
Breaking the Barrier: Post-Barrier Spectre Attacks

Johannes Wikner
ETH Zurich

Kaveh Razavi
ETH Zurich

Abstract—The effectiveness of transient execution defenses
rests on obscure model-specific operations that must be cor-
rectly implemented in microcode and applied by software. In
this paper, we study branch predictor invalidation through
Indirect Branch Predictor Barrier (IBPB) for x86 processors,
which is a cornerstone defense against cross-context and cross-
privilege Spectre attacks, and discover new vulnerabilities
in both its microcode implementation and application by
software. Concretely, we demonstrate two new post-barrier
speculative return target hijacks on Intel and AMD CPUs.
First, we show an end-to-end cross-process attack that leaks
the hash of the root password from a suid process. This attack
works despite IBPB on recent generations of Intel processors
due to a microcode implementation flaw. Second, we show that
an unprivileged attacker can leak privileged memory on AMD
Zen 1(+)/2 processors despite the deployed IBPB mitigation,
due to how IBPB is applied by the Linux kernel. We propose
using a chicken bit to disable exploitable return predictions on
affected Intel CPUs and a software patch for the Linux kernel
to safely use IBPB on affected AMD CPUs.

1. Introduction

Despite many years of mitigations after the original
Spectre attacks [1], new variants continue to appear [2], [3],
[4], [5], [6], [7], [8], [9]. A complete flush of exploitable
branch predictions, provided by the Indirect Branch Predic-
tor Barrier (IBPB) on x86, is considered to fully mitigate
these attacks. As such, it is currently deployed on major
hypervisors and operating systems to mitigate Branch Target
Injection (BTI)-based Spectre attacks that leak information
across execution contexts and privilege levels. Unfortu-
nately, as we show in this paper, both the implementation
of IBPB in microcode and its application by privileged
software suffer from vulnerabilities that enable attackers to
leak sensitive information in a variety of scenarios.

Alternative branch predictions. Branches of different
types can be provided either primary or alternate branch
target predictions. For example, return target predictions
primarily originate from a dedicated Return Stack Buffer
(RSB), and indirect branch target predictions primarily orig-
inate from a path history-indexed predictor table that con-
siders the most recently taken branches. When the primary
predictor is unable to produce a branch target, an alternate
prediction may be served instead. As an example, indirect
branches may be provided a prediction solely based on the

current instruction pointer (i.e., IP-based prediction) when a
path-based prediction is unavailable [10], [11]. Furthermore,
when a return target prediction from the RSB is unavailable,
the Restricted RSB Alternate (RRSBA) predictor found in
many Intel CPUs may provide an alternate prediction [12].
Given that Spectre-BTI attacks can poison predictions of
different predictors, it is important that branch prediction
barriers adequately invalidate not only primary predictors,
but alternate predictors as well. How can we trigger alternate
predictions for different branch types and are all these
predictions adequately invalidated by IBPB?

Discovering alternate branch predictions. Our analysis
shows the most recent Intel CPUs serve IP-based predic-
tions as an alternative to path-based predictions for indirect
branches. This is the case when targets of such indirect
branches have no correlation with the global path history.
Furthermore, we observe that RRSBA predictions trigger
not only when ascending from deep call stacks, leading
to RSB underflow [3], [8], but also if RSB entries have
been invalidated (via IBPB). We also find that RRSBA
employs IP-based and path-based predictions depending on
path history, similar to indirect branches.

Branch target invalidation. IBPB prevents previously
learned indirect branch target predictions from being used.
However, IBPB has implementation-specific guarantees on
various microarchitectures. For example, since return in-
structions have similar semantics as indirect branches, they
are invalidated by IBPB on most processors. It has previ-
ously been reported that Intel processors continue to serve
the top-most RSB entry despite invalidation, known as
EIBRS Post-Barrier Return Stack Buffer (PBRSB) specula-
tion [2], [13]. Moreover, it is known that AMD Zen 1(+)/2
processors retain return predictions post-barrier [2]. Al-
though hypervisors and operating systems already mitigate
post-barrier return speculation attacks [14], it is unclear
whether these mitigations consider new attack surfaces ex-
posed by phantom speculation [6], [9].

IP-based predictors are also sometimes exempt from
invalidation through IBPB on many processors, for ex-
ample, when serving direct branches. On AMD Zen 3/4
processors IBPB flushes the IP-based predictor to mitigate
Inception [9], [15]. It is, however, unclear how such pre-
dictors behave on recent Intel CPUs under IBPB given
that such processors do not transiently execute instructions
under phantom speculation [6] nor allow RSB corruption in
transient execution [9]. Should IBPB not adequately flush

the primary and alternative predictors for particular branch
types such as indirect branches or returns, the systems that
deploy these CPUs are exposed to previously unexplored
attack surfaces.

Alternative branch predictors under IBPB. We system-
atically explore the behavior of IBPB for different branch
types, in particular their alternate predictions. We find that
while IBPB flushes both path-based and IP-based predictors
for indirect branches, it fails to flush alternative IP-based
predictions for return instructions. We call this new primitive
Post-Barrier RRSBA (PB-RRSBA). PB-RRSBA allows an
attacker, who can force the victim to use these vulnerable IP-
based RRSBA predictions, to trigger stale branch predictions
after IBPB. Unlike PBRSB speculation [2] and Retbleed [8],
which exploit RSB and path-based predictions, PB-RRSBA
speculation exploits IP-based predictions of returns.

Exploiting the implementation of IBPB. The perhaps most
studied threat model in Spectre attacks considers same-
context attacks, for example where an unprivileged attacker
infers secrets from a more privileged victim, the OS kernel.
This threat model overshadows the lesser studied one of
cross-context attacks. To prevent information leaks across
execution contexts where the attacker and victim run in the
same privilege level, IBPB on context switch is conditionally
used. We show that PB-RRSBA can be used in cross-
context attacks to leak information despite IBPB, which
we demonstrate by leaking the root password hash from a
suid process. Our evaluation of the RRSBA_DIS_U chicken
bit shows that it mitigates PB-RRSBA with a negligible
performance penalty.

Exploiting the application of IBPB. Linux also of-
fers IBPB-on-entry as the more comprehensive mitigation
against cross-privilege attacks for AMD processors vulner-
able to Retbleed [8] and Inception [9]. Furthermore, IBPB-
on-entry is the only available mitigation against phantom
speculation on AMD Zen 1(+)/2 processors [6]. However,
we show that the IBPB-on-entry is still vulnerable to In-
ception attacks, due to how the mitigation is applied. In
particular, we show that the instructions that execute before
IBPB can be hijacked to mistrain the return predictor which
retains its entries despite IBPB. This allowed us to build
PB-Inception, a post-barrier Inception exploit that bypasses
the IBPB mitigation on AMD Zen 1(+)/2, leaking arbitrary
kernel memory to an unprivileged attacker. We propose
a software patch to the Linux kernel that mitigates PB-
Inception by stuffing the RSB with a negligible performance
overhead.

Contributions. The following lists our contributions:
• We introduce PB-RRSBA, a vulnerability in the

IBPB implementation on Intel Golden Cove and
Raptor Cove (12th–14th generation) that lets us ex-
ploit IP-based RSBA predictions post-IBPB.

• We show that PB-RRSBA can leak sensitive infor-
mation from IBPB-protected suid processes. As an
example, we use PB-RRSBA to leak the root hash
password from a helper suid process of polkit.

• We show that IBPB-on-entry in Linux is vulner-
able to a new attack, called PB-Inception, where
the return predictor is mistrained pre-IBPB and the
poisoned return targets are retained post-IBPB. Our
end-to-end exploit can leak arbitrary kernel memory
on AMD Zen 2.

• We propose, implement, and evaluate mitigations
against these attacks on vulnerable processors.

Responsible disclosure. The issues were disclosed to Intel
and AMD in June 2024. Both confirmed their respective
issues. Intel informed us that their issue, tracked under
INTEL-SA-00982, had been found internally and fixed in
a microcode update. This microcode update was, however,
not available in Ubuntu repositories at the time of writing
this paper. Because AMD’s issue was previously known and
tracked under AMD-SB-1040, AMD considers the issue a
software bug. We are currently working with the Linux
kernel maintainers to merge our proposed software patch.
We will make the source code for all the experiments
available at https://comsec.ethz.ch/breaking-the-barrier.

2. Background

This paper concerns the branch prediction barriers used
in x86 processors, known as Indirect Branch Prediction
Barriers (IBPBs), their various implementations and con-
figurations, their particular vulnerabilities, and how they
can be exploited. Before discussing IBPB, we will give
some background on branch predictors, in particular branch
target predictors used in x86 processors (Section 2.1). Then,
we discuss how attackers exploit these predictors, making
them produce attacker-controlled mispredictions to enable
information leakage in various settings, and available miti-
gations like IBPB and its already-known issues that incite
this research (Section 2.2). Finally, we discuss the necessary
code sequences (i.e., gadgets) that are used as building
blocks of Spectre attacks (Section 2.3).

2.1. Branch Prediction

Branch prediction is a vital feature to fully utilize the
capacity of superscalar processor pipelines with out-of-order
execution backends. Processors predict branch direction for
conditional branches (i.e., taken or fall-through) using Pat-
tern History Tables [16], and return target predictions are
primarily provided by a Return Stack Buffer (RSB) to which
return targets are pushed and popped onto upon function
calls and returns [3]. Branch target address for all taken con-
ditional or unconditional branches are predicted via Branch
Target Buffers (BTBs) [6]. Branch target predictions are
continuously learned and improved throughout program exe-
cution by observing and recording branch targets associated
with their respective branch sources in BTBs.

Path-based branch prediction. To predict the correct
branching outcome, predictions are associated with the cur-
rent execution path history preceding the branch source.

https://comsec.ethz.ch/breaking-the-barrier

Like conditional branches that can have one or two possible
outcomes, indirect branches can have one or several possible
branch targets. On Intel processors, path history is recorded
in a global (yet thread-local) path history register, which
x86 refers to as the Branch History Buffer (BHB) [7], [16].
The prediction outcome that best correlates with the current
path-history then be forwarded when predicting the current
branch. Most modern processors implement a TAGE-like
branch predictor for conditional branch prediction [16],
[17]. A TAGE predictor can also implement branch target
prediction for indirect branches [18].

IP-based branch prediction. Whereas path-based predic-
tions are important for indirect branches with many targets,
branches that only have a single possible target can be
adequately predicted without path history. Such predictions
are based only on Instruction Pointer at the branch source,
thereby consuming less space and are faster to resolve.
On AMD processors, this includes direct branches, always-
taken conditional branches and indirect branches that have
only been with a single target [19]. Older Intel microarchi-
tectures can also predict indirect branch targets using IP-
based prediction. The IP-based branch target predictor can
be identified both by how it indexes the BTB and how it only
serves a portion of the branch target address [11] (the rest of
the address is assumed to be the same as the branch source
address). The more modern Intel Golden Cove microar-
chitectures claims that branch target predictions of targets
within 2 GB proximity use less predictor resources [20].
Does it mean that modern Intel processors use an IP-based
predictor as well, and if so, can we distinguish it from the
path-based predictor?

