
HybriDIFT: Scalable Memory-Aware Dynamic
Information Flow Tracking for Hardware

Flavien Solt
ETH Zürich

Kaveh Razavi
ETH Zürich

Abstract—Designing correct and secure hardware is challeng-
ing. Dynamic information flow tracking (DIFT) enhances RTL
testing flows, for example, by providing formal guarantees on
detecting information leakage. However, existing DIFT solu-
tions do not scale to large memories encountered in complex
processors. A formal analysis of existing DIFT mechanisms
reveals the two factors that fundamentally limit the scalability
of instrumenting memories: existing mechanisms enforce that all
memory words must be accessible simultaneously, and dependent
reads and writes must happen concurrently. These aspects that
are detrimental to scalability are all due to precise tracking of
implicit flows for every memory word, which is not required
in many scenarios of interest. Based on this insight, we design
HybriDIFT, a module-level DIFT memory instrumentation based
on SRAM deduplication and on a single state bit that tracks
implicit information flows. HybriDIFT can automatically identify
memories and their protocols by combining static and dynamic
analysis. HybriDIFT is precise in practice and scalable to RTL
designs that feature large memories. We evaluate HybriDIFT
by automatically instrumenting a set of open-source hardware
designs. With Verilator, HybriDIFT accelerates build time by
1.06× to 3.5× and simulation by 2.6× to 5.1× on default target
configurations, and instruments a larger OpenC910 configuration
that was out of reach for the state-of-the-art DIFT mechanisms,
while preserving sufficient precision for all known applications.

I. INTRODUCTION

Designing correct hardware is challenging, as witnessed by
the number of bugs regularly found in commercial [1] and
open-source [2]–[6] designs. Hardware dynamic information
flow tracking (DIFT) provides strong guarantees regarding
confidentiality and integrity. DIFT has recently been shown to
enable the detection of information leakage, of architectural
bugs and of microarchitectural vulnerabilities, and to scale to
complex designs such as out-of-order processors [7].

Yet contemporary DIFT imposes a significant overhead
both when building and simulating designs, because of the
instrumentation of deep memories, i.e., memories that contain
many words. Hence, a common practice is to modify designs
before instrumenting them, typically by minimizing internal
memories such as microarchitectural structures [7], [8]. This
approach has two major shortcomings. First, parametrizable
designs must be specifically configured towards smaller mem-
ories to be efficiently instrumentable by DIFT mechanisms.
Furthermore, this implies that DIFT mechanisms are effec-
tively unsuited to instrument actual design versions. This is
unfortunate since DIFT may miss problematic information
flows that may only appear with default memories. The second
shortcoming is that some designs are only slightly parame-

terized [9], [10], resulting in severe scalability problems for
DIFT. Given the compelling theoretical promises made by
DIFT [7], [11]–[17], it is paramout to have a practical solution
that scales with the increasing design complexities and sizes.

We make the observation that the existing DIFT mech-
anisms will attempt to track implicit information flows in
memories with a high precision [7], [8], [18]. Besides poor
scalability, we find that precise implicit flow tracking has never
been useful for any known hardware DIFT application, as
opposed to precise explicit flow tracking, which we will show
to be efficiently implementable. As an example, detecting a
Meltdown-like vulnerability [19] first requires a legitimate
load of data tainted as confidential by a privileged instance into
some cache. Precisely tracking this explicit flow of tainted data
to the specific target cache word is important, as excessively
tainting the cache would mark other data or instructions as
confidential and would very easily lead to an intractable
number of false positives when they are loaded or executed. As
a second step, an attacker speculatively loads the data from the
cache and uses it as an address to access a different memory
location in the cache. At this point, what exact words of
memory will be tainted is of low relevance, as taint explosion
usually follows regardless of slight variations in the number
of tainted words after the occurrence of the implicit flow [7].

Our formal analysis identifies two factors that fundamentally
limit the scalability of precise tracking of implicit information
flows: the need for accessing all values together at once,
and the need for dependent reads and writes in a single
cycle. Hence, to provide scalability while maintaining suf-
ficient precision in practical scenarios, we propose to treat
explicit information flows to memory words precisely, while
collapsing implicit information flows into a single taint bit.
None of the proposed DIFT abstraction levels (gate [8],
RTL [18], or macro-cell [7]), however, captures the memory
behavior at a level that enables us to treat explicit and implicit
flows separately. Indeed, memory is a higher-level construct,
and our empirical study shows that in standard designs, the
module level captures memories very effectively. We present
HybriDIFT, the first DIFT mechanism that instruments mem-
ories at the module level, while defering the rest of the
instrumentation to existing DIFT mechanisms that operate at
a lower abstraction level [7], [8], [18]. HybriDIFT can either
automatically identify memories and their protocols using a
combined static and dynamic analysis, or rely on a manual
annotation of the memory interfaces to instrument them.



We evaluate HybriDIFT on a set of open-source designs and
show that it can significantly accelerate both elaboration and
simulation. To show that HybriDIFT maintains the precision
of existing DIFT mechanisms, we reproduce the variety of
use cases demonstrated by the state-of-the-art DIFT instru-
mentation mechanism [7] and show that the approximation of
implicit flows does not deteriorate the results.

In summary, our contributions in this paper are:
• We identify the fundamental limitations of existing DIFT

mechanisms when it comes to memory instrumentation.
• We propose a novel memory instrumentation that is

scalable and sufficiently precise for practical use cases.
• We introduce HybriDIFT, the first DIFT instrumentation

mechanism that operates at module level.
• We evaluate HybriDIFT on a set of open-source designs,

and report an acceleration of up to 3.5× for build and
5.1× for simulation.

• We reproduce the variety of use cases demonstrated by
state-of-the-art DIFT mechanism [7] and show that the
detection results are unaffected.

HybriDIFT is available at https://comsec.ethz.ch/transfuzz/

II. BACKGROUND

In this section, we provide background regarding abstraction
levels in Verilog, hardware DIFT, and hardware memories.

A. Levels of abstraction in Verilog

Hardware designs are generally described at the Register
Transfer Level (RTL) in languages such as Verilog. RTL is an
abstraction level describing the behavior of digital circuits in
terms of binary data flows between registers, and the arithmetic
or logical operations that are performed on the data. Modules
describe the hierarchy of a design [20]. All digital circuits can
be described down to a (large) netlist of logic gates, such as
AND, OR, and simple stateful elements such as flip-flops and
latches. Electronic Design Automation (EDA) software often
first transforms the RTL description into a netlist of macro-
cells, which is the preferred intermediate representation for
optimizations, transformations and synthesis [21].

