
Squirrel: Scatter Hoarding VM Image Contents
on IaaS Compute Nodes

Kaveh Razavi
Dept. of Computer Science
VU University Amsterdam

The Netherlands
k.razavi@vu.nl

Ana Ion
Dept. of Computer Science
VU University Amsterdam

The Netherlands
a.ion@student.vu.nl

Thilo Kielmann
Dept. of Computer Science
VU University Amsterdam

The Netherlands
thilo.kielmann@vu.nl

ABSTRACT
In IaaS clouds, virtual machines are booted on demand from
user-provided disk images. Both the number of virtual ma-
chine images (VMIs) and their large size (GBs), challenge
storage and network transfer solutions, and lead to perceiv-
ably slow VM startup times. In previous work, we pro-
posed using small VMI caches (O(100 MB)) that contain
those parts of a VMI that are actually needed for booting.
Here, we present Squirrel, a fully replicated storage architec-
ture that exploits deduplication, compression, and snapshots
from the ZFS file system, and lets us keep large quantities of
VMI caches on all compute nodes of a data center with mod-
est storage requirements. (Much like rodents cache precious
food in many distributed places.) Our evaluation shows that
we can store VMI caches for all 600+ community images of
Windows Azure, worth 16.4 TB of raw data, within 10 GB
of disk space and 60 MB of main memory on each compute
node of our DAS-4 cluster. Extrapolation to several thou-
sands of images predicts the scalability of our approach.

Categories and Subject Descriptors
D.4.2 [Storage Management]: Storage hierarchies;
E.4 [Coding and Information Theory]: Data compaction
and compression

General Terms
System Design, Experimentation

Keywords
VM Images, Caching, Deduplication, Compression

1. INTRODUCTION
With the advent of public Infrastructure-as-a-Service (IaaS)

clouds, like Amazon EC2 or Windows Azure, the use of vir-
tualized operating systems, “virtual machines”, has gained

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HPDC’14, June 23–27, 2014, Vancouver, BC, Canada.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2749-7/14/06 ...$15.00.
http://dx.doi.org/10.1145/2600212.2600221.

widespread use. The promise of elastic computing is instan-
taneous creation of virtual machines, according to the needs
of an application or web service. In practice, however, users
face VM startup times of several minutes, along with high
variability, depending on the actual system load [16, 21].
One important factor contributing to VM startup time is the
transfer of the VM image (VMI) from a storage node, via
the data center network, to the selected compute node [35].

The simplest VMI transfer technique copies the whole
VMI, typically several GBs, to the selected compute node’s
disk, from where the VM will boot. State of the art is to
use Copy-on-Write (CoW) images on the compute nodes,
which means accessing the VMI over a network file system
and reading only those parts that are needed at boot time,
while directing write operations to a local CoW image.

In our recent work [34], we proposed to put a VMI cache
in between VMI and CoW image, preferably on the compute
node’s local disk. As with CoW images, the compute node
mounts the VMI and reads it on demand. The difference
is that VMI caches are populated with the data read from
the VMI in a Copy-on-Read (CoR) fashion. As soon as the
VM is booted, the VMI cache contains the boot working
set. The next time the compute node needs to boot from
the same VMI, it finds a warmed-up cache and can boot the
VM without further network transfers, both speeding up the
VM boot process, and lowering the traffic pressure on the
data center network.

While the VMI caching mechanism overcomes scalability
problems of VM startup, it introduces a new set of chal-
lenges for avoiding cold caches. Traditional solutions to this
problem include cache replacement policies (e.g. LRU [32])
as well as cache-aware VM scheduling. In this work, we take
a radically different approach: We propose a fully replicated
design, storing all VMI caches of a data center on all its
compute nodes. We show that this is both possible and
scalable. We term this approach scatter hoarding in analogy
to the technique of creating a large number of small hoards
(caches) by which squirrels store their food reserves.1 We
describe our implementation of such a design, named Squir-
rel, and thoroughly evaluate its important properties.

The contributions of this paper are as follows:

1. We study the effects of deduplication when combined
with compression on both VMIs and VMI caches (Sec-
tion 2). To the best of our knowledge, this is the first
study of its kind. We show that smaller block sizes do

1
http://en.wikipedia.org/wiki/Hoarding_(animal_behavior)

not necessarily yield better overall compression ratios.
More importantly, we show that storing caches of all
VMIs of a data center is feasible with modest storage
requirements on the compute nodes.

2. Backed by these observations, we devise a new, fully
replicated storage architecture aimed at storing the
caches of all VMIs of a data center on all the com-
pute nodes. We present Squirrel, our implementation
of such a design, based on VMI caches and the ZFS
file system [4] (Section 3).

3. We evaluate Squirrel using the set of the 600+ commu-
nity images from Windows Azure2 to show its desirable
properties (Section 4).

Our evaluation shows that that VMI caches have higher
cross-similarity than their associated VMIs. This is because
VMI diversity mostly comes from installed software, while
boot working set diversity (i.e. VMI caches) comes from
only a few OS distributions. Better cross-similarity of VMI
caches means that they add fewer hashes to a deduplicated
storage on average, making their storage more scalable. For
our Windows Azure dataset, worth 16.4 TB of raw data,
Squirrel only requires 10 GB of disk space and 60 MB of
main memory on each compute node of our DAS-4 cluster.
Extrapolating these storage requirements shows that Squir-
rel can scale to thousands of VMI caches with modest disk
and memory requirements on current or near-future com-
pute node hardware. Further, we show that, with proper
parameter tuning, booting from a deduplicated and com-
pressed file system can be as fast as a normal file system,
despite earlier reports [26, 44].

After our evaluation, we discuss related work on VMI stor-
age and transfer in Section 5, and we conclude in Section 6.

2. BACKGROUND
There are essentially two main ideas behind the work pre-

sented in this paper: (1.) using VMI caches and (2.) apply-
ing deduplication combined with compression to these VMI
caches. In Section 2.1, we briefly explain how VMI caches
operate. In Section 2.2, we discuss the effects of dedupli-
cation and compression on VMI caches. We then hint at
the possible effectiveness of compressing VMI caches when
applying these techniques.

2.1 VMI cache chaining
Figure 1 (top diagram) shows the internal operation of

CoW. A compute node mounts the base VMI and reads
from it on demand. Write operations are saved on the CoW
image, keeping the base VMI clean. CoW saves the need
for copying the entire VMI before booting can begin. This
significantly reduces both the VM startup time, and the load
on network and storage servers. One drawback with CoW
is, however, the need to transfer the boot working set every
time a new VM starts up.

In our previous work [34], we showed that transferring
the boot working set at scale results in scalability problems.
More specifically, when starting one VM from a single VMI
on many nodes, the data center network becomes the scala-
bility bottleneck, and when starting VMs from different VMI
sources, the storage nodes become the scalability bottleneck.

2More precisely, there were 607 images in November 2013.

KVMBase
Write

Read

CoW

VM

Read

Cache

Write

Read

KVMBase
Write

Read

CoW

VM

Read

KVMBase

Read

CoW

VM

Read

Cache

Read

Read

Write

Write

Original Copy-on-Write

Cold Cache

Warm Cache

Write

Write

Figure 1: The introduction of VMI caches.

The former scenario is common for high-performance com-
puting applications (e.g., parameter sweeps) as well as au-
toscaling systems (e.g., [13]). The latter is more common
in large-scale, multi-user IaaS clouds with concurrent VM
startups by different users.

To address these scalability problems, we introduced VMI
caches, a mechanism that allows us to quickly boot a VM
by storing the boot working set of a VMI on or near the
compute node, avoiding the use of the data center network
or the disks at the storage nodes at boot time. Typically,
this boot working set is only a small fraction (O(100 MB))
of the original VMI, usually several GBs. The VMI caches
are chained in between traditional CoW images and VMIs.

Figure 1 (middle) shows how VMI chaining operates with
VMI caches, in contrast to the original CoW architecture.
When a node boots from a particular VMI for the first time,
the VMI cache is still empty (“cold”). With a cold cache,
before handing the reads from the base VMI to the VM
process, we write them to the VMI cache. This process is
called copy-on-read (CoR), and we showed that it is possible
to perform CoR with competitive performance compared to
the original CoW architecture [34]. Once the caches are
warm (shown at the bottom of Figure 1), the system does
not need to read from the base VMI anymore during the
boot process.