Alternating predictors and cold starts. Branch predic-
tors that use long path histories suffer more mispredictions
compared to simpler predictors under cold starts and short-
lived workloads. A cold start for the branch predictor means
that insufficient branching feedback has been collected to
make an accurate prediction. To combat this, meta pre-
dictors like ALPHA 7’s could alternate between predictors
to forward predictions from the currently best performing
predictor, where occasionally a simpler predictor is more
accurate [21]. Similarly, with a Cascaded predictor [22], a
simpler static predictor could be used for easy-to-predict
branches, avoiding pollution of more complex path-based
predictor tables. State-of-the-art TAGE predictors benefit
from Statistical Correctors that forward an alternative pre-
diction when outcome and history do not correlate [23].

Return target prediction. Return target predictions are
primarily forwarded from a stack that we refer to as Return
Stack Buffer (RSB). Predictions are pushed onto the RSB on
call instructions and popped from it on return instructions.
For call stacks depths greater than the RSB capacity, the
oldest RSB entries are overwritten before they can be used,
eventually leading to an empty-state condition or under-
flow when ascending the call stack [3], [8], [24]. In this
situation, Intel processors alternate return target predictors
(RSBA), where the alternative is branch target prediction [8].

"RSB Alternate" (RSBA)

Return Target Prediction
(RSB)

Branch Target Prediction
(BTB)

Direct (IP-based)

Indirect (Path-based)

Decoded
RET

Decoded
CALL/JMP/Jcc

Ta
rg

et
 a

dd
re

ss
 p

re
di

ct
io

n

Figure 1: Branch target prediction alternates between IP-based and path-
based. Furthermore return target prediction alternates between RSB and
branch target prediction.

This behavior is also sometimes described as a “bottomless
RSB” [25]. Modern return target predictors furthermore
ensure that the fallback predictor respects privilege-level
restrictions of predictions (i.e., eIBRS), known as Restricted
RSBA (RRSBA). Given that branch target prediction, in
turn, alternates between IP-based and path-based predic-
tions, return target prediction becomes particularly complex.
Figure 1 summaries our current model of return target
prediction.

2.2. Spectre

In Spectre attacks, the goal of the attacker is the pro-
voke a branch predictor to forward an incorrect prediction
controlled by the attacker. Taking an incorrect prediction,
the processor transiently executes incorrect instructions to
make out of bounds memory accesses to secrets in mem-
ory. If these secrets then are operated on by subsequent
transient instructions, the effect of the misprediction is
secret-dependent, such that the secret can be inferred by
the attacker through side channels. Such secret-dependent
side channels include CPU cache accesses [26], [27], [28],
floating point unit use [29], execution port use [30], power
fluctuations [31] and branch predictor updates [32], [33],
[34]. Upon branch misprediction, the number of mispre-
dicted instructions is bounded by the reorder buffer capacity
of the CPU backend, and by the latency until the mispredic-
tion is detected. The misprediction is detected and corrected
as soon as all the dependencies necessary to conclude the
correct branch outcome are resolved. For example, when
these dependencies include memory operations, they may
resolve with DRAM access latency.

Cross-privilege attacks. Because branch prediction state is
shared across privilege levels, Spectre breaks the security
boundary between privilege levels, for example between
user mode processes and the operating system kernel [1],
[7], [8], [9], [35]. In particular, an unprivileged attacker can
trigger branch mispredictions in the kernel. Enhanced and
Automatic Indirect Branch Restricted Speculation (eIBRS
and AutoIBRS) restrict the branch predictor from forward-
ing indirect branch target predictions learned in a less priv-
ileged domain, reducing the attack surface for this attack

substantially [36], [37]. However, later work has found
methods to evade eIBRS [7], [35] and AutoIBRS [9]. In
addition to enabling eIBRS/AutoIBRS, operating systems
may prevent the use of indirect branch predictions through
software constructs [15], [25], [38], [39]. As a more compre-
hensive defense for AMD processors, in particular against
[6], [8], [9], Indirect Branch Prediction Barrier (IBPB) is
employed at system call, interrupt, and VMExit entry points
to a more privileged domain [15], [40], [41].

Cross-context attacks. Branch predictions are also shared
across execution contexts of the same privilege level. Al-
though a victim process runs under the same privilege
level as the attacker, it may for example be owned by the
privileged root user to manage security sensitive data, like
passwords. Considering this threat model, where IBRS mit-
igations are ineffective, exploitable branch predictions must
be invalidated upon context switch. In x86, this is achieved
using branch prediction barriers, most notably, IBPB. In ad-
dition to IBPB, Linux scheduler also employs RSB stuffing
on context switch, preventing cross-context misuse of return
predictions by filling the RSB with harmless targets.

Phantom speculation. Recent work shows that modern x86
processors perform branch prediction before an instruction
is decoded [6]. This enables transient execution attacks on
non-branch instructions, referred to as PhantomJMPs. Phan-
tomJMP enables an attacker to redirect the speculative con-
trol flow to an arbitrary program address. Inception leverages
the short speculation window provided by a PhantomJMP to
perform a recursive PhantomCall [9] which poisons multiple
RSB entries with the address of the following instruction. A
return instruction following the PhantomJMP then consumes
a poisoned RSB entry that can leak arbitrary information
given the long return speculation window. While Inception
can be mitigated in software using a specialized instruction
sequence [41], a more comprehensive mitigation relies on
IBPB. Furthermore, PhantomJMPs enable an extra mem-
ory load that can leak arbitrary memory with MDS-like
gadgets [6]. The only known mitigation against all forms
of phantom speculation on AMD Zen 1(+)/2 is IBPB on
privilege transitions.

Indirect Branch Prediction Barrier (IBPB). IBPB is a
defense against a range of Spectre V2 attacks, including
cross-privilege mode attacks on AMD processors [8], [9]
and cross-context attacks [42]. IBPB prevents forwarding
of previously learned indirect branch target predictions for
speculative execution. IBPB can be used to complement
eIBRS/AutoIBRS in scenarios where those are ineffec-
tive [43]. This includes all scenarios where the attacker
can inject predictions under the same privilege level as
the victim. Whereas the IBPB routine alone can cost over
8 000 cycles on older hardware, excluding the cycles wasted
on cold-start mispredictions, more recent implementations
of IBPB are about an order-of-magnitude faster [9]. If
enabled by its programmer, Linux uses IBPB before and
after scheduling of a process to protect it against Spectre-
BTI attacks. Hypervisors like KVM will always issue IBPB

when switching between vCPUs.
Because returns are semantically similar to indirect

branches, return predictions are commonly invalidated by
IBPB as well. There are however exceptions to this rule,
especially concerning returns. On AMD Zen 1 and Zen 2
processors (i.e., AMD family 17h) IBPB disregards return
targets [2]. Certain Intel processors [44] retains a single
return target prediction after IBPB, known as eIBRS Post-
Barrier Return Stack Buffer (PBRSB) [13]. For both cases,
exploitable return targets must be overwritten by a software
routine. Post-barrier branch prediction exceptions have not
been comprehensively studied. We will fill this gap in Sec-
tion 5 by analyzing the speculative behavior of post-barrier
return instructions under different conditions. In doing so,
we find additional exceptions that expose new attack sur-
faces.

2.3. Spectre Gadgets

In code-reuse attacks, the attacker makes use of small
snippets of code in the victim’s execution domain, referred
to as gadgets. Typically, the attacker forces the victim to
execute these gadgets by exploiting a memory error vul-
nerability, taking full control over the victim. In Spectre
attacks, the attacker does not rely on memory error vulner-
abilities, or any type of software bug. Instead, the attacker
forces a misprediction on a victim branch, transiently tak-
ing control over the victim. This transient control, called
speculation window, lasts until the processor receives the
correct branch outcome and redirects the execution path to
the architecturally-correct branch destination. Such transient
control-flow hijacks have been shown in the past on indirect
and conditional branch prediction [1], [7], [17], and return
target prediction [3], [4], [8], [9], [24]. We consider the
following gadgets in this paper:

IC-gadget. An Instruction Cache-signal gadget (IC gadget)
contains arbitrary executable memory. If branch target pre-
diction provides the address of the IC gadget, the processor
frontend speculatively fetches it from memory into the in-
struction cache. Consequently, loading the gadget over the
instruction path will be observably faster, but also the over
the data path, even if the system has non-inclusive L2 and
LLC caches. This is because of various reasons, such as an
inclusive shared TLB, the gadget evicted from L1i to L2,
or undocumented snooping behaviors 1. Besides tainting the
instruction cache, the IC-gadget also leaves a TLB signal.
As we will see, this is important for the attacker, since a
TLB miss can be fatal for a successful exploit.

DC-gadget. A Data Cache-signal gadget (DC gadget) is a
code snippet that contains a memory load. The memory
address depends on a given general purpose register that is
set prior to its execution. We can use this property to detect
that a misprediction resulted in speculative execution.

1. L1i presumably snoops on L1d writes to accommodate self-modifying
code.

Leak gadget. A leak gadget transmits secrets accessed
during transient execution. They consist of at least two
dependent memory operations, where the first operation
loads the secret and the second operation subsequently uses
the secret in a parameter (e.g., index), resulting a unique
data cache footprint for every possible secret value.

The Flush+Reload side channel [26] enables us to 1)
detect if an IC-gadget or DC-gadget were transiently ex-
ecuted by the processor, and 2) leak information with the
leak gadget.

3. Threat Model

We consider a realistic threat model in which an un-
privileged attacker with local code execution wants to infer
secrets from the system. We assume that the system has
no known software vulnerabilities and runs all the latest
security updates. For the exploits, in Section 7, we assume
that the victim software is publicly available (e.g., via the
package repositories of the Linux distribution), so that the
attacker can analyze it in an offline stage. We further assume
the victim software runs on top of a CPU with either the
Intel Golden Cove or Raptor Cove microarchitecture. In
Section 8, we assume that the victim kernel runs on top
of a CPU with the AMD Zen 1(+)/2 microarchitecture. We
also assume that the attacker is able to analyze the victim
kernel offline. For example, as in this case, the victim runs a
generic Ubuntu kernel, which the attacker can identify and
download to analyze for gadgets.

4. Overview of Challenges

Our aim is to understand CPU behaviors with post-
barrier speculation, with a particular focus on return target
predictions. We hence need to first be able to trigger and
identify a particular branch predictor and then verify that its
prediction gets invalidated by IBPB. This brings us to our
first challenge:

Challenge C1. Forcing the branch target predictor
to alternate between path-based and IP-based predic-
tions.