B. Hardware DIFT

An information flow (also known as taint flow) between
a source and a sink signifies that changes in the valuation
of the source signal can affect the valuation of the sink
signal. Computing whether a signal A should be tainted is
equivalent to iterating through all valuations of all tainted
signals, and observing whether A is affected. Information Flow
Tracking (IFT) can be used to detect information leaks like
side-channel attacks or to detect bugs in a design [7], [8],
[11], [13], [22]. Dynamic IFT (DIFT) instruments designs by
concretely inserting additional logic to track the flow of infor-
mation through the original design, while the original design’s
functionality remains unaffected. This instrumentation allows
following information flows through the design at runtime,
typically during simulation, or when proving formal proper-
ties. Several abstraction levels have been proposed for DIFT

instrumentations: gate level (GLIFT) [8], RTL (RTLIFT) [18],
and most recently the Yosys macro-cell level (CellIFT) [7].

The existing instrumentation mechanisms [7], [8] hit a
scalability wall when instrumenting deep memories (i.e.,
memories with many words) such as the default caches of
CVA6 [9], Rocket [23], BOOM [24] and OpenC910 [10]. Con-
sequently, such designs are sometimes adapted specifically for
instrumentation [7]. Some open-source designs are not much
parametrizable in terms of memory sizes [9], [10], making
their instrumentation difficult in practice, by incurring either
a heavy manual effort, or significant performance overheads.

C. Memories

At design time, the exact memory implementation (mega-
cell for ASICs, BRAM for FPGAs) is usually abstracted away
and only the memory interface is described. The memory is
instantiated as a black-box module that emulates the func-
tionality for simulation purposes. In particular, apart from
a clock signal, memories have a data input and output, an
address input, and some enable signals. SRAMs are par-
ticularly area- and power-efficient memories, at the cost of
providing access to only one element at a time, as opposed to
standard cells, which may provide access to multiple elements
concurrently [25]–[28].

III. OBSERVATIONS AND OVERVIEW

In this section, we first analyze the scalability issues of
existing DIFT mechanisms and the precision requirements
of known DIFT applications. From these observations, we
describe challenges that will guide the design of HybriDIFT.

A. Observations

We analyze the scalability of existing instrumentation mech-
anisms and the role of their precision in all known use cases.

a) Scalability: To understand the scalability of existing
DIFT mechanisms, we consider a 32-bit wide memory module
and instrument it for various depth values, i.e., various num-
bers of words. We measure the performance of instrumentation
and simulation for memories of increasing depth and report
the results in Figure 1. The state of the art (CellIFT) [7] could
not instrument memories with a depth of 64kWord or more
in 12 hours. While we conducted the experiment both with
GLIFT and CellIFT, we only report the results for CellIFT, as
the latter systematically shows significantly better performance
and non-inferior precision by construction. Note that the
L2 cache of OpenC910 [10] contains 8kWord memories by
default, but can be configured to contain memories of up
to 64kWords (spsram_65536x128). Evidently, the latter
cannot be instrumented or simulated in reasonable time with
CellIFT given the results reported in Figure 1. Future RISC-
V CPUs with deeper pipelines, microarchitectural components
and caches will certainly all face similar scalability issues.

Observation 1. Instrumenting deep memories with state-
of-the-art DIFT mechanisms is expensive.

https://comsec.ethz.ch/transfuzz/


0

5
Bu

ild
 ti

m
e 

(h
)

Vanilla
CellIFT

2 4 6 8 10 12 14
Memory Depth (address bits)

0

20

Si
m

 ti
m

e 
(s

)

Vanilla
CellIFT

Fig. 1. Performance of building and simulating memories of various depths.
Vanilla represents the absence of instrumentation.

b) Precision: To understand the precision requirements
of DIFT for memories, we enumerate all the known use cases
of hardware DIFT. In the original work that presents a gate-
level DIFT mechanism [8], the authors specifically designed
a CPU and an ISA to ensure that memory addresses will
not be tainted, to avoid taint explosion. W. Hu et al. [11],
[14], [29] and RTLIFT [18] only showed applications in
memory-less designs. J. Oberg et al. [30] instrumented a
cache, but they only monitor whether it is reached by tainted
signals. Clepsydra [22] relies on imprecise memory taints
only. In the use cases demonstrated by CellIFT [7] memory
addresses or enable signals are either never tainted (detection
of microarchitectural leakage and of architectural bugs), or
the detection indeed relies on the taint explosion induced by
tainting memory control signals, typically memory addresses
(detection of microarchitectural vulnerabilities).

Observation 2. There is no known use case of hardware
DIFT that makes use of precise information flow tracking
from memory addresses or enable signals.

B. Overview

We observed the scalability issues related to memories in
existing DIFT mechanisms. Additionally, no known use case
of hardware DIFT requires precise taint flows from memory
addresses or enable signals. To provide a solution that is both
efficient and practical, we tackle the following challenges.

Challenge 1. Analyze the potentials and limitations of
precise memory DIFT instrumentation.

In Section IV, a formal analysis of precise memory DIFT
reveals the two aspects that fundamentally limit the scalability
of existing DIFT mechanisms. Both are related to precise
implicit flow tracking, which are exactly the flows that can be
tracked imprecisely in all known hardware DIFT use cases.

Challenge 2. Introduce a novel memory instrumentation
that is scalable and with sufficient precision.

In Section V, given these formal insights, we propose a
novel practical DIFT memory instrumentation that precisely
tracks explicit flows and conservatively tracks implicit flows.
This instrumentation is based on memory deduplication, and

on the addition of a new aggregated state bit τ to track all
implicit information flows at once.

Challenge 3. Detect memories and their protocols and
provide an automated hybrid instrumentation solution.

In Section VI, we introduce HybriDIFT, a hybrid instrumen-
tation solution that relies on manual annotations or automatic
memory and protocol identification by a combined static and
dynamic approach, and instruments them at module level,
while delegating the rest of the design to an existing DIFT
mechanism. We finally show the performance and practicality
of HybriDIFT on a set of designs and scenarios.