As mentioned, CoW images typically reside on compute
nodes, and VMIs on storage nodes. In principle, VMI caches
can reside on any storage medium in between CoW images
and base VMIs. The candidates are the disks at compute
nodes or the memory of storage nodes. While each candidate
has its benefits, we showed in [34] that storing VMI caches
on the disks at compute nodes is the preferable option for
most scenarios. In this paper, we are looking at efficiently
storing our VMI caches on the disks of the compute nodes.

2.2 Compression efficiency
In this section, we analyze the trade-offs involved in com-

pressing the contents present in VMIs and VMI caches. Al-
though the focus here is on VMI caches, the results with

VMIs are also provided for additional insight. In Section 4,
we provide information on our VMI repository as well as the
data set used in the figures presented in this section.

We use compression ratio as a metric for compression effi-
ciency. If, for a given set of VMIs or VMI caches, the set of
unique blocks is defined as U , and the set of nonzero blocks
is defined as N , compression ratio for deduplication (i.e., the
deduplication ratio) is defined in [12] as:

Deduplication ratio =
|N |
|U | ,

where || is the cardinality of a set. The compression ratio
for content compression is defined as:

Compression ratio =

i∈U∑ size(compress(i))
size(i)

|U | ,

where compress is the compression routine (e.g., gzip).

 0

 2

 4

 6

 8

 10

1 2 4 8 16 32 64 128 256 512 1024

C
o
m

p
re

ss
io

n
 r

a
ti

o

Block size (KB)

caches: dedup
images: dedup
caches: gzip6
images: gzip6

Figure 2: Compression ratio of VMIs and caches with dedup and gzip6

 0

 2

 4

 6

 8

 10

1 2 4 8 16 32 64 128 256 512 1024

C
o
m

p
re

ss
io

n
 r

a
ti

o

Block size (KB)

dedup
gzip-6
gzip-9

lzjb
lz4

Figure 3: Compression ratio of VMI caches with different routines.

Figure 2 shows the compression ratio with deduplication
and gzip6 compression. When decreasing the block size3, we
can see two conflicting trends: Deduplication ratio starts in-
creasing, and gzip’s compression ratio starts decreasing. As
numerous VMI deduplication studies [18, 19, 26, 44] have
pointed out, the reasons for higher deduplication ratio with
smaller block sizes are (1.) the fact that small differences

3In this paper, we study the trends when making block size
smaller. Thus, it is natural to read the figures, that have
block size on the horizontal axis, from right to left.

in otherwise similar larger blocks do not result in different
hashes for the whole block, and that (2.) similar data with
different alignments have a better chance of producing the
same hash (i.e., deduplicating). Larger block sizes have bet-
ter compression (with e.g., gzip) because the chance of find-
ing similar duplicate strings within the block increases. We
have also measured cache compression ratios for gzip9, lz4,
and lzjb algorithms shown in Figure 3. gzip9 is compressing
almost the same as gzip6 with higher CPU cost. lz4 and
lzjb are faster compression algorithms than gzip6, but with
lower compression ratios. As we will show in Section 4.2.3,
since the extra CPU cycles for decompression do not lead
to performance degradation, we decided to continue with
gzip6. The results for VMIs are the same and omitted for
the sake of brevity.

 0

 5

 10

 15

 20

1 2 4 8 16 32 64 128 256 512 1024

C
o
m

p
re

ss
io

n
 r

a
ti

o

Block size (KB)

caches: dedup + gzip6
images: dedup + gzip6

Figure 4: Combined compression ratio of VMIs and caches.

Because of the conflicting trends in compression efficiency
for deduplication and compression, there exists an optimiza-
tion point, after which lowering the block size will result in
lower storage efficiency. We define combined compression
ratio (CCR) as a metric that considers the effects of both
compression techniques combined, and is calculated as:

CCR = deduplication ratio× compression ratio

Figure 4 shows the CCRs for VMIs and caches. Despite
common understanding, the smaller block sizes do not nec-
essarily result in better compression ratios when considering
both deduplication and compression. This is an important
finding, not only because of storage efficiency, but also be-
cause smaller block sizes consume more memory for dedu-
plication tables as we will show in Section 4.2.2. For VMIs,
when reducing the block size, the CCR steadily increases up
until 4 KB and then starts to decrease. For caches, the CCR
does not show much improvement when reducing the block
size after 128 KB, and starts to decrease after 8 KB. Note
that while VMIs have better combined compression ratios
than caches, we will show in Section 4.3 that storing them
at compute nodes is neither efficient nor scalable.

2.3 Summary and discussion
We have highlighted the essential background work in this

section. We briefly looked at our enabling mechanism, VMI
caches, in Section 2.1. We then looked at compression op-
portunities for VMI caches in Section 2.2.

Table 1 shows the storage reduction as we apply different
storage techniques to our VMI repository. With block size

Table 1: Attained storage efficiency with 128 KB block size.

Original Nonzero Caches (Nonzero) Caches/CCR

16.4 TB 1.4 TB 78.5 GB 15.1 GB

of 128 KB (default in the ZFS file system), if the file system
supports sparse files, the original 16.4 TB raw data reduces
to 1.4 TB. Our VMI caches reduce that to 78.5 GB, and if
compression and deduplication are applied, we get to a mod-
est 15.1 GB of disk resources. This indicates that our claim
of storing all VMI caches on compute nodes is feasible. It
allows us to deploy fully replicated storage architecture for
VMI caches. In Sections 4.2 and 4.3, we show that our ap-
proach is not only efficient, but also scalable to thousands
of VMI caches.

3. SYSTEM ARCHITECTURE
In this section, we will first discuss the architecture of

Squirrel, a fully replicated VMI caching system that is aimed
at caching all VMIs on all compute nodes. We then describe
how certain operations such as register, boot, and deregister
are implemented using VMI caches, and the ZFS file system
that provides us with inline compression and deduplication
as well as snapshot versioning. Further, we will explain how
VMI caches are propagated if some of the compute nodes
are not online during the register operation.

3.1 Squirrel
Mainstream in today’s IaaS cloud architectures are the

following assumptions: (1.) There is an explicit separation
between compute nodes and storage nodes. (2.) Compute
nodes use all their resources to run VMs. (3.) Storage nodes
provide a high performance, high volume, and fault-tolerant
storage space for the running VMs on compute nodes.

Mainstream in current VMI distribution engines is the
assumption that data transfer between storage nodes and
compute nodes, or between compute nodes (i.e. peer-to-
peer systems) is coming for free. Violating the second and
third assumptions of cloud architectures, VMI transfers, an
administration overhead, become a burden on storage nodes
and/or consume network bandwidth available on compute
nodes, making the running VMs prone to network SLA vio-
lations.

Storage nodes Compute nodes

Write

Sync Node Storage

CoWRead

Read

Write Read

KVMVMRead

scVol

imgVol

ccVol

Figure 5: Squirrel architecture diagram.

Squirrel’s architecture, depicted in Figure 5, is aimed at
eradicating network I/O during VM startup for all VMIs of
an IaaS cloud by using modest storage resources at compute
nodes. We assume that there exists an off-the-shelf paral-
lel file system that manages the storage nodes. In a typical
scenario, the VMIs are stored on top of this parallel file sys-
tem and are accessed by compute nodes during VM startup.

Storage nodes Compute nodes

Node Memory

Node Storage

CoW

Cold
cache

Write

ccVol

imgVol scVol

KVM VM
Read

Write

Read

Read

Node Memory

Node Storage

ccVol

imgVol

Node Storage

Node Storage

scVol

Snapshot N: cVol@VMI_ID

Node Memory

Node Storage

imgVol

Node Storage

scVol

Snapshot (N) – Snapshot (N – 1)

ccVol

Propagate

Receive: Snapshot (N)

1

2

3

Figure 6: Squirrel VMI registration workflow.

Squirrel adds a cache volume, called cVolume, backed by
the ZFS file system, next to the VMIs. The cVolume at
the storage nodes, called scVolume, stores deduplicated and
compressed VMI caches for all the VMIs currently registered
to the system. At each compute node, Squirrel controls one
cVolume, named ccVolume. In a stable state, the ccVol-
umes are in sync with the scVolume. We will explain how
we exploit ZFS snapshots to bring the ccVolumes at lagging
compute nodes (e.g. due to possible failures or down times)
back in sync with the scVolume in Section 3.5.