Section 5 experiments with the conditions under which
we can force IP-based predictions with indirect branches,
even though they are typically served by the path-based
predictor. We find that randomizing the address of a single
branch preceding to the victim indirect branch is sufficient
to force IP-based instead of path-based predictions. Further-
more, we find out that IBPB invalidates these predictions,
regardless of whether they are served by the path-based or
IP-based predictor. Our next challenge is forcing alternative
return predictors to take IP- and path-based predictions, and
if IBPB is similarly invalidating these predictions.

Challenge C2. Forcing the alternative return predic-
tor to take either path-based or IP-based predictions.

NOP x rand()&0xff
add rax, 8
jmp [rax-8]

shuffle(x)
TARGETS.push(BR_SRC)
mov rax, TARGETS
jmp [rax]

NOP x rand()&0xff
add rax, 8
jmp [rax-8]

...
NOP x rand()&0xff
add rax, 8
jmp [rax-8]

t0 t1 t193

t0, t1, t2, t3,

t4, ..., t190,
t191, t192, t193

TARGETS: "reset" state
t0, t1, t191, t3,

t193, ..., t190,
t2, t42, t4

TARGETS: "shuffled"

shuffle(3)

Trampoline

Figure 2: Execute a sequence (TARGETS) of basic blocks t0...193, to set
the BHB to a “shuffled” state when executing the training or victim branch
source (BR_SRC). Each t is of random size and jumps to the next block
in the sequence. 194 blocks is sufficient to reset the BHB on Intel Raptor
Cove. From Trampoline, we execute TARGETS, referenced by rax. Before
that, we shuffle TARGETS by swapping x the last pointers for random ones
in the sequence. The example shuffles 3 entries.

Section 6 shows that RRSBA predictions include IP-
and path-based predictions and occur under RSB empty-
state [8]. Similar to indirect branch predictions, we find that
IP-based RRSBA predictions occur in case the preceding
branch is randomized. More interestingly, we discover that
RRSBA IP-based predictions are not affected by IBPB. We
further analyze the behavior of the return predictor on AMD
Zen 1(+)/2 CPUs under IBPB and discover that IBPB does
in fact affect the behavior of the return predictor, but does
not invalidate its entries. Armed with this information, the
next challenge is showing exploitation in practical scenarios.

Challenge C3. Practical exploitation of post-barrier
return target predictions.

We conduct two case studies of the discovered issues
with IBPB. In Section 7, we show a novel cross-context
Spectre attack that can leak the root hash password from
a suid process despite IBPB on affected Intel processors.
This is the first known instance of a cross-context Spectre
attack that works on a real suid target. Furthermore, in
Section 8, we revive the Inception attack [9] on affected
AMD processors.

5. Alternating Branch Predictors

We start by investigating how we can alternate between
IP-based and path-based branch prediction on Intel proces-
sors. Details of the systems used for our reverse engineering
experiments are provided in Table 3 of Section 9. We first
construct the experiment for Intel Raptor Cove and adjust
it for other microarchitectures. We want to test whether
indirect branch targets are added to both the direct (IP-
based) and indirect (path-based) branch predictors. We rely
on a routine that resets the BHB by organizing and executing
a sequence of basic blocks in a fixed order, setting the BHB
into a “reset” state. A similar routine, shown in Figure 2,
shuffles x ∈ {1, 2, . . . , 8} of the last basic blocks of this
sequence before executing it. Each block has a randomized
start address and size, made up of mostly NOP instructions.

As shown in Figure 3, 1 we first execute a training
branch at address A to a DC-gadget at address B. Then, we

A: train_src

C: victim_src@

B: train_dst

D: victim_dst

/* DC gadget */jmp [rsi]

jmp [rsi] /* dummy */BHB-shuffle

BHB-reset

BHB-reset

1

2a

2b

Figure 3: When the addresses A and C alias in the BTB, after 1 , we can
get mispredictions from C to B by taking step 2a , but also from 2b if
bits[47:32] of A and C match.

execute the victim branch at address C to a dummy target.
C is different from A, yet aliasing with A in the branch
predictor by inverting some of the bits in A, given by P
(i.e., C = A⊕P). Depending on microarchitecture, P may
either set a high bit that is unused in BTB addressing [1]
or two bits that cancel each other out by an XOR operation
used in BTB addressing [8]. As expected, 2a when the BHB
at the victim and training branches match (i.e., “reset” state),
we observe a DC-signal from executing the victim branch.
Executing 1 again but then 2b shuffling all the blocks of
the BHB before the victim branch, we still observe the DC-
signal. However, this signal appears only if C[47:32] match
the training target B[47:32]. This characterizes the IP-based
branch predictor, originally studied on Intel Haswell, where
the lower 32 bits of IP at the branch source are updated [1].
This predictor has additional logic to handle branching over
a 4 GB boundary, but cannot predict targets further away
than about 6 GB.

Hence, if we were to separate A and B further than
6 GB from C, such that bits[47:32] of A and C mismatch,
the predicted target in 2a becomes C[47:32] ∥B[31:0].
This allows us to put another DC gadget at this address,
which will only be predicted by the IP-based predictor.
In this setting, we repeat the experiment while shuffling
increasingly more branches of the BHB, from the youngest
to the oldest branch.

Results. We measure the number of hits of the two DC-

0 2 4 6 8
Shuffled branches

0.0

0.5

1.0

Pr
ed

. r
at

e path
IP

(a) Raptor Cove

0 2 4 6 8
Shuffled branches

0.0

0.5

1.0

Pr
ed

. r
at

e path
IP

(b) Rocket Lake

0 2 4 6 8
Shuffled branches

0.0

0.5

1.0

Pr
ed

. r
at

e

path
IP

(c) Comet Lake

0 2 4 6 8
Shuffled branches

0.0

0.5

1.0

Pr
ed

. r
at

e path
IP

(d) Coffee Lake

Figure 4: Transitioning from path-based (indirect) to IP-based (direct)
predictions on various microarchitectures.

gadgets and plot the results in Figure 4. The results show
that as soon as the youngest branch preceding C is shuffled,
the path-based predictor can no longer provide predictions.
This coincides with for example a TAGE-like predictor that
always looks for predictions that correlate with the youngest
branches in the path history. As soon as two youngest
branches of the BHB are shuffled, we start to see IP-based
predictions. Depending on the exact microarchitecture, the
prediction rate becomes almost perfect after two or four
youngest instructions preceding B are randomized.

Observation O1. On Intel microarchitectures, we can
alternate between IP- and path-based indirect branch
predictors by shuffling only few preceding branches.

5.1. IBPB and alternating branch predictors

With the ability to choose which predictor should serve
predictions for indirect branches, we want to find out
whether IBPB effectively invalidates both the IP-based and
path-based predictors. We perform the same experiment as
before, but this time, we issue an IBPB in-between the
training step (1) and the attack step (2a for path-based
prediction and 2b for IP-based prediction). The results of
this experiment are shown in Figure 5, indicating that IBPB
invalidates both predictors for indirect branches. The results
in this section show that IBPB is an effective mechanism
for protecting indirect branches while providing us with
building blocks to experiment with other branch types, such
as return instructions.

Observation O2. On Intel microarchitectures, IBPB
properly invalidates indirect branch predictions from
both path- and IP-based predictors.

AMD indirect branch target predictors. On AMD parts, it
is documented that indirect branch predictions are serviced

0 2 4 6 8
Shuffled branches

0.0

0.5

1.0

Pr
ed

. r
at

e path
IP

(a) Raptor Cove

0 2 4 6 8
Shuffled branches

0.0

0.5

1.0

Pr
ed

. r
at

e path
IP

(b) Rocket Lake

0 2 4 6 8
Shuffled branches

0.0

0.5

1.0

Pr
ed

. r
at

e path
IP

(c) Comet Lake

0 2 4 6 8
Shuffled branches

0.0

0.5

1.0

Pr
ed

. r
at

e path
IP

(d) Coffee Lake

Figure 5: IBPB correctly invalidates both types of predictions for indirect
branches.

M

...

... rb0rb1rbM-1 rbM-2RSB

Call-
gadget

Call-
gadget

Call-
gadget

Call-
gadget1

RET...RET2
flush(rb)

*rsp=reload_fnRETRET reload_fn

...Call-
gadget

setup_bhb()
RET RET

N

i − 1 ?

Figure 6: Part of the experiment design to observe RSB and RSBA predic-
tions. 1 Fill the RSB by executing a large number of calls. 2 Execute
i−1 returns, flush all reloadbuffer entries, overwrite the architectural return
target (referenced by rsp), setup the BHB either for IP-based or path-based
RSBA misprediction, and execute the ith return.

by a static predictor unless they have more than one target,
upon which they are serviced by a dynamic predictor [19].
Unlike Intel processors, AMD processors provide separate
performance counters for their static and dynamic predictors.
We confirm that indirect branches are services by both static
and dynamic predictors using these counters and that both
predictors were correctly invalidated by IBPB.

6. RSB Alternate Predictions

Our next challenge is to find the conditions under which
the return target predictor forwards branch target predic-
tions. While it is well-known that the RSB empty-state
results in branch target predictions on many Intel proces-
sors [8], other instances may lead to similar behavior. In
particular, we want to understand the behavior of the return
predictor when the current RSB entry is invalid because it
belongs to a different privilege level or executed post-IBPB.

Tracking RSB predictions. We start by constructing a base-
line experiment that showcases return target prediction from
the RSB by assigning each RSB entry a different DC-gadget.
The experiment is illustrated in Figure 6. We introduce
a call gadget, which consists of a call and a DC-gadget.
Executing its call adds its DC-gadget to the top of the RSB.
Hence, we would observe a DC-signal by executing the
next return, even if we overwrite the return address on the
program stack. The RSB hosts M RSB entries. To detect
M , 1 we allocate all RSB entries by executing N call
gadgets, where N ≫ M . We let each DC-gadget i, load
a distinct reloadbuffer entry rbi, for i ∈ {0 . . . N − 1}. To
detect the RSB entry used by the ith return (if any), we
check which DC-gadget emitted a signal after executing the
return. 2 Immediately before the ith return, we flush the
entire reloadbuffer from the cache to disregard any signals
from previous returns, and we overwrite the return address
on the program stack so that a DC-gadget cannot execute
architecturally. We can then precisely detect which RSB
entry was used by the ith return by measuring access times
to rb0...N−1.