IV. PRECISE MEMORY INSTRUMENTATION

In this section, we perform a formal analysis of precise
memory DIFT and deduce the aspects that impair scalability.

We split the analysis between reads and writes. We observe
that each of these two operations is made of an explicit and
an implicit flow component. Such a separation has already
been proposed in other software [31]–[35] and hardware [11],
[18] DIFT applications. Note that this distinction between
implicit and explicit components does not exist in current
hardware DIFT instrumentations [7], [8], [18], which operate
at a too low level of abstraction to capture it, but is conceptual
separation that we introduce for the formal analysis.

Let us refer to memory bits as M [S]i, where S is some
word selector signal and i is the bit index in this word. We
introduce the signals Di and Yi for the input and output
data. We introduce, without loss of generality, Wi and Ri for
bit-level write and read enable. Memories may for example
feature both a write enable and a byte enable signal, which
we combine into Wi for simplicity, as they would complicate
the equations without affecting the conclusions of our analysis.
We discuss in Section V-B how the analysis extends to slightly
more complex memory interfaces. Finally, for some signal A,
we denote its taint signal as At, which is a parallel signal with
its own computation and propagation rules, as introduced in
previous hardware DIFT work [7], [8], [18].

a) Precise memory writes: When a memory bit is tainted,
then this taint is persistent until it is overwritten, because the
value in the original memory will also be preserved until then.
The update rule for writes is described by Equation 1.

The explicit flow M [S]ti,ex corresponds to tainted data input,
while the implicit flow M [S]ti,im corresponds to tainted control
input, i.e., addresses or enable signals.

M [S]ti,next = M [S]ti,ex ∨M [S]ti,im (1)

In explicit flows, taints represent variability in what value is
written, as expressed by Equation 2. Said otherwise, in explicit
flows, changing the valuation of a tainted bit (i.e., changing
the value of some input Di, if Dt

i = 1) will only affect the
value written to the specified memory word M [S].

M [S]ti,ex = Wi ? Dt
i : M [S]ti (2)



To express implicit flows, we involve the notation A
t
= B

from [7]. It stipulates that two signals A and B match on the
non-tainted bits indices, as described in Equation 3.

A
t
= B ⇔ ∀j, (Aj = Bj) ∨At

j ∨Bt
j (3)

In implicit flows, taints represent variability in whether the
memory bit of interest could toggle, depending on potential
changes in the valuations of tainted control input bits (ad-
dresses or write enable signals). Equation 4 expresses implicit
flows for write signals. Implicit flows can occur due a tainted
write enable signal (W t

i = 1) or the word selector S being
tainted, which implies that changes in valuations of tainted
bits of S will decide whether M [S̃] or another word will be
written to. The selector S̃ is a conceptual memory index, hence
it is never tainted. S̃ complies with the equation S

t
= S̃, i.e.,

S could be changed into S̃ by only flipping tainted bits.
The second line of Equation 4 expresses that depending

on the valuation of bits in control inputs whose taint signal
counterpart is 1, the memory word at address S̃ could be
written or not. The last line of Equation 4 expresses the three
cases that could taint the memory given all the possibilities
provided by the second line. Either the input data is tainted
and the second line allows writing to the memory by choosing
some valuation of tainted bits (Dt

i), or the memory word at
address S̃ is already tainted (M [S̃]ti) and the second line allows
not to write to the memory, or the input data and the present
data are distinct at bit i (Di⊕M [S̃]i), and hence the variation
tolerated by line 2 between writing and not writing the word at
address S̃ induces a change in the memory bit value, and hence
a taint at this location in memory. Consequently, each of the
two lines of Equation 4 represents respectively the existence of
variations in whether the word at address S̃ is written (when
changing valuations of bits that are tainted), and whether these
variations can effectively impact the value of the memory bit
at index i, hence the equation covers all cases.

∀S̃,M [S̃]ti,im =

((W t
i ∨ (Wi ∧

∨
St ∧ (S

t
= S̃)))∧

(Dt
i ∨M [S̃]ti ∨ (Di ⊕M [S̃]i)))

(4)

b) Precise memory reads: Contrary to writes, reads never
leave a persistent taint in the memory.

For simplicity and without loss of generality, we assume that
the memory returns 0 when it is not actively being read, and
that the memory is being read combinationally, i.e., without
latency, hence we avoid potential delays that would clutter the
equations. Like for writes, the taint for reads is described by
Equation 5, where Y is the data output signal.

Y t
i = Y t

i,ex ∨ Y t
i,im (5)

Like for writes, taints in read explicit flows Y t
i,ex represent

variability in what value is read, as expressed by Equation 6.

Y t
i,ex = Ri ? M [S]ti : 0 (6)

To express implicit read data flows, we first define in
Equation 7 the set S(S, St) of all possible words that could
be addressed in memory, given the word selector signal and
its taint, if we could flip tainted bits of S, i.e., the bits of S at
indices j such that St

j = 1.

S(S, St) := {M [S̃] | S t
= S̃} (7)

From there, we express the implicit read data flows in
Equation 8. This expression is made of two components,
where taint represents variability in whether something is read,
and where in memory it is read from. Note that if we had
not formulated the assumption that Yi is always 0 when the
memory is not actively being read, then the M [S]i term in
the first component (Rt

i ∧ (M [S]i∨M [S]ti)) would have to be
XORed with the value of Yi if no read would happen. Hence
we fixed this value to 0 for the reader’s convenience. The read
output is tainted by the second component if, depending on
which address would be selected if tainted bits were flipped,
the output bit could flip. For instance, if the memory is full
of zeros, the read address will not influence the read output.
On the contrary, if the memory contains a word full of ones
and one word full of zeros, assuming that both words would
be readable by flipping some tainted bits of S, then the read
output will be tainted, as changes in valuations of tainted
control bits (in that case in S) would influence the output
value. Specifically, the last line of Equation 8 expresses that
there are two memory words at two addresses reachable by
flipping tainted bits of S that differ at bit i, or at least one of
them is tainted at bit i.

Y t
i,im =

(Rt
i ∧ (M [S]i ∨M [S]ti)) ∨ ((Ri ∨Rt

i)∧

(
∨

mi∈S(S,St)
mi ∨mt

i) ∧ (
∨

mi∈S(S,St)
mi ∨mt

i))

(8)

c) Conclusions on precise memory instrumentation:
From this analysis, we draw two observations that underline
the structural implications of precise memory instrumentation
for explicit and implicit flows, and hence the scalability
implications. The first observation concerns explicit flows.