We will now discuss how Squirrel implements the main
VMI operations; namely register, boot, and deregister.

3.2 Register
We assume that the IaaS provider already has a mecha-

nism for users to upload their VMIs to the storage nodes.
For example, Amazon EC2 [2] provides ec2 upload bundle
[3] for this purpose, or OpenNebula [23] provides its users
with the oneimage create command that uploads the VM
image during the registration process.

Figure 6 shows Squirrel’s workflow for image registration.
With the VMI accessible, Squirrel first boots the VMI for
the first time in one of the storage nodes to create the cache.
In our previous work [34], we have shown that this takes no
longer than a normal VM boot. In Section 4.2.3, we show
that on average the VMs in our dataset boot in less than
20 seconds. Once the cache is created, Squirrel destroys
the VM, and moves the cache from memory to the scVol-
ume. Next, Squirrel creates a snapshot of the scVolume for
this newly added VMI cache. ZFS snapshots are cheap in
terms of storage as long as they do not reference data that
no longer exists (i.e., deregistered VMIs). They are also
cheap in terms of creation time since they are read-only. Fi-
nally, Squirrel propagates the VMI cache by sending the diff

between this snapshot and the previous snapshot from the
storage node to all online compute nodes. The diff is gen-
erated using ZFS incremental snapshot-send functionality.
Transferring the diff (i.e., the new cache) from one node to
many others is a common scenario in scalable data transfer,
and has been extensively studied in the literature [8, 31, 38,
40]. With a simple IP multicast approach, transferring a diff
of O(100 MB), does not take more than a couple of seconds
even on a commodity 1 GbE.

In total, the image registration workflow does not take
more than a minute. Given that the actual VMI upload
takes significantly longer, we consider Squirrel’s registration
workflow, which is an infrequent operation and not in the
critical path for booting VMs, to be a modest price to pay for
all the benefits that it delivers. These benefits are discussed
in Section 4.

3.3 Boot
Booting a VM from a VMI in Squirrel is depicted in Fig-

ure 7. Squirrel chains an empty copy-on-write image on the
local storage to the requested VMI cache on the ccVolume.
The VMI cache on the ccVolume is chained to the original
VMI, which is backed by the cloud storage and mounted on
the compute node(s). During VM boot, all VM reads (of all
possible VMIs) will be handled by the ccVolume. All VM
writes will go to the copy-on-write image.

Compute node

Write

ccVol

Node Storage

CoWRead

Read

Write Read

KVMVM

Figure 7: Booting a VM with Squirrel’s ccVolume.

3.4 Deregister
VMI deregistration is as simple as deleting the original

VMI and its associated cache on the scVolume. The more
important background operation that keeps the cVolumes
sustainable, while providing a window for offline propaga-
tion, is called garbage collection in Squirrel.

Squirrel implements garbage collection by keeping only
the snapshots that are taken in the last n days, and the
latest snapshot regardless of its creation time. n is a config-
urable variable that defines the offline propagation window,
for when compute nodes miss a new cache, as well as the
amount of time that dead references (i.e. unregistered VMI
caches) remain in the system. Squirrel runs garbage collec-
tion as a daily cron job on all Squirrel cVolumes.

Note that Squirrel is not creating snapshots when deleting
caches for the sake of simplicity. The information about
unregistered VMIs will propagate to ccVolumes as soon as
there is a new registered VMI (i.e., a new snapshot).

3.5 Offline propagation
With the increasing number of commodity servers in data

centers, the likelihood of node failure increases. If a set of
compute nodes are offline during the last stage of Squir-

rel’s VMI registration or during deregistration, their ccVol-
umes become stale. To overcome this problem, each com-
pute node, upon boot, queries for a diff between the latest
snapshot available locally at its ccVolume, and the latest
snapshot available at the scVolume. Two scenarios are likely
to happen: (1.) The node has not been offline for more than
n days. In this case, the incremental snapshot will succeed
and the compute node receives the latest snapshot. (2.) The
node has been offline for more than n days, or the node is
a new addition to the compute node pool. In this case, the
incremental snapshot fails, and Squirrel needs to replicate
the entire scVolume. The second scenario however, does not
happen often with a large enough n, and even if it does, as
we show in Sections 2.2 and 4.3, the size of cVolumes never
exceeds a few tens of GBs (same order as a single VMI).

One question that is likely to arise is why Squirrel uses
snapshots to keep the ccVolumes in sync with scVolume,
rather than simply using the rsync [37] utility for this pur-
pose. The answer to this question is twofold. First, rsync is
a many-to-one operation, and can easily create a bottleneck
at the storage nodes. The ZFS incremental snapshot can be
streamed using any conventional peer-to-peer or multicast-
ing approach. Second, using rsync on-demand could poten-
tially avoid the bottleneck, but it translates to VM booting
delay for the first time. Further, with commodity networks
(e.g., 1 GbE) booting on-demand at scale with a cold cache
can introduce network bottlenecks as we have shown in [34].

4. EVALUATION
We evaluate different aspects of Squirrel’s cVolumes in

this section. Namely, in Section 4.2, we evaluate the storage
requirements and effects on boot time for Squirrel’s cVol-
umes, in Section 4.3, we evaluate the scalability of cVolumes
to large numbers of VMI caches, and we analyze network
transfers with Squirrel in Section 4.4.

For all the experiments of this section, we have used up
to 68 standard nodes of the DAS-4/VU cluster [11]. Each
standard DAS-4/VU node is equipped with dual quad-core
Intel E5620 CPUs, running at 2.4 GHz, 24 GB of memory,
and two Western Digital SATA 3.0 Gbps/7200 RPM/1 TB
disks in software RAID-0 fashion. The nodes are connected
using a commodity 1 Gb/s Ethernet and a premium QDR
InfiniBand providing a theoretical peak of 32 Gb/s.

At the time of writing this paper, DAS-4/VU nodes are
running CentOS 6.4 Linux. XFS is used as the local file
system, and we have used a native ZFS installation [41] to
run cVolumes as images on top of the XFS file system. It is
possible to run ZFS directly on the disk(s), but we decided
not to change the configuration of local disks on the nodes,
as they are shared by many users.

We use the 600+ community images of Windows Azure
as test case for our experiments. We provide detailed infor-
mation about our VMI repository in Section 4.1. To gen-
erate the data for Figures 2, 3, 4, and 12, we submitted
simple MapReduce jobs to Hadoop [5] running on a subset
of the DAS-4/VU nodes for analyzing our data set. For Fig-
ures 8, 9, 10, and 13, we used the statistics of the ZFS file
system for our analysis. The“real”data points in Figures 14,
and 16 are also reported by ZFS.

4.1 Dataset information
The VMIs in our dataset are consisting of Linux-based

operating systems, that are registered by the users of Win-

Table 2: OS diversity in Windows Azure and Amazon EC2.

OS distribution Windows Azure Amazon EC2

Ubuntu 579 5720
RedHat/CentOS 17 847

OpenSuse/Suse Ent. 5 8
Debian 3 30

Windows 0 531
Unidentified Linux 3 2654

Total 607 9871

dows Azure. Table 2 shows the number of VMIs for each
OS found in our dataset and, for comparison, in Amazon
EC24, the largest existing IaaS provider. The numbers re-
ported by Amazon EC2 are for all the regions combined, so
the numbers per region are likely to be smaller. We have
provided extrapolations to thousands of VMI caches based
on our dataset in Section 4.3.2.

The community VMIs of Windows Azure do not include
Windows distributions, likely due to licensing reasons. If we
had Windows in the mix, the boot working sets of different
Windows distributions would have deduplicated with each
other, thus adding a constant factor to Squirrel’s storage
requirements.

4.2 Cache volume efficiency
In this section, we analyze the effects of compressing and

deduplicating the contents of VMIs and VMI caches in ZFS
volumes. We first look at disk and memory requirements,
and then we move on to booting performance from ccVol-
umes. In the end, we will summarize our findings.

4.2.1 Disk
To verify our findings with respect to combined compres-

sion ratio presented in Section 2.2, we stored once the VMI
repository, and once the corresponding VMI caches in the
ZFS file system and measured the respective disk consump-
tion. Figure 8 shows the disk consumption for VMIs and
caches with varying block size. To our surprise, when lower-
ing block size, the point which results in worse CCR happens
sooner than what we measured in Figure 4 (16 KB for images
and 32 KB for caches). We suspected this is due to the fact
that the deduplication table itself also needs to be written
to the disk, resulting in even lower compression efficiency
for small block sizes. Figure 9 measures this overhead with
varying block size. The overhead of storing deduplication ta-
bles on the disk is indeed considerable with decreasing block
size and this verifies our theory.