RSBA predictions. The above procedure lets us explore
the use of RSB entries, shown by the blue markers in the

Figure 7. We introduce two additional reloadbuffer entries
rbN...N+1 to observe RSBA predictions from IP-based and
path-based branch target predictors. To capture RSBA pre-
diction, we train the targeted (ith) return with a branch target
prediction. We train this return by executing an aliasing
return with a target distanced by more than 6 GB from the
ith return. This distance makes the target of the ith return
only predictable by path-based RSBA prediction, as we
mentioned in Section 5. We put a DC-gadget touching rbN

at this return target. The IP-based predictor would instead
predict only the lower 32 bits of this target, while retaining
the upper bits of the return source address. We place another
DC-gadget touching rbN+1 at that address.

As shown in Figure 6- 2 , to observe use of the IP-
based branch predictor, we randomize the BHB before the
ith return. To observe use of the path-based predictor, we
set the BHB to the same state it had when training with
the aliasing return before executing the ith return. For each
i, we run the experiment twice: (1) with randomized BHB
before the targeted return and (2) with the same BHB state
as while executing the aliasing return. This experiment can
measure three types of return target predictions for a given
return: RSB, IP-based (direct), and path-based (indirect).

Results. Figure 7 shows a scatter plot over the RSB entry or
branch target prediction being used (vertical axis) for every
return executed (horizontal axis). To increase the visibility
of faint signals (which also amplifies random noise), the size
of each point is given by

√
c
N , where c is number of times a

DC-signal was observed and N is the total number of times
each return is tested. We see the following.

1 Last entry-reuse. AMD family 17h parts (Zen 1(+)/2)
have 31 RSB entries and do not alternate predictors. Instead,
they tend to reuse one of the oldest entries, which could be
useful for tail recursions. Occasionally, the RSB is halved,
caused by sibling thread activity [9], resulting in noise from
the 15th RSB entry. AMD family 19h parts (Zen 3/4) tend
to reuse some of the oldest 4–16 entries.

2 RSBA with path and IP predictors. Coffee Lake,
Golden Cove, and Raptor Cove show RSBA predictions
using both path-based and IP-based predictors.

3 Possible stalling. Rocket Lake does not show any RSBA
prediction. Our experiment does not indicate whether returns
stall or get predicted in a way that our method is unable to
capture. This could explain why these parts are reportedly
unaffected by RSBA bugs [44].

4 Extra large RSB. Gracemont has 128 RSB entries, likely
to accommodate for the lack of a RSBA mechanism.

5 RSB-wraparound. Coffee Lake, Comet Lake, and
Rocket Lake show complete RSB wraparound at every 64 or
128 returns, previously exploited on older processors [24].

6 Single entry RSB-wraparound. Gracemont, Golden
Cove, and Raptor Cove show RSB wraparound for only the
youngest entry.

7 Random noise. Golden and Raptor Cove exhibit random

0 16 32 48 64 80 96 112 128

0

8

16

24

32

D
C

 g
ad

ge
t

AMD17h

0 16 32 48 64 80 96 112 128

0

8

16

24

32

AMD19h

0 16 32 48 64 80 96 112 128
0

32

64

96

128

Gracemont

0 16 32 48 64 80 96 112 128

0

8

16

24

32

Rocket Lake

0 16 32 48 64 80 96 112 128
i-th return

0

8

16

24

32

D
C

 g
ad

ge
t

Comet Lake

0 16 32 48 64 80 96 112 128
i-th return

0

8

16

24

32

Coffee Lake

0 16 32 48 64 80 96 112 128
i-th return

0

8

16

24

32

Golden Cove

0 16 32 48 64 80 96 112 128
i-th return

0

8

16

24

32

Raptor Cove

RSB IP-based path-based

Figure 7: The AMD processors, Gracemont and Rocket Lake have no RSBA. The AMD 17h and 19h have 31 and 32 RSB entries, and attempt to predict
one of the most recent return targets upon underflow. Gracemont has 128 entries and no RSBA. The bottom row processors all have RSBA. The Golden
and Raptor Coves have similar RSBA behavior as Coffee Lake. Most processors have RSB wrap-around behavior, recycling either one or all stale RSB
entries.

noise from various RSB-related DC-gadgets, which we do
not study further. Similarly, Gracemont shows a weak signal
from multiple DC-gadgets around 64 returns which we do
not study further.

As we can see, return target prediction is a complicated
procedure that varies across CPU vendors and generations.
The key observation from the above that will be the primary
focus of this paper is as follows.

Observation O3. Modern Intel processors predict
return targets with at least three different predictors.

RSBA with non-empty RSB. We also check whether RSBA
can trigger when the RSB still has valid entries, albeit poten-
tially associated with incorrect privilege level. We perform
an experiment which runs in privileged mode and is started
via a system call. Our observation is that after 6 returns,
we start to get RSBA predictions. This number of returns
coincides with the number of calls made between the system
call entry and the experiment entry point. However, we find
that if we make additional calls in usermode, before run-
ning our experiment, the returns necessary to trigger RSBA
increases linearly. If we disable Supervisor Mode Execution
Prevention (SMEP) and Supervisor Mode Access Prevention
(SMAP), we furthermore observe that the privileged returns
use these usermode-added return targets. Furthermore, hy-
pervisors must sometimes write to the speculation control
Model-Specific Register (MSR) at VMEXIT to avoid using
the RSB entries of the guest, even if eIBRS is enabled [43].
These act as indicators to the following observation:

Observation O4. RSB entries appear not tagged with
privilege level.

6.1. Post-IBPB RSBA

Next, we want to know how RSBA predictions behave
after IBPB. We execute the previously constructed experi-
ment in privileged mode so that we can write to the MSR bit
that triggers IBPB. We place this MSR write immediately
after branch target training and call gadgets and compare
the results with the previous results from Figure 7.

Results. Figure 8 shows the results once the mitigation has
been applied before triggering any speculation. The proces-
sors that do not invalidate their return target predictions
correctly are AMD family 17h, 19h, Golden Cove, and
Raptor Cove. Although AMD 19h appears to invalidate the
RSB entries, we still observe a faint signal (≈ 0.01 % signal
rate). Whether this effect can exploited, however, we leave
for future work to investigate. On AMD family 17h, IBPB
does not invalidate RSB predictions. However, unlike what
has previously been reported [2], IBPB affects the behavior
of RSB entry selection. After IBPB, RSB appears to pick an
arbitrary entry, particularly after 12 returns, while having
a bias towards using the oldest entry. Because the RSB is
shared with the sibling thread on 17h, it is possible the
sibling thread has an impact on the picked entry.

Observation O5. IBPB causes the RSB to pick an
arbitrary entry on AMD family 17h.

On Golden Cove and Raptor Cove, IBPB invalidates
all RSB entries and path-based predictions, but IBPB fails
to invalidate the IP-based predictions. We refer to this
new effect as Post-Barrier Restricted Return Stack Buffer
Alternate (PB-RRSBA).

0 16 32 48 64 80 96 112 128

0

8

16

24

32

D
C

 g
ad

ge
t

AMD17h

0 16 32 48 64 80 96 112 128

0

8

16

24

32

AMD19h

0 16 32 48 64 80 96 112 128
0

32

64

96

128

Gracemont

0 16 32 48 64 80 96 112 128

0

8

16

24

32

Rocket Lake

0 16 32 48 64 80 96 112 128
i-th return

0

8

16

24

32

D
C

 g
ad

ge
t

Comet Lake

0 16 32 48 64 80 96 112 128
i-th return

0

8

16

24

32

Coffee Lake

0 16 32 48 64 80 96 112 128
i-th return

0

8

16

24

32

Golden Cove

0 16 32 48 64 80 96 112 128
i-th return

0

8

16

24

32

Raptor Cove

RSB IP-based path-based

Figure 8: Post-barrier return speculation. AMD 17h does not invalidate return predictions. Comet Lake and Rocket Lake exhibit already-known PBRSB
from the first return [2], [13]. A new insight is that this return re-appears every 128 returns. Our key insight is that Golden and Raptor Cove exhibit
PB-RRSBA.

Observation O6. IBPB does not invalidate RSBA
with IP-based predictions.

Another consequence of IBPB on Golden Cove and
Raptor Cove is that RSBA prediction is immediately used
from the first return on instead of after the 16th.

Observation O7. RSBA triggers immediately after
IBPB has invalidated all return targets.

These IP-based post-barrier return target predictions are
not just easier to train, as they require no path history, but
with IBPB, they are also triggered reliably if IBPB can undo
any negative bias imposed by the path-based predictor.

Summary. We have learned that IBPB results in arbitrary
RSB predictions on AMD Zen 1(+)/2 and it does not
invalidate RSBA predictions on Golden and Raptor Cove.
With the insights from our reverse engineering, the next two
sections describe two attack scenarios on up-to-date Linux
systems running on these processors.

7. Cross-process Attack

IBPB is supposed to prevent cross-process transient ex-
ecution attacks. In this section, we demonstrate that cross-
process attacks are not just practical, but that they are
possible on the latest Intel processors despite IBPB, due
to the PB-RRSBA effect. To this end, we build an end-
to-end exploit that leaks secrets from a suid binary that is
pre-installed on most Linux distributions. To do this, we
moreover present a method to derandomize ASLR.

Branch predictor indexing. On Raptor Cove, we found that
the RSBA-triggered IP-based predictor updates the lower
32 bits of the IP, based on the lower 24 bits of branch

source. For example, when the victim executes the return
at address A that leads to B, it will use A[23:0] to insert
a target prediction with bits B[31:0]. When the attacker
executes, if it executes a return from an address C where
C[23:0] matches A[23:0], the branch predictor will forward
D, where D[31:0] matches B[31:0]. D[47:32], however,
will remain the same as the branch source C.

Vulnerable processes. Processes that handle sensitive in-
formation can enable IBPB to block cross-process Spec-
tre attacks. Using the prctl system call ABI, the calling
process can instruct the Linux scheduler to trigger IBPBs
when rescheduling or preempting it. We can inspect the
IBPB configuration of running processes by reading the
SpeculationIndirectBranch value of their respective procfs
files /proc/PID/status. The values conditional force disabled
and conditional disabled means IBPB is used, whereas
conditional enabled means that it is disabled.

Upon inspection of the running processes on a Debian
laptop, of 427 processes, the few processes that enable IBPB
are renderer and IPC processes of Google Chrome. This
suggests that application developers are either unconcerned
with, or unaware of, cross-process Spectre attacks. Even suid
binaries, like sudo, su, and polkit, do not use IBPB. Instead,
to show that our cross-process attack is unaffected by IBPB,
we enable it from our attacker process instead, which has
the equivalent effect. These suid binaries manage privileged
information, such as the password hashes from /etc/shadow,
and offer communication with the attacker via password
prompts. Moreover, the attacker process can execute them
and pin them to their own hardware thread to share BTB
and cache, making them ideal victims for Spectre attackers.