Observation 3. Precise explicit flows only require access
to a single memory word per clock cycle.

The second observation concerns implicit flows. First, as
shown by Equations 4 and 8, calculating precise information
flows requires writing (∀S̃,M [S̃]ti,im = · · · ) and reading
(
∨

mi∈S(S,St) · · · ) as many words as the whole memory in



each clock cycle. Second, as expressed by the term Di⊕M [S̃]i
in Equation 4, if changing valuations of tainted input bits can
affect whether a write will happen, the memory must first be
read, XORed and then written again, in a single clock cycle,
to know whether this decision can impact the stored value.

Observation 4. Precise implicit flows require being able
to read or write as much data as the whole memory size in
a single cycle, and to perform dependent reads and writes
in a single clock cycle.

These two observations are fundamental to the scalability
aspect of precise memory instrumentation and will guide the
design of our practical memory instrumentation.

V. PRACTICAL MEMORY INSTRUMENTATION

We observed that precise implicit flows have two fundamen-
tal properties that make them hard to implement in practice.
This explains the scalability limits that we observed earlier in
Section III-A-a. Yet these constraints are only there to satisfy
precise information flow tracking from control signals. We
have shown in Section III-A-b that such a precise tracking of
implicit flows is not required in existing DIFT applications.

A. Adaptations for practicality

We propose to instrument memories by conservatively ap-
proximating information flows coming from the address and
enable signals to resolve these issues. To efficiently aggregate
these implicit information flows, we introduce a unique state
bit τ that tracks whether some implicit flow from some control
bits happened at write time. After τ is set, τ can only be unset
by a reset signal. This state τ = 1 models the typical enormous
amount of taint that would occur from implicit address flows.

a) Practical memory writes: The update rule of τ , ig-
noring resets which unset it, is described by Equation 9.

τnext = τ ∨ (Wi ∧
∨

St) ∨W t
i (9)

Despite the simplicity of its update rule, τ captures all
implicit flows for write signals, while requiring none of the two
expensive constraints that we identified earlier. Equation 10
expresses the practical taint propagation from writes, where
the explicit flow M [S]ti,ex remains as defined in Equation 2
from Section IV.

M [S]ti,next = M [S]ti,ex ∨ τ (10)

b) Practical memory reads: Since τ contains an over-
approximation of the effects of implicit flows that occur during
write operations, which would be stored in M [S]ti,next in
precise instrumentations, we must add a τ component in the
read taint. Concretely, any read will be tainted if τ is set, which
again makes an intuitive correspondence between τ = 1 and
the memory being potentially excessively tainted by implicit
flows. Regarding the read enable signal taint flow, a precise
instrumentation would require potentially reading all memory
at once, hence we taint the output data whenever the read

Memory
+

Taint mem

+
+
+

Memory

Taint mem

a) b)

Fig. 2. Structural comparison between (a) precise and (b) practical memory
instrumentations. The block in the precise implementation must be imple-
mented as a complex monolithic block of interconnected standard cells, while
the dotted lines represent traditional SRAMs.

enable signal or the read address is tainted. Concretely, we
transform Equation 8 into the more efficient Equation 11.

Y t
i,im = Rt

i ∨ (Ri ∧ τ) (11)

B. Implementation

a) Adaptations to concrete memory interfaces: Memo-
ries may feature additional interface signals, such as a byte
enable signal B, which we have abstracted away for simplicity,
but which must be taken into account in practice. For example,
if a write would happen only if Wi ∧ Bi = 1, using bitwise
notations for consistency where Bi concerns the data word bit
i, then even if W t

i = 1, the memory bit would not be tainted
if Bi = 0. To handle all these cases, we must first understand
the exact memory protocol, which we do in Section VI, and
then we apply the DIFT rules introduced by GLIFT [8] to the
memory interface signals. With a byte enable signal B, the
condition W t

i = 1 in the equations from Section V-A will be
replaced by (W t

i ∧ Bi) ∨ (Wi ∧ Bt
i ) ∨ (W t

i ∧ Bt
i ) = 1 when

instrumenting a concrete memory module with such a B input.
b) Structural aspects: The practical memory instrumen-

tation addresses the two main issues of the precise memory
instrumentation that we identified: the need for dependent read
and writes in a single clock cycle and the need to read or
write the whole memory in a single cycle. As illustrated in
Figure 2, the practical memory instrumentation is essentially
made of two SRAMs, one for the memory data and one for
the explicit taints, in addition to some simple logic described
in Equation 9 and Equation 10. On the other hand, the
precise implementation must be implemented as an enormous
and complex interconnection of standard cells. Note that the
practical memory instrumentation complies with gate-level
instrumentation [8] principles (Section V-B-a) and with the
replication-based principle for cell-level instrumentation [7].

c) Meta-reset: Often, memory modules do not feature a
reset signal, but such a signal is required to unset τ . To solve
this problem, we introduce a meta-reset similar to the RFUZZ
implementation by K. Laeufer et al. [36]. It corresponds to
a parallel reset of all memory modules in the design and is
triggered by the reset signal of the design.

VI. HYBRIDIFT

Based on the new practical module-level memory instru-
mentation mechanism that we proposed in Section V, we



TABLE I
MEMORY INPUT SIGNAL DEFINITIONS FOR ALL ANALYZED DESIGNS

COMBINED.

Name Description
c_addr Address for any operation.
r_addr Address for reads. Incompatible with c_addr.
w_addr Address for writes. Incompatible with c_addr.
b_en Byte write enable.
en Enable any operation.
w_en Write enable. Supersedes en.
w_mask Write mask. Similar to single-entry b_en.

introduce HybriDIFT, a practical automatic DIFT instrumen-
tation for memories. HybriDIFT first automatically identifies
memories as well as their interface protocols and then in-
struments them at module level or can alternatively rely on
manual annotations. In this section, we first analyze memory
integrations in multiple open-source designs. From this analy-
sis, we understand their similarities and divergences. We then
propose a two-step approach to automatically detect memories
and determine their interface protocols in arbitrary designs.
Finally, we explain the position of HybriDIFT in typical DIFT
instrumentation workflows.