4.2.2 Memory
As discussed in Section 2, deduplication, albeit effective

in compressing VMI contents, comes at the cost of the need
to keep a deduplication table in memory for fast access to
data blocks on disk. We have established in the previous
section that smaller block sizes may lead to better compres-
sion ratios, but resulting in bigger deduplication tables. Fig-
ure 10 measures the amount of memory consumed by a cVol-
ume with varying block size. For VMI caches, the memory
consumption is below 100 MB for block size of 32 KB and

4These numbers were reported by Amazon EC2 in their web
console in October 2013

 0

 50

 100

 150

 200

4 8 16 32 64 128

S
iz

e
 (

G
B

)

Block size (KB)

images: dedup + gzip6
caches: dedup + gzip6

Figure 8: Disk consumption with deduplication and compression.

 0

 2

 4

 6

 8

 10

 12

 14

4 8 16 32 64 128

S
iz

e
 (

G
B

)

Block size (KB)

images
caches

Figure 9: Deduplication table size on disk.

 0

 1

 2

 3

 4

 5

 6

 7

4 8 16 32 64 128

S
iz

e
 (

G
B

)

Block size (KB)

images
caches

Figure 10: Memory consumption for deduplication tables.

above, and remains relatively small for smaller block sizes.
For VMIs however, the memory consumption increases at an
alarming rate when reducing the block size. We will explain
this behavior further in Section 4.3.1.

4.2.3 Boot time
Deduplication generally slows down reading data from

disk due to two reasons. First, each access needs a lookup
in the deduplication table. Second, as shown in [14], as
data is being deduplicated, adjacent data blocks will end up
scattered on the disk. This effect results in random access
patterns when reading a chunk in a file that consists of mul-

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

1 2 4 8 16 32 64 128

A
v
e
ra

g
e
 b

o
o
t

ti
m

e
 (

s)

Block size (KB)

warm caches - zfs

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

1 2 4 8 16 32 64 128

A
v
e
ra

g
e
 b

o
o
t

ti
m

e
 (

s)

Block size (KB)

warm caches - zfs
qcow2 - xfs

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

1 2 4 8 16 32 64 128

A
v
e
ra

g
e
 b

o
o
t

ti
m

e
 (

s)

Block size (KB)

warm caches - zfs
qcow2 - xfs

cold caches - xfs

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

1 2 4 8 16 32 64 128

A
v
e
ra

g
e
 b

o
o
t

ti
m

e
 (

s)

Block size (KB)

warm caches - zfs
qcow2 - xfs

cold caches - xfs
warm caches - xfs

Figure 11: Performance of booting from deduplicated and compressed
VMI caches.

tiple sequential data blocks, and conventional disks do not
handle random accesses well.

As we reduce the block size, the deduplication table grows
in size, resulting in slower lookups. Further, data blocks get
even more scattered on the disk as the number of possible
hashes increase. Figure 11 shows the effect of varying block
size on VM boot performance from a warm cache. For this
experiment, we have measured the average boot time of the
VMs in our VMI repository when stored on cVolumes with
different block sizes. For reference, we have also included
the average boot time when booting: (1.) from the local file
system, (2.) and creating the cold cache, (3.) from a warm
cache stored on the local file system.

Booting from a warm cache increases the booting perfor-
mance on average by 16% when compared to booting from
the VMI stored on the local disk (baseline). To explain this
speed up, we need to look at the operation of QCOW2 [22].
Without a VMI cache, each time a VM boots, there are a
number of read requests from the CoW image to the VMI.
These requests, that are in the form of (offset, num sectors),
usually read from scattered locations around the disk de-
pending on the file system layout of the root partition of the
VMI (look at Figure 1 of [36]). Assuming the default cluster
size of QCOW2 (64 KB or 128 sectors), when booting from
a warm cache, the read requests from the CoW image to
the cache image, although usually smaller than 128 sectors,
translate to (offset, 128) due to the way QCOW2 operates.
The Linux page cache, running on the host, caches these sec-
tors. Incidentally, these cached sectors will be needed in a
near future, mostly because these other sectors are also part
of the boot working set as they are in the warm cache. The
end result is a free boost in performance due to reading a
large part of the boot working set from the page cache rather
than the disk. One could say that Squirrel VMI caches are
getting similar effects to prefetching [29] for free.

This boost in performance masks the deduplication and
compression overhead for block sizes that are equal and big-
ger than 32 KB. Also, 128 KB cVolume boots slower than
64 KB cVolume despite the trend. The reason is most likely
the default QCOW2 cluster size of 64 KB, which results in
read sizes of 64 KB from the KVM process to the cVolume.

4.2.4 Summary
To summarize our findings, we showed in Section 2.2 that

smaller block sizes than 64 KB do not yield considerable stor-

age efficiency. In this section, we showed that both disk and
memory requirements for the deduplication tables of cVol-
umes are fairly modest as long as the block size is not too
small. We then measured that the cVolume with block size
of 64 KB has the best booting performance. Even with dedu-
plication and gzip compression, the average booting perfor-
mance of Squirrel’s cVolume is about 10% better than when
the VMI is available locally on the compute node. To con-
clude, the block size of 64 KB is optimal for cVolumes. How-
ever, when necessary, we will report on other block sizes in
the rest of this section.

4.3 Scalability
Scalability is the most important requirement for a system

such as Squirrel that argues for storing all the VMI caches in
its cVolumes. To demonstrate that Squirrel is scalable, we
will first show in Section 4.3.1 that VMI caches share more
similarity among each other, than their associated VMIs.
We will then extrapolate the disk and memory consumption
of cVolumes using standard extrapolation techniques in Sec-
tion 4.3.2. At the end, we will iterate over the findings of
this section.

4.3.1 Cross-similarity of caches
We form the theory that caches share a lot more con-

tents with each other than their associated VMIs. VMI
caches usually contain the operating system kernel, boot
loader, and some standard services (i.e., a boot working set),
whereas VMIs contain a significant amount of libraries and
user-level software on top, that may or may not be used
during a VM life time. The rationale behind our theory is
that the boot working set does not differ much across many
VMI caches, unlike the user-level software that shows more
variability across different VMIs.

The reason behind better similarity in the boot working
set, is related to the fact that VMIs, although different from
each other, still are based on a certain number of distribu-
tions (e.g., Ubuntu, Debian, CentOS, etc.), and boot work-
ing sets of VMIs (i.e., VMI caches) from the same distribu-
tions are likely to show high similarity.

If our theory is correct, it shows the scalability of our cVol-
umes. To prove the theory, we have defined a new metric,
called cross-similarity. Cross-similarity measures data block
sharing across files and is defined as:

Cross-similarity =

i∈U∑
repetitioni

i∈I∑
|Ui|

,

where U is the set of all unique blocks, I is the set of all
VMIs, Ui is the set of unique blocks in VMI i, and repetition
of a data block is defined as the number of times a data
block appears across “different” files, or 0 if it has never
been repeated. In extreme cases, cross-similarity is 1 if the
images are the same, and 0 if they share no single data block.

Figure 12 measures the cross-similarity of VMIs and caches.
This figure shows that:

1. VMIs do not exhibit a good similarity across each
other, whereas caches show a strong cross-similarity,
effectively proving the theory discussed earlier.

2. As a result, with high similarity, a new VMI cache,
on average, introduces only a few hashes to cVolumes,
making Squirrel’s cVolumes scalable.

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 4 8 16 32 64 128 256 512 1024

S
im

ila
ri

ty

Block size (KB)

images
caches

Figure 12: Cross-similarity of VMIs and caches.

3. With smaller block sizes, the similarity increases for
caches, but not considerably with block sizes that are
smaller than 64 K. This is yet another reason that ar-
gues in favor of choosing 64 KB block size for cVolumes.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 50 100 150 200 250 300 350 400 450 500 550 600
 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

M
e
m

o
ry

 (
M

B
)

D
is

k
(G

B
)

Image Number

Disk, caches, bs = 64KB

Disk, images, bs = 64KB

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 50 100 150 200 250 300 350 400 450 500 550 600
 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

M
e
m

o
ry

 (
M

B
)

D
is

k
(G

B
)

Image Number

Memory, caches, bs = 64KB

Memory, images, bs = 64KB

Figure 13: Resource consumption of ZFS when iteratively adding
VMIs or caches.