7.1. Address Space Layout Randomization (ASLR)

As the attacker, to mount a Spectre attack, we need to de-
randomize ASLR to infer addresses of vulnerable branches

...
...

...

...

C[23:12] = 0x000 D[31:0] = C + d

16MB4KB

...

...

...

BTB hit IC hit

1

2

3

4096 RET sources 256 IC gadgets

Figure 9: ASLR probing procedure in the attacker process. 1 Execute a
RET at C[23:12] = 0 and probe C + d+ 0 . . . C + d+ (255 ≪ 24). 2
Let C = C + (1 ≪ 12) and repeat. 3 Continue until C produces a BTB
hit, observed through an IC hit, which occurs when D[31:0] = B[31:0]

and gadgets in the running victim process. ASLR random-
izes the main binary, libraries, and the stack into different
regions. For the libraries, our system randomizes bits[40:12],
providing 28 bits of entropy. Previous work has shown that
the BTB can be exploited for ASLR derandomization via
toy examples, albeit with for us unfeasible methods, due
to insufficiently recovered bits [34], the victim running an
infinite loop [5], or the victim and attacker residing in the
same process that uses a compile-time ASLR scheme [45].

We present a new ASLR derandomization technique,
exploiting a return source A to return target B, of a victim
process that reads characters from stdin. Our goal is to
recover the lower 32 bits of B that is inserted in the BTB
by the victim after executing A, by observing a return mis-
prediction from C to D in the attacker process. By sending
a character to its stdin, we trigger the victim to execute A.
Because A[11:0] is never randomized and A[40:32] does not
address the BTB, the BTB addressing culminates in 12 bits
of entropy from A[23:12]. After victim read the character,
our attacker process reschedules.

We will now infer A[23:12] by guessing the aliasing
branch C using the procedure in Figure 9. If we guess C
correctly, the BTB forwards the target B[31:0], updating
lower 32 bits of the IP at C. We execute C from up to
4096 possible locations, until we hit the one aliasing with
A. Assuming A and B are in the same region (e.g., libraries),
the distance between the two is a constant d. Hence, if we
guessed C right, D[23:0] will be C[23:0] + d. Recovering
B[31:24], we assign IC-gadgets to all 256 possible branch
targets. This means that for each C, we probe 256 possible
values of D. If no IC was observed, we try another C by
incrementing bits [23:12]. When guessed correctly, one of
these IC-gadgets will be fetched, recovering B[31:0] of the
victim. We do not attempt to recover the 8 bits of remaining
entropy, as they are ignored by IP-based branch prediction.

Victim binary. We analyze a few different suid binaries
to find the most suitable for exploitation. The su binary
refuses to read from stdin, unless it is terminal, making it
difficult to trigger repeatedly. The sudo binary reads from
stdin but does so from the main binary region. This allows

attackervictim

read(stdin)

write(vi, 'c', 1)
usleep(0)

read(stdin)

guess_ret_addr()

1

2

3

Figure 10: ASLR exploit procedure. victim and attacker run on the
same hardware thread. 1 victim reads from stdin. 2 attacker
writes an arbitrary character and reschedules victim. 3 victim re-
ceives the character and reads next character from stdin, which passes
control back to attacker.

us to derandomize the main binary region, but not the
much larger library region. However, a helper suid binary
of polkit polkit-agent-helper-1, pre-installed in most Linux
distributions, seems suitable as it reads from stdin from
the library region. Polkit is an application-level toolkit for
defining and handling the policy that allows unprivileged
processes to speak to privileged processes. Its helper is
invoked to authenticate an unprivileged user, for which it
uses the Pluggable Authentication Modules library (libpam).
libpam is responsible for reading /etc/shadow via the glibc-
provided getspnam function. The polkit helper presents a
password prompt when run with the user to authenticate as
in its first command-line argument and an arbitrary value in
the second argument.

Exploitation. The exploit procedure is shown in Figure 10.
The attacker process spawns the victim, pinning itself and
the victim process to the same hardware thread to share
cache and branch prediction state. 1 After printing the
prompt, the victim goes idle inside a read system call,
initiated by an fgets call, awaiting a password. 2 To trigger
the victim to execute, the attacker process sends a character
to its stdin, followed by a usleep(0). The fgets function
of the victim will then issue another read, since no newline
was encountered and the input buffer is not full, passing
control back. 3 At this point, the attacker process tries to
recover B[31:0] and 4 re-trigger the victim to execute if
unsuccessful. The returns executed between each read are
shown in Table 1. Any of the first three return branches that
are highlighted in the table can be used.

TABLE 1: CALL AND RETURN TRACE OF THE read LOOP IN fgets.

Source Insn. Target Object Symbol

ffffffff81e001d2 sysret 7ffff7ccc7e2 kernel entry_SYSCALL_64
7ffff7ccc7ea retq 7ffff7c44c36 libc.so.6 read
7ffff7c44c6b retq 7ffff7c45d96 libc.so.6 _IO_file_underflow
7ffff7c45db0 retq 7ffff7c3841c libc.so.6 _IO_default_uflow
7ffff7c38417 callq 7ffff7c45a40 libc.so.6 _IO_getline_info
7ffff7c45d93 callq 7ffff7c44ab0 libc.so.6 _IO_default_uflow
7ffff7c44bf0 callq 7ffff7c45720 libc.so.6 _IO_file_underflow
7ffff7c457a0 retq 7ffff7c44bf5 libc.so.6 _IO_switch_to_get_mode
7ffff7c44c33 callq 7ffff7c43930 libc.so.6 _IO_file_underflow
7ffff7ccc7e0 syscall ffffffff81e00040 libc.so.6 read

7.2. Cross-process Memory Leak

To leak memory from the victim, we hijack the specu-
lative control flow at one of the exploitable returns in the
victim using a ROP-gadget chain and leak a secret over
a Flush+Reload covert channel. The secret is in our case
the root password hash, and the first challenge is to invent
a method to leak it from the victim process. Because this
attack relies on exploitable PB-RRSBA predictions in the
victim, the RSB must be in the empty-state when the victim
return executes. To reach this state, the call stack of the read
system call needs to exceed the RSB capacity, which fits 16
targets on Raptor Cove. Reading from a normal pipe does
not exceed this number, but assigning a socket to the stdin
of the victim does.

Before presenting the password prompt for authentica-
tion, libpam already verifies that the password entry of the
requested user is valid. The /etc/shadow is read into a FILE
stream buffer, the root entry is parsed and recorded in the
pam context, after which the file is closed, freeing the buffer.
When the victim reads the password from stdin with the
fgets call, a new stream buffer is allocated for stdin. If
the stdin is not a terminal, it will be handled like a file
and, as such, allocated a buffer of the same size as the
just-freed buffer. The heap allocator conveniently recycles
this memory, resulting in the stdin buffer containing the
previously freed /etc/shadow contents. We let A and B be
the return source and target on the third highlighted row in
Table 1, where three registers (rdx-1, rsi, r9) reference the
secret via the uninitialized stdin stream buffer. Moreover,
rax holds the most recently entered character byte, making
it attacker-controlled, and rcx references the syscall return
target inside the syscall wrapper, 18 bytes into read. The
next challenge is to establish a Flush+Reload covert channel
between the victim and attacker process.

Covert channel. In cross-process Spectre attacks, unlike
user-to-kernel attacks, the attacker and victim do not share
address space. However, read-only mappings of shared li-
braries are physically shared across processes [26]. This
means that code pointers into libraries, like rip and rcx, in
fact reference shared memory that can be used as covert-
channel medium if the attacker process loads the same
libraries. A typical leak gadget loads a single byte of the
secret and left-shifts it before using it as offset in a shared
memory buffer. With rcx as shared memory base pointer,
ascii secrets can be left-shifted up to 13 bits while still
referencing shared memory within glibc. The final challenge
is hence to find a leak gadget that uses one of shared
memory pointers as covert-channel medium.

ROP-gadget chain. The goal is to dereference one byte of
the secret, while using rax as byte index, to left-shift the
byte by 8 to 13 bits, and finally use the result as memory
offset for dereferencing rcx. Unsurprisingly, finding such a
leak gadget is non-trivial. Instead, since we can control the
return target predictions of any victim return instruction,
we investigate the idea of using a gadget chain, where each
gadget does one of these operations, followed by a return.

attackervictim

read(stdin)

_IO_default_uflow: ret

read(stdin)

reload(shared_mem)

1

3

4

flush(shared_mem)
train_ropchain()
write(sock, idx, 1)
usleep(0)

ROP CHAIN (transient)

2

Figure 11: Leak exploit procedure. victim and attacker run on the
same hardware thread. 1 victim reads from stdin. 2 attacker
trains the BTB with the ROP chain, writes the character that rax should
take in victim, and reschedules it. 3 victim receives the character
and reads the next character, passing control back. 4 attacker infers
the leaked byte.

This allows us to re-purpose classic ROP-gadget scanners,
used in memory corruption attacks, for an advanced Spectre
attack. Since we cannot trigger demand-paging with specu-
lative execution, the memory at our disposal must already
be physically backed. Hence, in an offline stage, we dump
all executable pages of the victim process that are marked
present. We then analyze the memory dump using the ROP-
gadget scanner rp++ [46].

TABLE 2: GADGET CHAIN

Gadget Object r-xp offset

movzbl (%rax,%rdx,1), %eax; ret libicuuc.so.70.1 0x005a69
rol $8, %eax; ret libc.so.6 0x10e5b7
mov (%rcx,%rax,1), %al; ret libpcre2-8.so.0.10.4 0x00074b

The ROP-gadget chain we found is listed in Table 2. The
pointer to the secret (offset by 1 byte) resides in rdx, and one
byte from it is loaded into eax using the attacker-controlled
rax as index. The secret is then left-rotated 8 times. Finally,
the resulting value is used as index for referencing the shared
memory pointer rcx. Rather than pushing each return target
to the stack, as a typical ROP attack, the attacker trains
each ret instruction to predict the next gadget in the chain.
The leak procedure is shown in Figure 11. Since rcx points
18 bytes into read and will be used as shared memory
for Flush+Reload, the attacker flushes it from the cache
hierarchy. The attacker then trains A to predict the first
ROP gadget, and connect each subsequent return of the
ROP gadget chain. Finally, the attacker triggers the victim
process to execute by writing a byte to it that corresponds
to the index of the secret that they want to leak. The victim
transiently executes the gadget chain when processing the
input. Since the password input is not full, and no newline
character was encountered, the victim waits for the next
character, passing control back to the attacker process who
infers the secret by reloading reloadbuffer entries relative to
the read code.

Summary. We have described a method to leak cross-
process information using our Spectre primitive. The major-

ity of binaries do not attempt at stopping such attacks and
even if they did by using IBPB on context switch, IBPB on
modern Intel processors fails at mitigating our PB-RRSBA
Spectre primitive. Next we will study the security flaws of
using IBPB in the cross-privilege setting.

