system is installed on the disk. Third, a proper Linux kernel
is installed and then, the grub bootloader is configured. Finally, the required
packages for each service are installed and then configured. For example, the
MapReduce service installs the packages of apache-hadoop.

Looking at these steps, we can make a number of interesting observations.
First, there is a large redundancy in the two provided scripts for different VMMs.
This means that changing one will most likely result in changing the other.
Second, since the required disk size of the VMI is not known in advance, the
ConPaaS developers had to add a default value and increase it whenever the
free disk space was not sufficient for a new service that brings in new packages.
Third, debootstrap, while creating a minimal Debian installation, still brings in
certain packages such as man pages that are not necessary for a production
VMI on clouds. Fourth, all the packages of all the services are present in the
VMI. This suggests that there is room for image specialization depending on the
users’ needs of a certain ConPaaS deployment. Based on these observations, we
proceed to our three-step approach for consolidating the contents of the ConPaaS
service VMI, consisting of (1) specializing to the services needed, (2) pruning the
tree of software packages to the bare minimum, and (3) reducing the disk size
accordingly.

3.1 VMI specialization

VMI generation starts from a basic VMI without services, consisting of a minimal
Debian installation and the ConPaaS service core. During image specialization,
the user specifies which services he wants to add to the image, the type of VMM,
as well as the system architecture (e.g., x86/x64). Based on these choices, a
customized script is generated automatically, and used to create the VMI.

For ConPaaS, this leads to unifying the two independent scripts (for Xen
or KVM) to a single set of scripts as well as the possibility for users to choose
various sets of services, depending on their needs.

3.2 Pruning

After creating the image, the next stage uses shell tools to inspect the database of
the package management system, in our case apt/dpkg [1, 7]. This step automat-
ically analyzes the dependencies between currently installed software packages
and decides which of the packages installed by debootstrap are not necessary and
can safely be removed. Limiting the analysis to the information provided by the



Fig. 2: Example of a partial dependency graph, based on required packages.

package manager reduces the number of opportunities to save disk space, but
ensures that the pruning step will not break the package management system.

The pruning algorithm constructs a partial dependency graph by following
only dependencies of packages required by the user. Figure 2 shows an example of
such a graph. In this diagram, we distinguish packages that are directly required
by the services the user wants to be hosted on the VMs. Their dependencies are
determined for inclusion in the VMI. All other packages, that are not part of
this hierarchy, are considered unnecessary, and will be removed.

3.3 Disk size reduction

The previous phase has reduced the contents of the image, but not the image
size. The final step calculates the necessary image size, creates a new bootable
disk, and copies the contents of the VM to this disk.

Copying the files to a fresh, smaller VMI disk has two benefits. (1) For
clouds that do not implement compression, the smaller VMI disk results in faster
network transfers. (2) For clouds that do implement compression, the new VMI
disk results in a better compression and thus, faster network transfers. The latter
is because most filesystems only remove the i-nodes (vs. the data) when files
(from the unnecessary packages) are removed. This means that the corresponding
blocks still contain non-zero data that will be included in the compressed image,
taking up space needlessly. Starting from a fresh image, with all empty blocks
containing zero data, improves the compression rate.



4 Experiments

We tested our VMI consolidation approach with various configurations. With
VMI specialization, users now have the option to determine the services they
want included in their ConPaaS VMI. We experimented with a number of pro-
posed configurations, covering a wide range of use cases in the context of Con-
PaaS, shown in Table 1. In addition, we experimented with the ConPaaS core
(without any service-specific packages installed) and the complete ConPaaS, in-
cluding all of the developed services so far; the services from Table 1, as well
as a Selenium web-application testing service, and a content delivery network
service (CDN).

Table 1: Interesting VMI configurations for ConPaaS

Config. List of services Use-case

C1 XtreemFS Scalable storage
C2 Hadoop Scalable MapReduce
C3 PHP, MySQL Web application
C4 PHP, MySQL, Scalaris Web application with caching
C5 PHP, MySQL, Scalaris, XtreemFS Web application with caching & storage
C6 HTCondor, XtreemFS High-throughput computing & storage
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Fig. 3: Left: disk size and contents with service selection and optimizations. Right: the
estimated network transfer and disk decompression time on EC2, based on Figure 1.

Figure 3 (left) compares the disk size and S3-compressed size of various con-
figurations with the unmodified ConPaaS VMI. The difference between unmod-
ified and complete is the result of the optimizations from Section 3.2 (reducing
the disk contents) and from Section 3.3 (reducing the disk size). The differences
between unmodified and the configurations described in Table 1, are the result
of VMI specialization from Section 3.1, in addition to the other optimizations.

Using the estimated S3/EC2 network performance and decompression rates
obtained in Section 2, it is possible to convert the size values in Figure 3 (left) to



time estimates. Figure 3 (right) shows the estimated delay in VM startup caused
by the network transfer and by decompression. We estimate that pruning and
disk resizing together result in an about 40 seconds faster VM startup: 46% faster
decompression and 36% faster network transfer. VMI specialization saves from
27 seconds (C6) to 36 seconds (C1): 39% to 53% faster decompressions, and 48%
to 65% faster network transfers.
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Fig. 4: Left: measured startup time of ConPaaS VMIs with various configurations and
optimizations. The unmodified EBS startup time is included as well for comparison.
Right: decomposed startup time based on the estimates of Figure 3 (right).