To verify our theory in practice, we added VMI caches
iteratively to a ZFS file system with 64 KB block size, and
measured the memory and disk consumption when each VMI
cache was added to the system. We repeated the same ex-
periment with VMIs. Figure 13 shows the results for both
memory and disk. The slopes for VMIs look much steeper
than for caches. This means that each VMI is adding rel-
atively more hashes to file system than its associated VMI
cache. We use the resource consumption trends for VMI
caches as a basis for the extrapolations in the following.

4.3.2 Extrapolations
To understand the extent of Squirrel’s cVolume scalabil-

ity, we need to extrapolate their resource consumption. We
will use the disk consumption trend when adding new VMI
caches as a basis for extrapolation. We then extend our
extrapolation for memory as well.

Disk.
To extrapolate the disk consumption, we need to find a

curve that fits the current data points well, and still has
a relatively low error when predicting the future. We de-
vised the following approach, common in machine learning,

for finding the best fitting curve: (1.) We fed half of our
data points to our curve fitting program [10], and asked for
the two best non-polynomial fits as well as linear regression
(the simplest curve). (2.) We measured root-mean-square
error (RMSE) of the three candidate curves for all the data
points. (3.) We then used the curve type with the low-
est RMSE to find the best parameters that fit all the data
points. (4.) The resulting curve is then used for extrapola-
tion. The two functions with the best scores with the first
half of our data points were Morgan-Mercer-Flodin (MMF)
and Hoerl curves:

MMF (x) =
a× b + c× xd

b + xd

hoerl(x) = a× bx × xc

 0

 5

 10

 15

 20

 0 100 200 300 400 500 600

D
is

k
(G

B
)

Cache number

linear

 0

 5

 10

 15

 20

 0 100 200 300 400 500 600

D
is

k
(G

B
)

Cache number

linear
MMF

 0

 5

 10

 15

 20

 0 100 200 300 400 500 600

D
is

k
(G

B
)

Cache number

linear
MMF
hoerl

 0

 5

 10

 15

 20

 0 100 200 300 400 500 600

D
is

k
(G

B
)

Cache number

linear
MMF
hoerl

real

Figure 14: Disk consumption curve-fitting quality (BS = 64 KB).

Figure 14 shows the fitted curves when training with half
of the data points. Visually, all curves seem to have a close
estimate. MMF seems to be underestimating, while Hoerl
and linear regression seem to be overestimating. To find the
best fit, we need to calculate the RMSE with all our data
points as explained earlier.

Table 3 shows the RMSE of the curves for various block
sizes. According to the table, the linear regression has the
lowest RMSE and is thus the winner.

Table 3: RMSE of various curves that estimate disk consumption.

Block size Linear MMF Hoerl

128 KB 0.04 0.04 0.08
64 KB 0.03 0.04 0.04
32 KB 0.02 0.04 0.04
16 KB 0.02 0.05 0.03

With linear regression producing a good fit, this time we
trained it with all our available data points. Figure 15 shows
the resulting extrapolations for different block sizes. With
the chosen 64 KB block size for cVolumes, we can store
1200+ caches in about 18 GB of disk space. The extrap-
olation in Figure 15 continues till 3000 VMI caches, but
after 1200 (the vertical line in Figure 15) our curve fitting
approach does not guarantee a small RMSE.

Memory.
We repeated the same exercise to extrapolate the memory

consumption. MMF and Hoerl functions won good scores for

 0

 10

 20

 30

 40

 50

 60

 0 500 1000 1500 2000 2500 3000

D
is

k
(G

B
)

Cache number

linear - bs = 128kb

 0

 10

 20

 30

 40

 50

 60

 0 500 1000 1500 2000 2500 3000

D
is

k
(G

B
)

Cache number

linear - bs = 128kb
linear - bs = 64kb

 0

 10

 20

 30

 40

 50

 60

 0 500 1000 1500 2000 2500 3000

D
is

k
(G

B
)

Cache number

linear - bs = 128kb
linear - bs = 64kb
linear - bs = 32kb

 0

 10

 20

 30

 40

 50

 60

 0 500 1000 1500 2000 2500 3000

D
is

k
(G

B
)

Cache number

linear - bs = 128kb
linear - bs = 64kb
linear - bs = 32kb
linear - bs = 16kb

Figure 15: Extrapolation of disk consumption.

 0

 50

 100

 150

 200

 0 100 200 300 400 500 600

M
e
m

o
ry

 (
M

B
)

Cache number

linear

 0

 50

 100

 150

 200

 0 100 200 300 400 500 600

M
e
m

o
ry

 (
M

B
)

Cache number

linear
MMF

 0

 50

 100

 150

 200

 0 100 200 300 400 500 600

M
e
m

o
ry

 (
M

B
)

Cache number

linear
MMF
hoerl

 0

 50

 100

 150

 200

 0 100 200 300 400 500 600

M
e
m

o
ry

 (
M

B
)

Cache number

linear
MMF
hoerl

real

Figure 16: Memory consumption curve-fitting quality (BS = 64 KB).

memory consumption as well. Figure 16 shows the curves
when trained with half of our data points. Visually, this
time all three curves have a small overestimation, with MMF
having the smallest. Looking at RMSEs in Table 4, except
for 16 KB block size, MMF seems to estimate memory con-
sumption the best, and specifically with 64 KB.

Table 4: RMSE of various curves that estimate memory consumption.

Block size Linear MMF Hoerl

128 KB 0.21 0.14 0.15
64 KB 0.20 0.02 0.95
32 KB 0.44 0.26 1.03
16 KB 0.61 1.13 0.28

We then trained MMF with all our data points for memory
consumption. Figure 17 shows the extrapolations with dif-
ferent block sizes. According to the extrapolation for 64 KB
block size, Squirrel cVolumes only consume about 85 MB of
memory for the deduplicating 1200+ VMI caches; a very
modest requirement.

4.3.3 Summary
In Section 4.3.1, we have shown that VMI caches have

a very good cross-similarity. This entails that adding new
VMI caches to cVolumes does not result in too many new
hashes on average, and makes our cVolumes scalable. We
then extrapolated resource consumption for Squirrel’s cVol-
umes beyond caching 1000 VMIs in Section 4.3.2, and showed

 0

 100

 200

 300

 400

 500

 0 500 1000 1500 2000 2500 3000

M
e
m

o
ry

 (
M

B
)

Cache number

MMF - bs = 128kb

 0

 100

 200

 300

 400

 500

 0 500 1000 1500 2000 2500 3000

M
e
m

o
ry

 (
M

B
)

Cache number

MMF - bs = 128kb
MMF - bs = 64kb

 0

 100

 200

 300

 400

 500

 0 500 1000 1500 2000 2500 3000

M
e
m

o
ry

 (
M

B
)

Cache number

MMF - bs = 128kb
MMF - bs = 64kb
MMF - bs = 32kb

 0

 100

 200

 300

 400

 500

 0 500 1000 1500 2000 2500 3000

M
e
m

o
ry

 (
M

B
)

Cache number

MMF - bs = 128kb
MMF - bs = 64kb
MMF - bs = 32kb
MMF - bs = 16kb

Figure 17: Extrapolation of memory consumption.

that cVolumes require modest disk and memory resources in
such a scale, for example 18 GB disk and 85 MB memory for
storing 1200+ VMI caches.

4.4 Network transfer size

 0

 50

 100

 150

 200

 1 4 8 16 32 64

C
u
m

u
la

ti
v
e
 T

ra
n
sf

e
r

S
iz

e
 (

G
B

)

Nodes

Data Transfer of Compute Nodes - 32GbIB

w/ caches, vm/node = 8
w/o caches, vm/node = 1
w/o caches, vm/node = 2
w/o caches, vm/node = 4
w/o caches, vm/node = 8

Figure 18: Network transfer size with scaling the number of nodes
and the number of VMs per node.