8. Bypassing IBPB-on-entry

The most comprehensive mitigation for AMD processors
that are vulnerable to recent Branch Target Confusion [8]
and Phantom speculation attacks [6], [9] is to invalidate
all exploitable branch target predictions using IBPB after
transitioning to a higher privilege mode (i.e., user-to-kernel
and guest-to-host) [6], [8], [9]. In this section we study the
IBPB-on-entry mitigation and expose residual attack surface
exploitable using our previous insights.

IBPB-on-entry is enabled by passing retbleed=ibpb or
spec_rstack_overflow=ibpb boot parameter to the kernel.
In this configuration, on kernel entry, the entry_ibpb func-
tion issues an IBPB as shown in Listing 1. After the function
returns, the kernel code starts with all branch predictions
invalidated. This means that no attacker-injected branch
target predictions can be used, therefore securing the kernel
against all kinds of BTI attacks — given that they do not
occur before the IBPB.

1 entry_ibpb:
2 ffffffff8211eb40: mov ecx,0x49
3 ffffffff8211eb45: mov eax,0x1
4 ffffffff8211eb4a: xor edx,edx
5 ffffffff8211eb4c: wrmsr
6 ffffffff8211eb4e: jmp __x86_return_thunk
7 ; ...
8 __x86_return_thunk:
9 ffffffff8213fbc0: ret

Listing 1: entry_ibpb and __x86_return_thunk to be hijacked.

We are interested to see whether the speculative control
flow can be hijacked before the IBPB. In particular, we
want to see whether we can inject a phantom branch on
the instructions in entry_ibpb, before the IBPB-triggering
wrmsr instruction on Line 5. As we have seen, vulnerable
AMD CPUs do not invalidate return target predictions, so
any return target predictions injected before the IBPB will be
retained. The Inception attack showed that phantom specula-
tion can be used to inject sufficient return target predictions
to overflow the RSB [9]. Therefore, we test whether we
can inject such phantom speculation to overflow the RSB,
consequently controlling the return target prediction for the
return on Line 9.

8.1. Exploit procedure and new challenges

As the attacker, we inject a PhantomJMP from
entry_ibpb to a target that is three bytes before a leak
gadget. The number of bytes depends on the width of the
PhantomCALL that the we inject at the PhantomJMP target.
In this case, the PhantomCALL is injected using a three
bytes wide call r8 before the leak gadget. To set up a

recursive call loop that corrupts the entire RSB, from the
PhantomCALL source (i.e., the PhantomJMP target), we
inject a call prediction to the address of the PhantomCALL
itself. This way, as we execute entry_ibpb, we will predict
a jump to a target where a recursive call is predicted. After
the decode of the instruction in entry_ibpb where we have
injected the PhantomJMP, this series of mispredictions is
corrected, but we will have already overflowed the RSB.
Hence, the return thunk from entry_ibpb speculatively ex-
ecutes the leak gadget. This method has been explained in
finer detail in [9].

There is, however, a challenge that we need to ad-
dress: injecting PhantomJMPs and PhantomCALLs from
user mode triggers page faults. While this is not a problem
in the original Inception attack, in our case the interrupt
entry from user mode, triggered by page fault, immediately
undoes the injected phantom branch, since interrupts entries
are protected by IBPB too. Using Training in Transient
Execution, initiated by RSB speculation (i.e., TTERSB) [9],
we can suppress the page fault, using the following macro.

1 .macro TTE_RSB train_dst, train_src
2 call 1f ; line 3 and 4 are never architecturally executed
3 mov \train_dst, %r8
4 jmp *\train_src ; leads the training source, which will use %r8
5 1: lea 2f(%rip), %rax
6 mov %rax, (%rsp) ; overwrite return target
7 clflush (%rsp)
8 lfence ; wait for real return target the be flushed.
9 ret ; speculatively returns to line 3

10 2: .endm

Listing 2: Macro for injecting PhantomJMP and PhantomCALLs with TTE.
The speculatively executed indirect jump on Line 4 leads to the training
call or jump

Another challenge is ensuring that attacker-provided in-
puts are served quickly to enable secret-dependent memory
loads during the speculative window. We choose a leak
gadget that reads attacker-provided input from the stack for
this purpose. Because the general-purpose registers were just
saved to the stack a few instructions earlier on system call
entry, accesses to this memory will be served quickly by the
store queue. Listing 3 shows our leak gadget.

1 ffffffff81998cc4: mov rdx, qword ptr [rdi + 0x28]
2 ffffffff81998cc8: mov rcx, qword ptr [rdi + 8]
3 ffffffff81998ccc: mov edx, dword ptr [rdx + 0x10]
4 ffffffff81998ccf: add edx, 8
5 ffffffff81998cd2: add rcx, rdx
6 ffffffff81998cd5: mov ecx, dword ptr [rcx]

Listing 3: Leak gadget found in lpss_uart_setup. Attacker-controlled
memory referenced by rdi.

9. Evaluation

Our evaluation considers the various post-barrier primi-
tives (Section 9.1), and the performance of the cross-process
(Section 9.2), and PB-Inception attacks (Section 9.3).

Evaluation platforms. Table 3 provides the details of our
evaluated platforms, including the processor models, mi-
crocode versions, distribution and kernel versions.

TABLE 3: EVALUATION PLATFORMS.

System Distribution Processor Microcode Kernel

CFL Ubuntu 20.04.6 LTS Core i7-8700K 0xf4 5.19.7
CL Ubuntu 22.04.3 LTS Core i7-10700K 0x59 5.15.0-91-generic
RL Ubuntu 22.04.3 LTS Core i7-11700K 0x59 6.2.0-36-generic
GC Ubuntu 20.04.6 LTS Core i7-12700K 0x32 5.15.0-92-generic
RC/GM Ubuntu 22.04.3 LTS Core i7-13700K 0x119 5.15.0-97-generic
RC-R Ubuntu 22.04.3 LTS Core i7-14700K 0x11d 5.15.0-97-generic
17h Ubuntu 22.04.3 LTS EPYC 7252 0x8301038 6.5.0-35-generic
19h Ubuntu 22.04.3 LTS Ryzen 5 5600G 0xa50000c 5.15.0-46-generic

TABLE 4: POST-BARRIER SPECULATION PRIMITIVES.

Pred. Type CFL GM CL RL GC RC RC-R 17h 19h

Indirect ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Direct ✗ ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✗ 2

RSB ✗ ✗ ✓ 1 ✓ 1 ✗ ✗ ✗ ✓ ✓ 4

RSBA-BHB ✗ ✗ ✗ ✗ ✗ ✗ ✗ – 3 – 3

RSBA-IP ✗ ✗ ✗ ✗ ✓ ✓ ✓ – 3 – 3

1 The youngest RSB entry is retained [2].
2 Microcodes before Aug. 2023 retain direct predictions [9].
3 AMD parts do not alternate return target predictors.
4 Zen 4 of family 19h is unaffected [47].

9.1. Primitives

Table 4 summarizes the evaluation of the primitives that
we discussed in Sections 5 and 6 on various microarchi-
tectures. In addition to RSB and RSBA predictions, we
also investigated whether IBPB invalidates predictions for
direct branches. We observe that on Golden Cove and Raptor
Cove direct branch predictions are retained, but unlike PB-
RRSBA, they are only speculatively fetched (not executed)
after IBPB. Our conclusion is that Golden Cove and Raptor
Cove have a more permissive implementation of IBPB.

9.2. Cross-process attack

ASLR. We evaluate the ASLR exploit against polkit-agent-
helper-1 using the procedure presented in Section 7.1. We
let the attacker process execute the victim binary and at-
tempt to derandomize ASLR of its libraries up to 8 times
before giving up. We measure the time from (re-)starting the
victim until the procedure completes. As root, we compare
the recovered address to the correct one via procfs. The
procedure guesses the possible upper bits of the target
(Bguess [31:24]) for each possible value of lower bits of
the source (Aguess [23:12]). We repeat the experiment 1000
times, each time restarting the victim, re-randomizing its
address space. Since we observe a strong false-positive bias
when testing if the higher bits (i.e., B[31:24]) are 0, we
ignore this value, missing 1/256 possibilities. Moreover,
because there is a false-positive bias towards the most
recently recovered value, from the previous invocation, we
ignore this value as well. Our derandomization method had
a 98.8 % success rate, with an average time of 0.40 seconds.

Memory leak. We now evaluate the memory leak pro-
cedure against polkit-agent-helper-1 that we introduced in
Section 7.2. We evaluate the time it takes to leak 110
characters from the shadow entry of root. The password

prompt fits at most 512 bytes (including newline and NULL-
terminator), meaning we can only trigger the victim to
execute our ROP chain 510 times before the buffer is full. At
this point, we restart and derandomize ASLR of the victim
again. Unfortunately, the procedure is ineffective without
optimizations: attempting to leak a control value (’o’ of
“root” in the shadow entry) failed over a 24-hour-long test.

Optimizations. We consider two types of optimizations to
combat this: making the gadget chain execute faster, through
prefetching; or delaying the retrieval of the correct return
target address, through sibling noise. By prefetching, we
attempt to fetch the pages necessary for the ROP chain into
the i-TLB, before the victim return executes. To do this, we
train the returns preceding the victim return (see Table 1) to
prefetch the ROP gadgets. By sibling noise, we attempt to
induce memory noise with the intention of prolonging the
time it takes until the misprediction is corrected. For this,
the system needs to enable SMT, which it does by default.
The sibling noise accesses every page of 256 MB of memory
in an infinite loop and is pinned to the sibling thread of the
attacker and victim processes. Both optimizations worked
to observe an occasional signal matching the control value.
However, because of the low success rate, the signal-to-noise
ratio is high. To combat this, we reload no more than one
cache line per page per interaction with the victim. Hence,
to check all possible values of the secret requires 4 or 16
interactions with the victim, depending on if the secret is
left-shifted by 10 or 8 bits, respectively. In addition, before
we attempt to leak from the victim, we first ensure that we
can correctly recover the control value, otherwise we restart
the victim.

Results. With prefetching, we recover the secret in 17 hours,
leaking 108 out of 110 characters correctly. We note that
we cannot send a newline byte (ordinal value 10) to the
victim, preventing us from recovering the 12th byte of the
secret. Hence, we are guaranteed to have at least 1 error
in the result. Using sibling noise was significantly more
effective, allowing us to recover the secret in 22/116/180
minutes with 1/1/3 byte errors (min/median/max, 20 full
runs). Using both prefetching and sibling noise, showed no
visible improvement. Our results confirm that cross-process
Spectre attacks are practical in a realistic setting, which is
concerning since they are not considered a threat by most
usermode programs.