A. Analysis of Memory Integrations

We manually analyze the integration of memories in mul-
tiple open-source designs from diverse vendors: CVA6 [9]
(OpenHWGroup), Rocket [23] and BOOM [24] (Chip-
yard [37]) and OpenC910 [10] (T-Head). Our analysis shows
that the SRAMs are systematically integrated as a specific
separate module. This complies with classical design practices,
where memories are later instantiated as BRAMs (for FPGAs)
or as SRAMs (for ASICs). We additionally observe that these
modules systematically expose a single read data output port,
a single write data input port, some clock signals and diverse
types of enable signals. Table I summarizes all the encountered
non-clock/reset signals in the memory modules of the analyzed
designs. In terms of port dimensions, we observe that data
width can be as small as a single bit, while all memories
feature at least 4 words.

B. Static analysis

To identify memories, HybriDIFT starts with a static analy-
sis. Since a memory module may behave differently depending
on the Verilog parameters provided to it, we first enforce the
parametrization. Concretely, HybriDIFT uses the Yosys syn-
thesizer for this purpose. This pass creates a new module type
for each module instance with different Verilog parameters.
Then, HybriDIFT identifies memories by filtering modules
as follows: (a) a memory module never contains a memory
module as a submodule, (b) a memory module has a single
output port, and an input port that has the same width as the
output port, (c) a memory module has at least one clock signal
and another single-bit signal for controlling reads and writes.

While this static analysis filters out the vast majority of
modules, it is not sufficient as it may include false positives.

Furthermore, a static look at the interface does not provide
sufficient information about the role of each signal in the
protocol, for example, if there are multiple single-bit inputs.

C. Dynamic analysis

To determine the functionality of each input signal and
incidentally identify any potential false positive from the static
approach, we introduce an automatic dynamic module analysis
platform as part of HybriDIFT. HybriDIFT first isolates each
module flagged by the static analysis from the rest of the
design. Note that this module has parameters already enforced,
as described in Section VI-B. HybriDIFT then generates an
RTL simulation testbench tailored for the module interface
signals. This simulation testbench is kept minimal for com-
patibility across RTL simulators, and essentially parses the
descriptions of inputs for the module, and logs the module
output valuations.

Once the module is ready for RTL simulation with a high-
level interface indicating which wire will be supplied with
which value at each cycle, the next task of HybriDIFT is
to design a sequence of inputs to automatically discriminate
the functionalities of each input signal. The approach that
HybriDIFT adopts is to first list all candidate mappings of
input wires to functionalities, such as write enable, with
regards to the acceptable bit widths of each functionality.
Then, HybriDIFT generates a short sequence of input values
to the candidate role of each input wire, which consists in a
short sequence of write and read transactions exerting the input
wires with each candidate functionality. HybriDIFT observes
the output of the module for each transaction and compares
it with the sequence of expected outputs given the mapping
of wires to functionalities. Alternatively, HybriDIFT can rely
on manual annotations, which is a one-time process. Once
the input protocol is identified, HybriDIFT instruments the
memory module with the mechanism described in Section V.

VII. EVALUATION

In this section, we evaluate HybriDIFT in terms of scala-
bility, performance, practicality and precision and compare it
with the state of the art [7]. In Section VII-A, we quantify the
scalability of HybriDIFT’s practical memory instrumentation
using microbenchmarks. In Section VII-B, we evaluate the per-
formance of the memory module detection and protocol identi-
fication technique on CVA6 and OpenC910. In Section VII-C,
we evaluate the build performance and instrumentation ability
of HybriDIFT by instrumenting the designs and measuring
the build time. In Section VII-D, we evaluate the simulation
performance of the designs instrumented with HybriDIFT by
measuring the average wallclock time per simulated clock
cycle. Finally, in Section VII-E, we show no practical loss
of precision by reproducing the experiments conducted by the
state-of-the-art dynamic IFT mechanism [7].

Evaluation setting: We conducted the evaluations on a
machine equipped with two AMD EPYC 7H12 processors
at 2.6 GHz with a total of 256 logical cores and 1 TB
of DRAM. We use Verilator 5.023 for the simulations, and



TABLE II
DESIGNS USED IN THE EVALUATION.

Design Version Commit

PULPissimo [38] Hack@DAC’18 [39] d21d7b9 [7]
CVA6 [9] 5.0.1 c51fad1
Rocket [23] 1.6 c45f449 (Chipyard [37])
BOOM [24] 3.0.0 c45f449 (Chipyard [37])
OpenC910 [10] N.A. e0c4ad8

0

5

Bu
ild

 ti
m

e 
(h

)

Vanilla
HybriDIFT
CellIFT

2 4 6 8 10 12 14
Memory Depth (address bits)

0

20

Si
m

 ti
m

e 
(s

)

Vanilla
HybriDIFT
CellIFT

Fig. 3. Microbenchmark: scalability of the memory instrumentation. Vanilla
represents the absence of instrumentation. The performance of Vanilla and
HybriDIFT is very close hence indistinguishable.

Yosys 0.39 to embed the instrumentation passes. Regarding
the hardware designs, we use the designs listed in Table II, in
their default configuration. We additionally consider the larger
available version of OpenC910, which contains memories of
a depth of 64k words in the L2 cache. Note that since the
memories were already manually replaced with models for
instrumenting PULPissimo in [7] to be able to inject programs
into the SoC memory, we do not include this design in the
performance evaluations. We implemented HybriDIFT as 2 k
lines of Python code and less than 500 lines of C++ code.

A. Scalability

To quantify the scalability of the practical memory instru-
mentation that we introduced, we measure the time required
to build simulation models of 32-bit wide memories of various
depths and to run simulations and collect the results in
Figure 3. We do not include GLIFT [8] in the figure, as
it scales significantly worse than CellIFT [7]. With CellIFT,
the build performance significantly degrades for memories of
depth larger than 213 words, and the simulation performance
significantly degrades for memories deeper than 211 words.
In the figure, HybriDIFT and the original non-instrumented
design (vanilla) are superposed because HybriDIFT’s memory
instrumentation as two SRAMs and a single state bit are very
efficient to simulate, essentially as two arrays.