Figure 4 (left) shows the measured startup times of ConPaaS VMIs with
various configurations and optimizations. We have repeated each experiment
five times. Although variations in startup times are present, they tend to remain
comparably small and stable over time as independently shown by [8]. Figure 4
(Right) shows the decomposed startup times into various operations discussed
in Section 2.1. Since we have an estimate of network transfer and decompression
delay from Figure 3 (right), we can assume the rest of the startup time involves
the EC2 resource scheduler and the OS boot time.

In total, depending on service selection, our optimizations result in two to
three times faster VM startups for S3-backed VMIs. Figure 4 also includes the
startup time of an unmodified, EBS-backed ConPaaS VMI. As expected, due
to the on-demand nature of EBS, the startup delay of unmodified ConPaaS
(59 seconds), remains close to that of a minimal Debian (53 seconds). While our
optimizations do not affect the startup time of EBS-backed AMIs, they do save
up to three times in storage cost. Another interesting observation is that, the
S3-backed configurations C1-C5 start slightly faster than the EBS image.

In this section, we described the results of our experiments with the proposed
approach in generating VMIs. The optimizations mandated by our approach
resulted in up to three times faster startup times and up to three times saving
on the costs of storing ConPaaS VMI.



5 Related work

In this section, we discuss related work in three areas: VM consolidation gen-
erates special-purpose VMIs. Efficient VMI transfer deals with the problem of
moving VMIs from storage nodes to compute nodes, and Cloud instance startup
time studies the startup time of VM instances in different clouds.

5.1 VM consolidation

VMPlant [10] is a service for generating custom VMIs. The user provides VM-
Plant with 1) machine requirements (e.g. OS, size of memory and disk, etc.),
and 2) a set of configuration scripts and their dependencies in the form of a
directed acyclic graph (DAG). VMPlant then accordingly generates a new VMI
based on previously cached VMIs. In contrast, we generate VMIs from scratch;
our optimizations, however, could complement VMPlant’s current functionality.

Jebessa et al. [9] argue for purpose-driven VMs to enhance security by means
of VMI code reduction. They use a domain-specific language to declare the
properties of the desired target VMI such as the required software package set
and the target VMM. We use a similar approach to reduce the content of the
VMI by looking at the dependency tree of user-selected services. Further, we
reduce the necessary disk size of the VMI in the final generation process.

Quinton et al. [16] use package dependency information to install the min-
imum number of packages for a given virtual appliance. To minimize the disk
size, they estimate the installation size of each package. Our final VMI copying
step renders such estimations unnecessary.

Charon [6] is a tool that builds on top of NixOS [13]. NixOS has a declarative
package management system and Charon uses that to configure virtual machines
with the right package set for the provisioned services.

5.2 Efficient VMI transfer

In our work, we focus on minimizing the size of the VMIs themselves. Com-
plementary, a large body of work is dealing with speeding up the deployment
of given VMIs. There are two different scenarios in which efficient VMI transfer
becomes a primary concern. In the first scenario, a single VMI needs to be trans-
ferred to many physical nodes. Here, peer-to-peer networking is a commonly used
technique [3, 17, 20]. SnowFlock [11] clones VMs from already running ones in
less than one second.

In the second scenario, many VMIs need to be transferred to many physical
nodes concurrently and start executing on behalf of different users. Schmidt et
al. use Unionfs [18], a sophisticated, layered file system along with multicasting
to minimize network transfer times of VMIs. VDN [14] is a network hierarchy-
aware system for transferring VMIs to compute nodes in units of small chunks
that can be retrieved from local neighbors.

All these approaches can be used orthogonally to our VMI content consol-
idation work. The advantage of our approach is that it does not require any



changes to the cloud infrastructure and can hence also be used with commercial
IaaS clouds like EC2.

5.3 Cloud instance startup time

Mao et al. [12] study the startup performance of various commercial IaaS clouds
by various factors such as OS image size, instance-type and number of instances
acquired at the same time. Their experiments only consider the image size,
neglecting the effects of the actual disk content. In contrast, we have used a
set of experiments that separates the performance implications of disk size and
content. Mixing of compression time into network transfer time is apparent in
their reported transfer rate of 10.9 MB/s, which is lower than our estimated
value of 14.9 MB/s.

Iosup et al. [8] benchmark various aspects of cloud computing. They exten-
sively study resource acquisition delay on Amazon EC2 while comparing different
factors such as different instance-types and number of concurrent requests. In
this work, we have done a break-down of acquisition delay of Amazon EC2 to
find promising areas for optimizing the resource acquisition performance.

6 Conclusions

Fast VM startup times are essential for dynamic scaling of cloud-based services.
Both disk size and contents of the user-provided VMIs play an important role in
the VM startup time. Furthermore, VMI disk sizes directly translate to monetary
costs for storage and network transfer of the VMIs that users have to pay to their
cloud providers.

In this paper, we studied the VM startup time as a function of VMI disk size
and content. Based on these results, we introduced a novel approach for reducing
the disk size and content of VMIs. Using the example of the ConPaaS service
VMI, we let users select the desired set of services, based on which the strictly
necessary set of software packages is determined and installed on the VMI. A
final pass creates a VM disk of the minimal required size. This approach, in
general, can be applied to all VM images for which the user can express which
top-level software packages are required for its desired functionality.

Our experiments show up to four times reduction in the disk size, and up
to three times speedup in the VM startup time for S3-backed VMIs on Amazon
EC2. Furthermore, EBS-backed VMIs created with our approach require up to
three times less storage costs, compared to an unoptimized VM image.
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