9.3. IBPB-on-entry

We run the end-to-end attack of PB-Inception 10 times
on two AMD 17h processors with Zen 2. For the gadget
offsets, the attack first obtains the kernel image address by
reading the unprivileged /sys/kernel/notes [48]. Finding
a physmap pointer of the attacker-mapped reloadbuffer, nec-
essary for covert channel, follows the same procedure as the
original exploit [9]. As with the original Inception attack, the
majority of time is spent on scanning the physmap region
for the password hash, rather than actually leaking it. The
results in Table 5 show that PB-Inception performs better

TABLE 5: PB-INCEPTION EVALUATION

Processor Microcode Mem. Time To Shadow [min] Bandwidth [B/s]

min median max min median max

EPYC 7252 0x8301038 16 GB 0:59 10:17 27:08 128 236 292
Ryzen 5 3600X 0x8701021 8 GB 0:16 19:37 38:54 159 299 364

than the original attack, leaking root password hash in 10–20
minutes depending on system, with a bandwidth of 236–299
bytes per second.

The speed-up compared to the original exploit is likely
because of two reasons. First, by training from user mode
with TTE, we no longer trigger page faults while training.
Secondly, we target a return very early in the entry path,
before the kernel stack has been randomized. This means
that we can know the page offset that will be used when
entering the kernel and can evict these cache sets only.

10. Mitigation

We propose mitigations against PB-Inception on AMD
17h and PB-RRSBA on Intel Golden and Raptor Coves.

IBPB-on-entry. To mitigate Inception, Linux untrains re-
turns on kernel entry and forces every return to mispre-
dict [41]. One might think that resorting to this mitigation
can mitigate PB-Inception. However, the reason why users
enable IBPB-on-entry is not to mitigate Inception alone, but
also because it is the only available mitigation against all
forms of phantom speculation [6], [8], [39]. Instead, we will
discuss how we can apply IBPB securely.

There are a number of entry points to the privileged
domain that must be considered when mitigating cross-
privilege Spectre attacks. In Section 8, we exploited the
syscall entry point. However, a comprehensive mitigation
must also consider the entry points assigned to the interrupt
descriptor table (IDT entries) and the entry point from guest
to hypervisor (i.e., during VMEXIT). Because IDT entries
are taken in any privilege level, the mitigation should be
conditionally applied depending on the current privilege
level the interrupt occurred in.

Since we are exploiting the return in entry_ibpb, the
naïve approach, to stop PB-Inception by avoiding this return,
is unfortunately not a complete mitigation. This is because
entry_ibpb is used in many different locations, some of
which include functions with subsequent returns. Since the
attacker can corrupt the entire RSB, any one of these subse-
quent returns could be hijacked. While the system call entry
calls entry_ibpb directly, KVM and various IDT entries call
this function at a deeper call depth.

A partial stuffing of the RSB, which has previously been
used to mitigate PBRSB against the hypervisor [13], appears
to mitigate our particular attack. However, since the seem-
ingly arbitrary selection of RSB entry post-IBPB on AMD
17h (Observation O5) might be controllable by an attacker,
we opt for a more robust mitigation that stuffs the entire
RSB. To detect whether the processor correctly invalidates
return target predictions or not, we add the detection of
IBPB implementation, which AMD processors provide from

the cpuid instruction. The mitigation is conditionally en-
abled through Linux’s ALTERNATIVE macros, which rewrite
the kernel at boot-time to toggle various features. The
mitigation is enabled if the IBPB implementation ignores
return target predictions.

We provide the patches we implemented in Appendix A.
To test the performance overhead of the mitigation, we mea-
sure the number of getpid system calls we can perform in
60 seconds. This microbenchmark shows a 9.8 % overhead
(66.3 M vs 59.8 M calls).

Mitigating cross-context attacks. For suid binaries that
manage secrets, like the polkit helper, we recommend the de-
velopers to enable IBPB. A possible mitigation for operating
system maintainers is to force all suid processes (i.e., that
execute under a different user) to enable IBPB by default,
forcing the developer to instead disable it if their process
does not access secrets. To mitigate the PB-RRSBA effect on
Intel processors, we propose use of a chicken bit that stops
the cross-process leak. In response to the Branch History
Injection (BHI) attack [7], Intel introduced a series of specu-
lation controls for Golden Cove and Raptor Cove, including
controls for the RRSBA behavior [25]. By enabling the
bit RRSBA_DIS_U, we confirm that PB-RRSBA is prevented.
This bit needs to be enabled for processes that need IBPB,
since those would otherwise be vulnerable to classic Spectre.
With this chicken bit always-on, SPECrate2017 reported a
modest 0.4 % performance overhead.

11. Related Work

We discuss related work that compromise deployed miti-
gations against transient execution attacks, and side-channel
attacks and defenses that target branch predictors.

Breaking hardware mitigations. Barberis et al. [7] showed
that the BHB is shared across privilege levels, circumventing
Intel eIBRS. Trujillo et al. [9] exploited TTE, which was
not considered by AMD AutoIBRS, to build the Incep-
tion attack. Inception was possible because AutoIBRS only
concerns decoded indirect branches, whereas TTE of RSB
works on non-decoded phantom branches [6]. Milburn et
al. [2] showed that returns mispredict after IBPB on AMD
17h, but they assumed IBPB does not affect the RSB and did
not attempt to exploit it. In this work, we could exploit this
issue end-to-end, due to the way IBPB-on-entry is applied
in Linux. Post-barrier RSB vulnerabilities on Intel RSBs is
a known issue [13]. In this work, we moreover showed that
modern Intel processors also have post-barrier behavior for
returns predicted by the IP-based predictor.

Breaking software mitigations. Retbleed [8] showed that
Retpoline mitigations were ineffective against some forms of
BTI attacks through RSBA on Intel CPUs and Branch Type
Confusion (BTC) [39] on AMD CPUs. Milburn et al. [2]
analyzed AMD processors under various SMT workloads
that slows down redirect from a misspeculation, enabling
Direct Branch Target Injection, which is another form of
BTC. They further showed that the lfence-style Retpolines,

originally recommended for AMD systems, were still sus-
ceptible to BTI attacks under certain SMT workloads. These
attacks show that software-based mitigation tend to only
cover the most obvious attack vectors.

Branch predictor side channels and defenses. Evtyushkin
et al. [34] demonstrated BTB side channels on Haswell
processors, exploiting ASLR. A similar example was shown
by Mambretti et al. [32] on newer hardware. These attacks
target toy programs, and they only break 8 bits of ASLR
entropy. Exploiting PB-RRSBA breaks 20 bits of entropy
(i.e., the lower 32 bits) of a suid process of polkit that
manages passwords. This is enough address bits to enable
other Spectre attacks, such as Pathfinder [17]. Evtyushkin et
al. [49] introduced a number of “gadgets” for their microar-
chitectural weird machines, from which we have adopted
DC- and IC-gadgets. Zhang et al. [5] reverse engineered
addressing of different branch predictors on Intel processors,
involved in instruction prefetching. Yavarzadeh et al. [16]
reverse engineered the BHB update function and BTB in-
dexing on modern Intel processors enabling a partitioning
scheme of the conditional branch predictor against Spec-
tre attacks. Their reverse engineering also enabled precise
control of conditional branches across contexts [17].

12. Conclusion

We demonstrated new post-barrier Spectre attacks on
Intel and AMD processors. These issues are related to how
the IBPB mitigation is implemented in microcode (for Intel)
and how it is applied in software (for AMD). Specifically,
modern Intel processors do not invalidate IP-based return
target predictions. Such predictions are made when the RSB
has no valid prediction. For AMD, the IBPB mitigation
neglects return target predictions, meaning that care must
be taken when using this mitigation, in particular since
these processors are vulnerable to phantom speculation. We
built two exploits using these insights that bypass the IBPB
mitigation. The first exploit derandomizes ASLR and leaks
the root password hash of a suid process on Intel CPUs,
and the second leaks privileged kernel memory from an
unprivileged process. We further proposed, implemented,
and evaluated mitigations against these attacks.

Acknowledgements

We thank the anonymous reviewers and our shepherd
for their valuable feedback. We further like to thank Chani
Jindal of Google, for finding us a ROP gadget chain, and
the rest of the Google “btb” group, namely Jordy Zomer,
Matteo Rizzo, Alexandra Sandulescu, Eduardo Vela Nava.
We thank Borislav Petkov of AMD and Andrew Cooper of
XenServer for reviewing and providing feedback our on PB-
Inception patch proposal. Part of the research was carried
out during an internship at Open Source Security, Inc.

References

[1] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom,
“Spectre attacks: Exploiting speculative execution,” in Symposium on
Security and Privacy (S&P). IEEE, 2019.

[2] A. Milburn, K. Sun, and H. Kawakami, “You cannot always win the
race: Analyzing mitigations for branch target prediction attacks,” in
European Symposium on Security and Privacy (EuroS&P). IEEE,
2023.

[3] G. Maisuradze and C. Rossow, “Ret2spec: Speculative execution
using return stack buffers,” in Conference on Computer and Com-
munications Security (CCS). ACM, 2018.

[4] E. M. Koruyeh, K. N. Khasawneh, C. Song, and N. Abu-Ghazaleh,
“Spectre returns! speculation attacks using the return stack buffer,”
in USENIX Workshop on Offensive Technologies (WOOT), 2018.

[5] Z. Zhang, M. Tao, S. O’Connell, C. Chuengsatiansup, D. Genkin,
and Y. Yarom, “BunnyHop: Exploiting the Instruction Prefetcher,” in
USENIX Security, 2023.

[6] J. Wikner, D. Trujillo, and K. Razavi, “Phantom: Exploiting Decoder-
detectable Mispredictions,” in MICRO, 2023.

[7] E. Barberis, P. Frigo, M. Muench, H. Bos, and C. Giuffrida, “Branch
History Injection: On the Effectiveness of Hardware Mitigations
Against Cross-Privilege Spectre-v2 Attacks,” in USENIX Security,
2022.

[8] J. Wikner and K. Razavi, “Retbleed: Arbitrary Speculative Code
Execution with Return Instructions,” in USENIX Security, 2022.

[9] D. Trujillo, J. Wikner, and K. Razavi, “Inception: Exposing New
Attack Surfaces with Training in Transient Execution,” in USENIX
Security, 2023.

[10] T. Zhang, K. Koltermann, and D. Evtyushkin, “Exploring branch
predictors for constructing transient execution trojans,” in Architec-
tural Support for Programming Languages and Operating Systems
(ASPLOS). ACM, 2020.