B. Identifying the memory modules and protocols

We measure the time taken by HybriDIFT to identify the
memory modules and protocols. The automatic memory iden-
tification always takes less than 2 minutes, and the memory
sizes do not significantly impact the identification time. In
comparison with the absolute build and elaboration durations
reported in Section VII-C, the overhead is small.

Rocket CVA6 BOOM OpenC910 OpenC910 (64k)
0

100

200

Ti
m

e 
(m

in
ut

es
)

44 61
116

202

>12h
38 18

109 89 89

CellIFT HybriDIFT

Fig. 4. Build performance for CellIFT and HybriDIFT. The last design is
the OpenC910 core configured with 64kWord memories in the L2 cache.

Rocket CVA6 BOOM OpenC910 OpenC910 (64k)
0

10

20

Ti
m

e 
(

s/
cy

cle
)

1.0
5.6 6.0

20.1

N.A.0.4 1.1 1.6

7.5 8.5

CellIFT HybriDIFT

Fig. 5. Simulation performance measured by the average number of
microseconds required to simulate one clock cycle. The last design is the
OpenC910 core configured with 64kWord memories in the L2 cache.

C. Build performance

Build performance is critical with continuous integration
and testing of hardware designs. We measure the time taken
to build designs instrumented by CellIFT [7] and HybriDIFT
and report the results in Figure 4. While CellIFT could not
instrument the larger OpenC910 version in reasonable time,
as expected from Section III-A-a, HybriDIFT could instrument
it without a significant overhead over the default version. The
build speedup provided by HybriDIFT over the state of the art
on default design configurations varies from 1.06× for BOOM
to 3.5× on CVA6.

D. Simulation performance

We measure the simulation performance of designs in-
strumented with the state of the art and with HybriDIFT
by measuring the average time taken to simulate one clock
cycle, over 1000 clock cycles when simulating the non-trivial
RISC-V ELFs generated by a state-of-the-art CPU fuzz testing
tool [5]. Figure 5 shows the results. The simulation speedup
provided by HybriDIFT on default design configurations varies
from 2.6× for Rocket to 5.1× on CVA6.

E. Reproduction of the practical experiments

To demonstrate that the precision of the DIFT instrumen-
tation provided by HybriDIFT is sufficient, we reproduce the
practical experiments conducted by CellIFT [7] on PULPis-
simo, CVA6, Rocket and BOOM. Regarding the detection of
leakage-prone paths, we find the same components as reported
in the original study. Intuitively, we note that when loading
tainted data, we expect no memory address or enable signal
to be tainted. We also reproduce the architectural bug detection
experiments on PULPissimo. When the bugs are present, we
indeed detect the bugs. Most importantly, when we fix the
bugs, detection stops, which shows that also in this experi-
ment, no false positive occurs. Finally, we also reproduce the
microarchitectural vulnerability detection experiments using
Spectre and Meltdown [19], [40] on BOOM.



Already clear from a theoretical viewpoint, we experimen-
tally confirm that the precision of the DIFT instrumentation
provided by HybriDIFT is sufficient for all these policies.

VIII. RELATED WORK

This work is at the intersection between two disciplines:
circuit reverse engineering and performance-precision trade-
offs in hardware DIFT instrumentations.

a) Circuit Reverse Engineering: In the literature, a large
effort in reverse engineering has been dedicated to understand-
ing the behavior of FPGA bitstreams [41]–[43] or the logic
implemented on chips [44]. Another direction is using reverse
engineering to detect hardware trojans [45]–[48]. The reverse
engineering of module-level netlists has so far been vastly
unexplored [49] and generally focuses on the deobfuscation of
encrypted logic circuits [50], [51] or finite state machines [52].
Subramanyan et al. [53] proposed a method to draw lines
between modules and identify, among others, memories using
a structural analysis of read and write logic in circuits that are
already synthesized. HybriDIFT benefits from a higher-level
design representation and can hence rely on module interfaces
for its analysis. In particular, it can then adopt the approach
based on dynamic analysis to determine the exact interface
protocols of memories and confirm the nature of memories.

b) Precision-performance trade-offs in hardware DIFT:
The precision of hardware DIFT mechanisms has been a
topic of interest, starting with gate-level instrumentation [8].
RTLIFT exposes performance/precision trade-offs for a few
HDL operators [18]. Hu et al. [29] propose a binary search on
precision to find an optimal performance based on a specific
information flow property. CellIFT [7] proposes a new in-
strumentation that improves the known performance/precision
trade-offs at the cell level. By operating at the module level,
HybriDIFT can provide a new trade-off between precision
and performance in memory instrumentations, which is not
possible at the lower abstraction levels in previous work.

IX. DISCUSSION

We first discuss the structural assumptions made for autom-
atizing HybriDIFT, then discuss manual memory and protocol
annotations, and finally discuss the precision achieved by
HybriDIFT’s memory instrumentation.

a) Structural assumptions: The automatic memory and
protocol identification technique is based on observations
made on a wide range of open-source designs and on our
experience with practical VLSI implementations. We cannot
exclude that designs could use memories with vastly unusual
interfaces, yet this would also imply different ways of inte-
grating such memories. Standard-cell memories are a typical
example of memories with potentially custom interfaces. Such
memories can either be manually instrumented based on the
practical memory instrumentation presented in Section V, or
future work could extend the memory and protocol identifi-
cation of HybriDIFT to recognize such memories and their
protocols and instrument them accordingly.

b) Manual annotations: Given that the state-of-the-art
DIFT mechanisms [7], [8], [18] do not rely on any manual
annotations, it is beneficial that HybriDIFT can automatically
recognize some memories and their protocols. However, in
many use cases, it is easy and inexpensive to manually anno-
tate memories. This allows simplifying the flow in practice and
maximizes the predictability of the resulting instrumentation.
As such, in scenarios where the design is well-understood by
the user, manual annotations might be preferable to automatic
identification.

c) Precision sufficiency: Our study of existing applica-
tions of hardware DIFT shows that precise tracking of implicit
flows is currently unnecessary. Hence, HybriDIFT instruments
memories at module level to conservatively approximate these
specific flows that are extremely expensive to track precisely
when memories contain many words.