In this section, we will look at the amount of network
transfers of compute nodes when starting VMs at scale. We
assigned 64 of DAS-4/VU nodes as compute nodes, and 4
nodes as storage nodes. On the storage nodes, we ran glus-
terfs, an off-the-shelf parallel file system. We configured
glusterfs with two levels of striping and two levels of repli-
cation, to have a good random access performance (over
four disks), and fault tolerance (tolerating one disk failure
in each of the two groups). We measured the amount of
network transfers at compute nodes once with Squirrel and
once without any caching. Since Squirrel is the first system
that caches all the bits that are needed for all VMI star-
tups, the amount of network transfers of all previous VMI
distribution systems will be in between the results shown.

Figure 18 shows the aggregated amount of network trans-
fers for VM startup at compute nodes.5 We are scaling
the number of compute nodes, and the number of VMs per
compute node. At each node, each VM is booting from
a different VMI. Without Squirrel, the amount of network

5Results shown are for Infiniband. Results for 1 GbE are
omitted for brevity as they are essentially the time despite
a little smaller per-packet overhead.

transfers increase as there are more VMs starting up in the
cluster. In the extreme case, with 512 VMs (64 nodes times
8 VMs), the aggregated transfer at compute nodes is about
180 GB, happening in a relatively short period of time, and
disturbing any existing VM that is using the network. With
Squirrel, however, compute nodes do not need to do any net-
work I/O, even when executing 8 VMs on each node from
different VMI sources.

4.5 Summary
We have evaluated the effects of placing Squirrel’s VMI

caches on all compute nodes of a data center using the set
of 600+ community images from Windows Azure. All tests
have shown a block size of 64 KB to be a sweet spot at which
disk and memory consumption is acceptably low while boot
times are not slowed down by using a compressed and dedu-
plicated file system instead of a plain XFS volume. With
block size of 64 KB, Squirrel’s cVolumes only consume 10 GB
of disk space, and 60 MB of memory for storing VMI caches
for all Windows Azure community VMIs. Further, the av-
erage booting time over Squirrel’s cVolumes, even though
they are compressed and deduplicated, is reduced by 10%,
compared to when the VMIs are available locally at compute
nodes, due to the caching effect explained in Section 4.2.3.

We have extrapolated our results to larger numbers of
VMI caches to be stored, and identified the need for 18 GB
disk and 85 MB memory for storing 1214 VMI caches. Given
current hardware, these amounts are very modest, if not to
say negligible. We consider it likely that in the near to
midterm future, even storing several thousand VMI caches
per node can be sustained by available node hardware.

To complete our evaluation, we measured the network
traffic necessary for concurrently booting up to 512 VMs on
64 nodes, comparing Squirrel to the absence of VMI caches.
Here, Squirrel showed the need for zero network traffic, and
hence no interference at all with other user network traffic.

5. RELATED WORK
We distinguish related work to Squirrel in three distinct,

but overlapping categories: (1.) Systems that implement
some sort of VMI caching or storage on the compute nodes.
(2.) Systems that focus on scalable distribution of VMI
contents. (3.) Systems that perform deduplication and/or
compression for efficient VMI storage. We will discuss each
category separately, and make comparisons to Squirrel or
discuss how Squirrel complements an existing system.

5.1 Storing VMI contents on compute nodes
There are a number of systems that aim at minimizing the

amount of network transfers by means of caching VMI con-
tents. OpenStack’s [17] Glance API server has the ability
to cache VMIs. It is possible to run the Glance API server
on many compute nodes to have cached VMIs on many lo-
cations. Compared to Squirrel, Glance API servers cannot
cache many multi-GB VMIs.

The Liquid file system [44] is designed for VMI distri-
bution and has an architecture similar to Squirrel. Liquid
keeps a cache of deduplicated VMI contents on each com-
pute node. The caches transfer data among each other and
from storage nodes as necessary. Squirrel is different from
Liquid in two important aspects: (1.) Squirrel’s VMI caches
are isolated from each other: The VMI blocks needed for
starting one VM do not evict boot working set blocks of dif-

ferent VMIs. (2.) Squirrel’s ccVolumes are fully replicated.
They do not need to transfer data between each other over
the network, reducing the variations in network bandwidth
observed by other VMs.

VMThunder [42] is a VMI distribution engine that pro-
vides scalable, on-demand P2P streaming, and a per-VMI
caching functionality similar to that of Squirrel. The evalu-
ation in [42], however, does not consider the case with many
VMIs, common in today’s data centers. Compression mech-
anisms, absent in VMThunder, are necessary for scaling the
caches to large numbers of VMIs.

Nicolae et al. [28] stripe VMI chunks across the disks
of many compute nodes. During VM boot, if a chunk is
required and missing, it is fetched from a peer that has
that chunk. They further improve their approach in [29]
by means of prefetching the chunks required for VM startup.
The access-pattern knowledge used in prefetching is retrieved
from the peers that boot a little faster. BlobSeer [27], the
file system that they have built upon, also keeps a cache of
the most recently accessed chunks, very much like Liquid.
Our comparison with Liquid holds here as well.

VDN [33] is a network hierarchy-aware system for trans-
ferring VMIs to compute nodes. Each VMI is divided into
chunks and each compute node has a cache for these chunks.
When booting a new VM, the compute node fetches the VMI
chunks that it lacks in its local cache from its peers in a net-
work topology-aware fashion. Squirrel solves the problem
that VDN is addressing by efficiently storing all VMI caches
in its ccVolumes.

Ming et al. [43] suggest that simply using NFS to transfer
VMIs is sub-optimal. By adding a module to NFS to cache
a number of NFS requests at the compute nodes or a proxy,
they improve the VM booting process with a warm cache.
They further improve the performance of the virtual disk
by doing copy-on-write in an NFS proxy that is running
inside the VM [7]. In contrast, Squirrel’s VMI caches provide
a clean caching abstraction at VMI-level. This makes it
possible to perform resource accounting per VMI. Further,
Squirrel’s ccVolumes persistently store all the blocks needed
for booting from all VMIs.

In general, Squirrel’s cVolumes can be used as a replace-
ment to improve the caching strategy used by the systems
discussed in this section.

5.2 Scalable distribution of VMI contents
There is an increasing demand for scalable VM startup

as cloud computing is being adopted for computationally
demanding areas, such as high-performance computing. A
number of studies have looked at scalable startup of VMs:

5.2.1 Peer-to-peer approaches
Peer-to-peer networking is a common technique for trans-

ferring a single VMI to many compute nodes [8, 31, 40].
The main issue so far has been the considerable delay of
startup time in order of tens of minutes. This is because
the complete VMI needs to be present before starting the
VM. VMTorrent [36] combines on-demand access with peer-
to-peer streaming to reduce this delay significantly.

While peer-to-peer transfer is a good match to scalable
content transfer in slower networks, it uses substantial net-
work resources to deliver the VMI to the compute nodes.
Squirrel, in contrast, caches all data blocks of all VMIs

needed for booting, and can save large amounts of network
transfers as we have shown in Section 4.4.

LANTorrent [30], from the Nimbus project, combines si-
multaneous VMI requests and builds a pipeline for stream-
ing complete VMIs from the storage node to all requesting
compute nodes. This is very adequate for applications or
services starting up with many VMs at the same time. For
small, private clouds, where all nodes are connected to a sin-
gle network switch, this chaining maximizes the throughput.
LANTorrent, however, introduces startup delay, as it needs
to transfer the multi-GB VMI through the network, most of
which never gets accessed during the life of a VM. LANTor-
rent, however, is a good candidate to transfer our small VMI
caches to Squirrel’s ccVolumes during VMI registration.

5.2.2 IP Multicasting
IP multicasting is another approach for scalable data trans-

fer from one-to-many nodes. Here, we will discuss related
work that use multicast as a mechanism to deliver VMIs.

Schmidt et al. [38] use Unionfs, a stacked file system used
for VMIs. The base VMI that contains a big chunk of
the final VMI, remains constant among different VMIs. By
caching the base VMI on the compute nodes and transferring
the rest using multicast, they achieve short startup delays.
Squirrel only relies on multicast for offline transfer of VMI
caches as part of VMI registration. Further, the read-only
nature of VMI caches can relax the requirement for a stacked
file system. VMI caches can be created for any type of image
in any state. The user-customized part can be transferred
in the form of a copy-on-write image to the compute nodes
that recurses to the cache image if necessary.

Haizea [39] is a lease-management architecture that com-
bines leasing VMs for batch execution. Haizea addresses
the problem of scalable deployment by means of multicas-
ting the complete VMI to the compute nodes and caching
it there. Squirrel can be used alongside Haizea to reduce
the deployment time significantly, and remove the burdon
of cache management from Haizea.

Multicasting has been used for cloning the VM state as
well. SnowFlock [20] can start many stateful worker VMs
in less than one second. It introduces VMFork and VM de-
scriptor primitives that fork child VMs that are in the same
state as the parent VM when they start. SnowFlock achieves
good performance by multicasting the requested data to all
workers and uses a set of avoidance heuristics at child VMs
to reduce the amount of memory traffic from the parent to
the children. While efficient, SnowFlock introduces change
in all layers of the system, at the VMM, and the VM, down
to the application. VMScatter [9] is a similar system, but
less intrusive, and also less efficient in terms of scale.

5.3 Compressing VMI contents
Squirrel’s cVolumes store VMI caches efficiently by ex-

ploiting deduplication and compression techniques in an off-
the-shelf ZFS file system [4]. There is a strong body of
research on deduplication of VMIs.

Jin et al. [19] performed a detailed study on the effective-
ness of deduplicating VMIs. From their findings, the fact
that fixed-size chunking works equally well (or sometimes
even better) when compared to variable-sized chunking is
relevant to our choice of using ZFS that employs fixed-size
chunking. Their results have been independently verified
over a large VMI repository in [18]. Jin et al. also report

similar numbers to ours when looking at similarity between
different VMIs. In Section 4.3, we showed that VMI caches
show a much better similarity among each other than VMIs,
a fact that makes Squirrel’s cVolumes scalable.

LiveDFS [26] is a file system aimed at VMI deduplica-
tion. Compared with ZFS, LiveDFS’ deduplication tables
consume less memory, making LiveDFS suitable for deploy-
ment on commodity servers. Squirrel’s VMI caches, how-
ever, have a high cross-similarity, and as a result they only
need modest memory requirement for deduplication. We
thus decided to use ZFS, which is of commercial quality.

Deduplication of disk content has been used to improve
the effectiveness of the page cache. Content-based block
caching [24] improves the overall system performance by re-
ducing redundancy of the page cache, and avoiding some of
the writes on disk that have the same content. Garces-Erice
et al. [15] use a similar approach to improve the performance
of the page cache in storage servers that serve IaaS compute
nodes. Their approach makes sure that data blocks that are
shared between many VMIs are less likely to be evicted from
the page cache. In our previous work with VMI caches [34],
we also made better use of storage servers’ memory by stor-
ing VMI caches in a ramfs. With Squirrel, however, we are
storing all the important blocks at compute nodes in order to
completely eradicate the VM startup load on storage nodes.

VMFlock [1] is a cross-cloud co-migration system that
transfers a set of VMIs, from one cloud to another. VM-
Flock uses deduplication opportunities among the set of
VMIs to be migrated, as well as the VMIs already available
in the destination cloud, to significantly reduce the amount
of data that needs to be transferred between clouds. VMI
caches are generally small (O(100 MB)), but due to their
high cross-similarity, the information that each new one adds
to Squirrel’s cVolume (i.e., cVolume diff) is even smaller
(O(10 MB)). Similar to VMFlock, we only need to transfer
a cVolume diff, instead of the whole VMI cache.

Coriolis [6] is a deduplication management system that
tries to efficiently cluster VMIs based on their similarity.
The grouping of VMIs with similar content results in high
deduplication ratio within a VMI cluster that can be stored
on separate locations. Similar to Coriolis, Rangoli [25] tries
to find similar files to maximize the amount space reclama-
tion when migrating a set of files. The scalability of Squir-
rel’s cVolumes gives us the luxury of storing all VMI caches,
without worrying about space reclamation.

6. CONCLUSIONS
The promise of elastic cloud computing is instantaneous

availability of virtual machines (VMs). In practice, however,
users often have to wait several or even a few tens of min-
utes until they can actually use their requested VMs. An
important factor of this delay is the actual VM boot process
that is slowed down by the need to transfer bulky, multi-GB
virtual machine images (VMIs) from storage nodes to the
selected compute nodes.

In previous work [34], we proposed using a VMI cache
on the compute nodes that contains the boot working set,
removing the need for network transfers while booting VMs.
We showed that VMI caches resolve scalability problems of
VM startup. Whereas VMI caches work well, they need to
be present and “warm” before a VM starts up.

This work is based on the observation that the many ex-
isting VMIs are mostly user customizations of only a few

types of operating systems and OS distributions. We have
shown that VMI caches (the boot working sets) have high
cross-similarity among each other, hence lending themselves
well for deduplication-based storage. Combined with com-
pression, the storage of all VMI caches on compute nodes
becomes possible. Thus, instead of studying cache replace-
ment policies and/or cache-aware VM scheduling, we pro-
pose a fully replicated storage design for caching all VMIs
of an IaaS cloud on all the compute nodes.

We have presented Squirrel, a concrete implementation
of this design using VMI caches and the ZFS file system.
Squirrel can store large amounts of VMI caches within a
deduplicated and compressed file system, on the local disks
of all compute nodes. We name this approach scatter hoard-
ing after the rodent approach for creating many, small food
caches.

Our evaluation using all 600+ community images from
Windows Azure shows that Squirrel is able to store VMI
caches for the overall 16.4 TB of VMIs within 10 GB of disk
and 60 MB of main memory, on all compute nodes. We con-
sider these requirements to be rather negligible on current
hardware. We have then extrapolated these requirements to
the storage needs for thousands of VMI caches and found
confirmation that our approach indeed scales to such large
numbers on current or near-future hardware.

To summarize, Squirrel completely removes the need for
network transfers towards compute nodes when booting vir-
tual machines, either from storage nodes or from other com-
pute nodes. Hence, Squirrel enables large-scale, public IaaS
clouds to provide dynamic VM startup purely within the
time it takes to boot the virtual OS itself, which is typically
tens of seconds, rather than within several minutes as it is
common today. This advantage especially helps for dynamic
scaling of (e.g., web) applications, helping to close the gap
towards truly elastic computing infrastructures.

Acknowledgments
This work is partially funded by the FP7 Programme of
the European Commission in the context of the Contrail
project under Grant Agreement FP7-ICT-257438, and by
the Dutch public-private research community COMMIT/.
The authors would like to thank Kees Verstoep for provid-
ing excellent support on the DAS-4 clusters, and HPDC’s
anonymous reviewers for providing valuable feedback on the
earlier version of this paper.

7. REFERENCES
[1] S. Al-Kiswany, D. Subhraveti, P. Sarkar, and

M. Ripeanu. VMFlock: Virtual Machine Co-migration
for the Cloud. In Proceedings of the 20th International
Symposium on High Performance Distributed
Computing, HPDC ’11, pages 159–170, 2011.

[2] Amazon Elastic Compute Cloud.
http://aws.amazon.com/ec2/, 2006. [Online; accessed
22-01-2014].

[3] ec2 upload bundle. http://docs.aws.amazon.com/
AWSEC2/latest/CommandLineReference/

CLTRG-ami-upload-bundle.html, 2006. [Online;
accessed 22-01-2014].

[4] J. Bonwick and B. Moore. ZFS: The Last Word in File
Systems. The SNIA Software Developers’ Conference,
2008.

[5] D. Borthakur. The Hadoop Distributed File System:
Architecture and Design. The Apache Software
Foundation, 2007.

[6] D. Campello, C. Crespo, A. Verma, R. Rangaswami,
and P. Jayachandran. Coriolis: Scalable VM
Clustering in Clouds. In Presented as part of the 10th
International Conference on Autonomic Computing,
pages 101–105, 2013.

[7] V. Chadha and R. J. Figueiredo. ROW-FS: a
user-level virtualized redirect-on-write distributed file
system for wide area applications. In Proceedings of
the 14th international conference on High performance
computing, HiPC ’07, pages 21–34, 2007.

[8] Z. Chen, Y. Zhao, X. Miao, Y. Chen, and Q. Wang.
Rapid Provisioning of Cloud Infrastructure Leveraging
Peer-to-Peer Networks. In Proceedings of the 2009
29th IEEE International Conference on Distributed
Computing Systems Workshops, ICDCSW ’09, pages
324–329, 2009.

[9] L. Cui, J. Li, B. Li, J. Huai, C. Ho, T. Wo,
H. Al-Aqrabi, and L. Liu. VMScatter: Migrate Virtual
Machines to Many Hosts. In Proceedings of the 9th
ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments, VEE ’13, pages
63–72, 2013.