One potential use case of precise tracking of implicit flows
in memories would be to dynamically test the security of
software on specific hardware, where the software isolates
several tenants of the same SRAM. In that case, for example,
the upper bits of an address could determine the tenant, and
the lower bits the location within the tenant’s memory. In this
example, a tenant’s isolation would only be compromised if
the upper address bits are tainted. On the other hand, writing
data when only the lower address bits are tainted cannot affect
other tenants. This distinction is not captured by HybriDIFT,
but it is possible to split the memory into several SRAMs,
or τ could easily be refined to improve the precision of the
implicit flow tracking up the requirements of the use case.

X. CONCLUSION

We performed a formal analysis of precise DIFT in mem-
ories and discovered fundamental aspects that make scaling
the precise tracking of implicit flows in memories challenging.
Fortunately, our study of the existing DIFT applications shows
that none of them requires precise tracking of implicit flows in
memories. Hence, we introduced a new module-level memory
DIFT, called HybriDIFT, that approximates the information
flows coming from the address and enable signals, while
tracking explicit flows precisely. Evaluation using four popular
RISC-V designs shows that HybriDIFT accelerates build time
by 1.06× to 3.5× and simulation performance by 2.6× to
5.1× on default target configurations, while maintaining suf-
ficient precision for all existing hardware DIFT applications.
We show that HybriDIFT can instrument a larger OpenC910
configuration that was unattainable by the state of the art.

ACKNOWLEDGEMENTS

The authors would like to thank Katharina Ceesay-Seitz and
the anonymous reviewers for their valuable feedback. This
work was supported in part by the Swiss State Secretariat for
Education, Research and Innovation under contract number
MB22.00057 (ERC-StG PROMISE).



REFERENCES

[1] F. Solt, P. Jattke, and K. Razavi, “Rememberr: Leveraging microproces-
sor errata for design testing and validation,” in MICRO, 2022.

[2] J. Xu, Y. Liu, S. He, H. Lin, Y. Zhou, and C. Wang, “Morfuzz: Fuzzing
processor via runtime instruction morphing enhanced synchronizable co-
simulation,” in USENIX Security, 2023.

[3] R. Kande, A. Crump, G. Persyn, P. Jauernig, A.-R. Sadeghi, A. Tyagi,
and J. Rajendran, “Thehuzz: Instruction fuzzing of processors using
golden-reference models for finding software-exploitable vulnerabili-
ties,” in USENIX Security, 2022.

[4] J. Hur, S. Song, D. Kwon, E. Baek, J. Kim, and B. Lee, “Difuzzrtl:
Differential fuzz testing to find cpu bugs,” in IEEE SP, 2021.

[5] F. Solt, K. Ceesay-Seitz, and K. Razavi, “Cascade: Cpu fuzzing via
intricate program generation,” USENIX Security, 2024.

[6] S. Canakci, C. Rajapaksha, L. Delshadtehrani, A. Nataraja, M. B. Taylor,
M. Egele, and A. Joshi, “Processorfuzz: Processor fuzzing with control
and status registers guidance,” in HOST, 2023.

[7] F. Solt, B. Gras, and K. Razavi, “Cellift: Leveraging cells for scalable
and precise dynamic information flow tracking in rtl,” in USENIX
Security, 2022.

[8] M. Tiwari, H. M. Wassel, B. Mazloom, S. Mysore, F. T. Chong, and
T. Sherwood, “Complete information flow tracking from the gates up,”
in ASPLOS, 2009.

[9] F. Zaruba and L. Benini, “The cost of application-class processing:
Energy and performance analysis of a linux-ready 1.7-ghz 64-bit risc-v
core in 22-nm fdsoi technology,” IEEE VLSI, 2019.

[10] C. Chen, X. Xiang, C. Liu, Y. Shang, R. Guo, D. Liu, Y. Lu, Z. Hao,
J. Luo, Z. Chen, et al., “Xuantie-910: A commercial multi-core 12-
stage pipeline out-of-order 64-bit high performance risc-v processor with
vector extension: Industrial product,” in ISCA, 2020.

[11] J. Oberg, W. Hu, A. Irturk, M. Tiwari, T. Sherwood, and R. Kastner,
“Information flow isolation in i2c and usb,” in DAC, 2011.

[12] W. Hu, A. Ardeshiricham, and R. Kastner, “Hardware information flow
tracking,” ACM CSUR, 2021.

[13] J. Oberg, S. Meiklejohn, T. Sherwood, and R. Kastner, “Leveraging gate-
level properties to identify hardware timing channels,” TCAD, 2014.

[14] W. Hu, A. Ardeshiricham, M. S. Gobulukoglu, X. Wang, and R. Kast-
ner, “Property specific information flow analysis for hardware security
verification,” in ICCAD, 2018.

[15] W. Hu, D. Mu, J. Oberg, B. Mao, M. Tiwari, T. Sherwood, and
R. Kastner, “Gate-level information flow tracking for security lattices,”
TODAES, 2014.

[16] W. Hu, A. Becker, A. Ardeshiricham, Y. Tai, P. Ienne, D. Mu, and
R. Kastner, “Imprecise security: quality and complexity tradeoffs for
hardware information flow tracking,” in ICCAD, 2016.

[17] W. Hu, J. Oberg, J. Barrientos, D. Mu, and R. Kastner, “Expanding gate
level information flow tracking for multilevel security,” IEEE Embedded
Systems Letters, 2013.

[18] A. Ardeshiricham, W. Hu, J. Marxen, and R. Kastner, “Register transfer
level information flow tracking for provably secure hardware design,”
in DATE, 2017.

[19] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg,
“Meltdown: Reading kernel memory from user space,” in USENIX
Security, 2018.

[20] I. C. Society, “Ieee standard for verilog hardware description language,”
IEEE, 2006.

[21] C. Wolf, J. Glaser, and J. Kepler, “Yosys-a free verilog synthesis suite,”
in Austrochip, 2013.

[22] A. Ardeshiricham, W. Hu, and R. Kastner, “Clepsydra: Modeling timing
flows in hardware designs,” in ICCAD, 2017.

[23] K. Asanovic, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin,
C. Celio, H. Cook, D. Dabbelt, J. Hauser, A. Izraelevitz, et al., “The
rocket chip generator,” Tech. Rep. UCB/EECS-2016-17, 2016.

[24] K. Asanovic, D. A. Patterson, and C. Celio, “The berkeley out-of-order
machine (boom): An industry-competitive, synthesizable, parameterized
risc-v processor,” tech. rep., UC Berkeley, 2015.