[10] CurveExpert Professional. http://www.curveexpert.
net/products/curveexpert-professional. [Online;
accessed 24-01-2014].

[11] DAS-4 clusters.
http://www.cs.vu.nl/das4/clusters.shtml.
[Online; accessed 24-01-2014].

[12] M. Dutch. Understanding data deduplication ratios.
SNIA Data Management Forum, 2008.

[13] H. Fernandez, G. Pierre, and T. Kielmann.
Autoscaling Web Applications in Heterogeneous Cloud
Infrastructures. In Proceedings of the IEEE
International Conference on Cloud Engineering
(IC2E), Mar. 2014.

[14] L. Garces-Erice and S. Rooney. Scaling OS Streaming
Through Minimizing Cache Redundancy. In
Proceedings of the 2011 31st International Conference
on Distributed Computing Systems Workshops,
ICDCSW ’11, pages 47–53, 2011.

[15] L. Garces-Erice and S. Rooney. Scaling OS Streaming
through Minimizing Cache Redundancy. In 31st
International Conference on Distributed Computing
Systems Workshops (ICDCSW), pages 47–53, 2011.

[16] A. Iosup, S. Ostermann, N. Yigitbasi, R. Prodan,
T. Fahringer, and D. Epema. Performance Analysis of
Cloud Computing Services for Many-Tasks Scientific
Computing. IEEE Transactions on Parallel and
Distributed Systems, 2010.

[17] K. Jackson. OpenStack Cloud Computing Cookbook.
Packt Publishing, 2012.

[18] K. R. Jayaram, C. Peng, Z. Zhang, M. Kim, H. Chen,
and H. Lei. An Empirical Analysis of Similarity in
Virtual Machine Images. In Proceedings of the
Middleware 2011 Industry Track Workshop, number 6
in Middleware ’11, pages 6:1–6:6, 2011.

[19] K. Jin and E. L. Miller. The Effectiveness of
Deduplication on Virtual Machine Disk Images. In
Proceedings of SYSTOR 2009: The Israeli

Experimental Systems Conference, number 7 in
SYSTOR ’09, pages 7:1–7:12, 2009.

[20] H. A. Lagar-Cavilla, J. A. Whitney, A. M. Scannell,
P. Patchin, S. M. Rumble, E. de Lara, M. Brudno,
and M. Satyanarayanan. SnowFlock: rapid virtual
machine cloning for cloud computing. In Proceedings
of the 4th ACM European conference on Computer
systems, EuroSys ’09, pages 1–12, 2009.

[21] M. Mao and M. Humphrey. A Performance Study on
the VM Startup Time in the Cloud. In 5th
International IEEE Conference on Cloud Computing,
CLOUD ’12, pages 423–430, 2012.

[22] M. McLoughlin. The QCOW2 Image Format.
http://people.gnome.org/~markmc/

qcow-image-format.html, 2008. [Online; accessed
24-01-2014].

[23] D. Milojic̆ić, I. Llorente, and R. S. Montero.
OpenNebula: A Cloud Management Tool. IEEE
Internet Computing, 15(2):11–14, 2011.

[24] C. B. Morrey and D. Grunwald. Content-Based Block
Caching. In 23rd IEEE, 14th NASA Goddard
Conference on Mass Storage Systems and
Technologies, MSST ’06, 2006.

[25] P. Nagesh and A. Kathpal. Rangoli: Space
Management in Deduplication Environments. In
Proceedings of the 6th International Systems and
Storage Conference, SYSTOR ’13, 2013.

[26] C.-H. Ng, M. Ma, T.-Y. Wong, P. P. C. Lee, and
J. C. S. Lui. Live Deduplication Storage of Virtual
Machine Images in an Open-source Cloud. In
Proceedings of the 12th ACM/IFIP/USENIX
International Conference on Middleware, Middleware
’11, pages 81–100, 2011.

[27] B. Nicolae, G. Antoniu, L. Bougé, D. Moise, and
A. Carpen-Amarie. BlobSeer: Next-generation data
management for large scale infrastructures. Journal of
Parallel and Distributed Computing, 71(2):169–184,
2011.

[28] B. Nicolae, J. Bresnahan, K. Keahey, and G. Antoniu.
Going Back and Forth: Efficient Multideployment and
Multisnapshotting on Clouds. In Proceedings of the
20th International Symposium on High Performance
Distributed Computing (HPDC ’11), pages 147–158,
2011.

[29] B. Nicolae, F. Cappello, and G. Antoniu. Optimizing
multi-deployment on clouds by means of self-adaptive
prefetching. In Proceedings of the 17th international
conference on Parallel processing - Volume Part I,
Euro-Par ’11, pages 503–513, 2011.

[30] Nimbus Project. LANTorrent.
http://www.nimbusproject.org/docs/current/

admin/reference.html#lantorrent, 2010. [Online;
accessed 27-01-2014].

[31] C. M. O’Donnell. Using BitTorrent to distribute
virtual machine images for classes. In Proceedings of
the 36th annual ACM SIGUCCS fall conference:
moving mountains, blazing trails, SIGUCCS ’08, pages
287–290, 2008.

[32] E. J. O’Neil, P. E. O’Neil, and G. Weikum. The
LRU-K Page Replacement Algorithm for Database
Disk Buffering. In Proceedings of the 1993 ACM

SIGMOD International Conference on Management of
Data, SIGMOD ’93, pages 297–306, 1993.

[33] C. Peng, M. Kim, Z. Zhang, and H. Lei. VDN: Virtual
machine image distribution network for cloud data
centers. In 29th Conference on Computer
Communications, INFOCOM ’10, pages 181–189,
2012.

[34] K. Razavi and T. Kielmann. Scalable Virtual Machine
Deployment Using VM Image Caches. In Proceedings
of the International Conference on High Performance
Computing, Networking, Storage and Analysis,
number 65 in SC ’13, 2013.

[35] K. Razavi, L. M. Razorea, and T. Kielmann. Reducing
VM Startup Time and Storage Costs by VM Image
Content Consolidation. In 1st Workshop on
Dependability and Interoperability In Heterogeneous
Clouds, Euro-Par 2013: Parallel Processing
Workshops, 2013.

[36] J. Reich, O. Laadan, E. Brosh, A. Sherman, V. Misra,
J. Nieh, and D. Rubenstein. VMTorrent: scalable P2P
virtual machine streaming. In Proceedings of the 8th
international conference on Emerging networking
experiments and technologies, CoNEXT ’12, pages
289–300, 2012.

[37] rsync. http://rsync.samba.org. [Online; accessed
22-01-2014].

[38] M. Schmidt, N. Fallenbeck, M. Smith, and
B. Freisleben. Efficient Distribution of Virtual
Machines for Cloud Computing. In 18th Euromicro
International Conference on Parallel, Distributed and
Network-Based Processing (PDP), PDP ’10, pages
567–574, 2010.

[39] B. Sotomayor, K. Keahey, and I. Foster. Combining
Batch Execution and Leasing Using Virtual Machines.
In Proceedings of the 17th International Symposium on
High Performance Distributed Computing, HPDC ’08,
pages 87–96, 2008.

[40] R. Wartel, T. Cass, B. Moreira, E. Roche,
M. Guijarro, S. Goasguen, and U. Schwickerath.
Image Distribution Mechanisms in Large Scale Cloud
Providers. In 2010 IEEE Second International
Conference on Cloud Computing Technology and
Science, CloudCom ’10, pages 112–117, 2010.

[41] ZFS on Linux. http://zfsonlinux.org. [Online;
accessed 24-01-2014].

[42] Z. Zhang, Z. Li, K. Wu, D. Li, H. Li, Y. Peng, and
X. Lu. VMThunder: Fast Provisioning of Large-Scale
Virtual Machine Clusters. IEEE Transactions on
Parallel and Distributed Systems, 99, 2014.

[43] M. Zhao, J. Zhang, and R. Figueiredo. Distributed
File System Support for Virtual Machines in Grid
Computing. In Proceedings of the 13th IEEE
International Symposium on High Performance
Distributed Computing, HPDC ’04, pages 202–211,
2004.

[44] X. Zhao, Y. Zhang, Y. Wu, K. Chen, J. Jiang, and
K. Li. Liquid: A Scalable Deduplication File System
for Virtual Machine Images. IEEE Transaction on
Parallel and Distributed Systems, 2013.