[25] A. Teman, D. Rossi, P. Meinerzhagen, L. Benini, and A. Burg, “Power,
area, and performance optimization of standard cell memory arrays
through controlled placement,” TODAES, 2016.

[26] P. Meinerzhagen, C. Roth, and A. Burg, “Towards generic low-power
area-efficient standard cell based memory architectures,” in MWSCAS,
2010.

[27] P. Meinerzhagen, S. Y. Sherazi, A. Burg, and J. N. Rodrigues, “Bench-
marking of standard-cell based memories in the sub-v t domain in 65-
nm cmos technology,” IEEE CASS, 2011.

[28] M. Marazzi, P. Jattke, F. Solt, and K. Razavi, “Protrr: Principled yet
optimal in-dram target row refresh,” in IEEE SP, 2022.

[29] W. Hu, B. Mao, J. Oberg, and R. Kastner, “Detecting hardware trojans
with gate-level information-flow tracking,” Computer, 2016.

[30] J. Oberg, S. Meiklejohn, T. Sherwood, and R. Kastner, “A practical
testing framework for isolating hardware timing channels,” in DATE,
2013.

[31] J. Shin, H. Zhang, J. Lee, I. Heo, Y.-Y. Chen, R. Lee, and Y. Paek,
“A hardware-based technique for efficient implicit information flow
tracking,” in ICCAD, 2016.

[32] Y. Liu and A. Milanova, “Static information flow analysis with handling
of implicit flows and a study on effects of implicit flows vs explicit
flows,” in CSMR, 2010.

[33] D. King, B. Hicks, M. Hicks, and T. Jaeger, “Implicit flows: Can’t live
with ‘em, can’t live without ‘em,” in ICISS, 2008.

[34] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth, “Taintdroid: an information-flow tracking
system for realtime privacy monitoring on smartphones,” TOCS, 2014.

[35] A. Russo, A. Sabelfeld, and K. Li, “Implicit flows in malicious and non-
malicious code,” in Logics and Languages for Reliability and Security,
2010.

[36] K. Laeufer, J. Koenig, D. Kim, J. Bachrach, and K. Sen, “Rfuzz:
Coverage-directed fuzz testing of rtl on fpgas,” in ICCAD, 2018.

[37] A. Amid, D. Biancolin, A. Gonzalez, D. Grubb, S. Karandikar, H. Liew,
A. Magyar, H. Mao, A. Ou, N. Pemberton, et al., “Chipyard: Integrated
design, simulation, and implementation framework for custom socs,”
MICRO, 2020.

[38] P. D. Schiavone, D. Rossi, A. Pullini, A. Di Mauro, F. Conti, and
L. Benini, “Quentin: an ultra-low-power pulpissimo soc in 22nm fdx,”
in S3S, 2018.

[39] G. Dessouky, D. Gens, P. Haney, G. Persyn, A. Kanuparthi, H. Khattri,
J. M. Fung, A.-R. Sadeghi, and J. Rajendran, “Hardfails: Insights into
software-exploitable hardware bugs,” in USENIX Security, 2019.

[40] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, et al., “Spectre attacks:
Exploiting speculative execution,” in IEEE SP, 2019.

[41] R. V. Narayanan, A. N. Venkatesan, K. Pula, S. Muthukumaran, and
R. Vemuri, “Reverse engineering word-level models from look-up table
netlists,” in ISQED, 2023.

[42] A. Nathamuni-Venkatesan, R.-V. Narayanan, K. Pula, S. Muthukumaran,
and R. Vemuri, “Word-level structure identification in fpga designs using
cell proximity information,” in VLSID, 2023.

[43] S. Muthukumaran, A. N. Venkatesan, K. Pula, R. V. Narayanan, R. Ve-
muri, and J. Emmert, “Reverse engineering of rtl controllers from look-
up table netlists,” in ISVLSI, 2023.

[44] S. E. Quadir, J. Chen, D. Forte, N. Asadizanjani, S. Shahbazmohamadi,
L. Wang, J. Chandy, and M. Tehranipoor, “A survey on chip to system
reverse engineering,” JETC, 2016.

[45] T. Zhang, J. Wang, and Z. Chen, “A reverse engineering-based frame-
work assisting hardware trojan detection for encrypted ips,” in IMCCC,
2018.

[46] W. Danesh, J. Banago, and M. Rahman, “Turning the table: Using bit-
stream reverse engineering to detect fpga trojans,” Journal of Hardware
and Systems Security, 2021.

[47] S. Wallat, M. Fyrbiak, M. Schlögel, and C. Paar, “A look at the dark
side of hardware reverse engineering-a case study,” in IVSW, 2017.

[48] M. Ludwig, A.-C. Bette, and B. Lippmann, “Vital: Verifying trojan-free
physical layouts through hardware reverse engineering,” in PAINE, 2021.

[49] M. Fyrbiak, S. Strauß, C. Kison, S. Wallat, M. Elson, N. Rummel, and
C. Paar, “Hardware reverse engineering: Overview and open challenges,”
in IVSW, 2017.

[50] R. Tofighi-Shirazi, M. Christofi, P. Elbaz-Vincent, and T.-H. Le, “Dose:
Deobfuscation based on semantic equivalence,” in SSPREW, 2018.

[51] F. Farahmandi, O. Sinanoglu, R. Blanton, and S. Pagliarini, “Design
obfuscation versus test,” in ETS, 2020.

[52] T. Meade, S. Zhang, and Y. Jin, “Netlist reverse engineering for high-
level functionality reconstruction,” in ASP, 2016.

[53] P. Subramanyan, N. Tsiskaridze, K. Pasricha, D. Reisman, A. Susnea,
and S. Malik, “Reverse engineering digital circuits using functional
analysis,” in DATE, 2013.


	Introduction
	Background
	Levels of abstraction in Verilog
	Hardware DIFT
	Memories

	Observations and Overview
	Observations
	Overview

	Precise memory instrumentation
	Practical memory instrumentation
	Adaptations for practicality
	Implementation

	HybriDIFT
	Analysis of Memory Integrations
	Static analysis
	Dynamic analysis

	Evaluation
	Scalability
	Identifying the memory modules and protocols
	Build performance
	Simulation performance
	Reproduction of the practical experiments

	Related Work
	Discussion
	Conclusion
	References