[11] J. Horn, “Reading privileged memory with a side-channel,” 2018.
[Online]. Available: https://googleprojectzero.blogspot.com/2018/01/
reading-privileged-memory-with-side.html

[12] Intel Corp., “Return stack buffer underflow,” 2022. [Online].
Available: https://www.intel.com/content/www/us/en/developer/
articles/technical/software-security-guidance/advisory-guidance/
return-stack-buffer-underflow.html

[13] D. Sneddon, “[PATCH 5.4 14/15] x86/speculation: Add RSB VM
Exit protections,” 2022. [Online]. Available: https://lkml.org/lkml/
2022/8/9/728

[14] Xenproject.org Security Team, “Xen Security Advisory CVE-2022-
23824 / XSA-422,” 2022. [Online]. Available: https://xenbits.xen.
org/xsa/advisory-422.html

[15] AMD, “Technical update regarding specula-
tive return stack overflow,” 2023. [Online].
Available: https://www.amd.com/content/dam/amd/en/documents/
corporate/cr/speculative-return-stack-overflow-whitepaper.pdf

[16] H. Yavarzadeh, M. Taram, S. Narayan, D. Stefan, and D. Tullsen,
“Half&half: Demystifying intel’s directional branch predictors for
fast, secure partitioned execution,” in Symposium on Security and
Privacy (S&P). IEEE, 2023.

[17] H. Yavarzadeh, A. Agarwal, M. Christman, C. Garman, D. Genkin,
A. Kwong, D. Moghimi, D. Stefan, K. Taram, and D. Tullsen,
“Pathfinder: High-resolution control-flow attacks exploiting the con-
ditional branch predictor,” in Architectural Support for Programming
Languages and Operating Systems (ASPLOS). ACM, 2024.

[18] A. Seznec and P. Michaud, “A case for (partially) tagged geometric
history length branch prediction,” The Journal of Instruction-Level
Parallelism, 2006.

https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/return-stack-buffer-underflow.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/return-stack-buffer-underflow.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/return-stack-buffer-underflow.html
https://lkml.org/lkml/2022/8/9/728
https://lkml.org/lkml/2022/8/9/728
https://xenbits.xen.org/xsa/advisory-422.html
https://xenbits.xen.org/xsa/advisory-422.html
https://www.amd.com/content/dam/amd/en/documents/corporate/cr/speculative-return-stack-overflow-whitepaper.pdf
https://www.amd.com/content/dam/amd/en/documents/corporate/cr/speculative-return-stack-overflow-whitepaper.pdf

[19] AMD, “Software optimization guide for the amd
family 19h processors,” p. 30, 2020. [Online].
Available: https://www.amd.com/content/dam/amd/en/documents/
processor-tech-docs/revision-guides/57095-PUB_1_01.pdf

[20] Intel Corp., “Intel® 64 and IA-32 Architectures Optimization
Reference Manual: Volume 1 (248966-050US),” 2024. [Online].
Available: https://cdrdv2.intel.com/v1/dl/getContent/671488

[21] R. E. Kessler, “The alpha 21264 microprocessor.” IEEE, 1999.

[22] K. Driesen and U. Holzle, “The cascaded predictor: Economical
and adaptive branch target prediction,” in Proceedings. 31st Annual
ACM/IEEE International Symposium on Microarchitecture. IEEE,
1998.

[23] A. Seznec, “Tage-sc-l branch predictors again,” in JILP Workshop
on Computer Architecture Competitions (JWAC-5): Championship
Branch Prediction (CBP-5), 2016.

[24] J. Wikner, C. Giuffrida, H. Bos, and K. Razavi, “Spring: Spectre
Returning in the Browser with Speculative Load Queuing and Deep
Stacks,” in Workshop on Offensive Technologies (WOOT). IEEE,
2022.

[25] Intel Corp., “Branch History Injection and Intra-mode Branch
Target Injection / CVE-2022-0001, CVE-2022-0002 / INTEL-SA-
00598,” 2022. [Online]. Available: https://www.intel.com/content/
www/us/en/developer/articles/technical/software-security-guidance/
technical-documentation/branch-history-injection.html

[26] Y. Yarom and K. Falkner, “FLUSH+RELOAD: A High Resolution,
Low Noise, L3 Cache Side-Channel Attack,” in USENIX Security,
2014.

[27] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and coun-
termeasures: the case of aes,” in Cryptographers’ track at the RSA
conference, 2006.

[28] M. Hertogh, S. Wiebing, and C. Giuffrida, “Leaky address mask-
ing: Exploiting unmasked spectre gadgets with noncanonical address
translation,” in Symposium on Security and Privacy (S&P). IEEE,
2024.

[29] M. Schwarz, M. Schwarzl, M. Lipp, J. Masters, and D. Gruss, “Net-
spectre: Read arbitrary memory over network,” in Computer Security–
ESORICS 2019: 24th European Symposium on Research in Computer
Security, Luxembourg, September 23–27, 2019, Proceedings, Part I
24. Springer, 2019.

[30] A. Bhattacharyya, A. Sandulescu, M. Neugschwandtner, A. Sorniotti,
B. Falsafi, M. Payer, and A. Kurmus, “Smotherspectre: exploiting
speculative execution through port contention,” in SIGSAC Confer-
ence on Computer and Communications Security. ACM, 2019.

[31] A. Kogler, J. Juffinger, L. Giner, L. Gerlach, M. Schwarzl,
M. Schwarz, D. Gruss, and S. Mangard, “{Collide+ Power}: Leak-
ing inaccessible data with software-based power side channels,” in
USENIX Security, 2023.

[32] A. Mambretti, A. Sandulescu, M. Neugschwandtner, A. Sorniotti,
and A. Kurmus, “Two methods for exploiting speculative control
flow hijacks,” in 13th USENIX Workshop on Offensive Technologies
(WOOT 19), 2019.

[33] D. Evtyushkin, R. Riley, N. C. Abu-Ghazaleh, D. Ponomarev et al.,
“BranchScope: A New Side-Channel Attack on Directional Branch
Predictor,” in Architectural Support for Programming Languages and
Operating Systems (ASPLOS). ACM, 2018.

[34] D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh, “Jump over
ASLR: Attacking branch predictors to bypass ASLR,” in MICRO.
IEEE, 2016.

[35] S. Wiebing, A. de Faveri Tron, H. Bos, and C. Giuffrida, “Inspec-
tre gadget: Inspecting the residual attack surface of cross-privilege
spectre v2,” in USENIX Security, 2024.

[36] Intel Corp., “Indirect Branch Restricted Speculation,”
2018. [Online]. Available: https://www.intel.com/content/
www/us/en/developer/articles/technical/software-security-guidance/
technical-documentation/indirect-branch-restricted-speculation.html

[37] K. Phillips, “LKML: [PATCH 0/3] x86/speculation: Support
Automatic IBRS,” 2022. [Online]. Available: https://lkml.org/lkml/
2022/11/4/1199

[38] P. Turner, “Retpoline: a software construct for preventing branch-
target-injection,” 2018. [Online]. Available: https://support.google.
com/faqs/answer/7625886

[39] AMD, “Technical guidance for mitigating
branch type confusion,” 2022. [Online]. Avail-
able: https://www.amd.com/system/files/documents/
technical-guidance-for-mitigating-branch-type-confusion_v7_
20220712.pdf

[40] Xenproject.org Security Team, “Xen Security Advisory CVE-
2022-23816,CVE-2022-23825,CVE-2022-29900 / XSA-407,” 2022.
[Online]. Available: https://xenbits.xen.org/xsa/advisory-407.html

[41] The kernel development community, “Speculative return stack
overflow (srso),” 2023. [Online]. Available: https://docs.kernel.org/
admin-guide/hw-vuln/srso.html

[42] ——, “Spectre side channels,” 2023. [Online]. Available: https:
//www.kernel.org/doc/html/latest/admin-guide/hw-vuln/spectre.html

[43] Intel Corp., “Speculative Execution Side Chan-
nel Mitigations,” 2018. [Online]. Available:
https://www.intel.com/content/www/us/en/developer/articles/
technical/software-security-guidance/technical-documentation/
speculative-execution-side-channel-mitigations.html

[44] ——, “Affected processors: Guidance for secu-
rity issues on intel® processors,” 2022. [On-
line]. Available: https://www.intel.com/content/www/us/
en/developer/topic-technology/software-security-guidance/
processors-affected-consolidated-product-cpu-model.html

[45] H. Y. Luyi Li and D. Tullsen, “Indirector: High-precision branch
target injection attacks exploiting the indirect branch predictor,” in
33rd USENIX Security Symposium (USENIX Security 24), 2024.

[46] A. Souchet, “rp++: a fast ROP gadget finder for PE/ELF/Mach-
O x86/x64/ARM/ARM64 binaries,” 2013. [Online]. Available:
https://github.com/0vercl0k/rp

[47] AMD, “IBPB and Return Stack Buffer Interactions,” 2022. [On-
line]. Available: https://www.amd.com/en/resources/product-security/
bulletin/amd-sb-1040.html

[48] J. Corbet, “When ELF notes reveal too much,” 2024. [Online].
Available: https://lwn.net/Articles/962782/

[49] D. Evtyushkin, T. Benjamin, J. Elwell, J. A. Eitel, A. Sapello,
and A. Ghosh, “Computing with time: Microarchitectural weird ma-
chines,” in Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). ACM, 2021.

https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/revision-guides/57095-PUB_1_01.pdf
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/revision-guides/57095-PUB_1_01.pdf
https://cdrdv2.intel.com/v1/dl/getContent/671488
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/branch-history-injection.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/branch-history-injection.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/branch-history-injection.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-restricted-speculation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-restricted-speculation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-restricted-speculation.html
https://lkml.org/lkml/2022/11/4/1199
https://lkml.org/lkml/2022/11/4/1199
https://support.google.com/faqs/answer/7625886
https://support.google.com/faqs/answer/7625886
https://www.amd.com/system/files/documents/technical-guidance-for-mitigating-branch-type-confusion_v7_20220712.pdf
https://www.amd.com/system/files/documents/technical-guidance-for-mitigating-branch-type-confusion_v7_20220712.pdf
https://www.amd.com/system/files/documents/technical-guidance-for-mitigating-branch-type-confusion_v7_20220712.pdf
https://xenbits.xen.org/xsa/advisory-407.html
https://docs.kernel.org/admin-guide/hw-vuln/srso.html
https://docs.kernel.org/admin-guide/hw-vuln/srso.html
https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/spectre.html
https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/spectre.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/speculative-execution-side-channel-mitigations.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/speculative-execution-side-channel-mitigations.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/speculative-execution-side-channel-mitigations.html
https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/processors-affected-consolidated-product-cpu-model.html
https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/processors-affected-consolidated-product-cpu-model.html
https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/processors-affected-consolidated-product-cpu-model.html
https://github.com/0vercl0k/rp
https://www.amd.com/en/resources/product-security/bulletin/amd-sb-1040.html
https://www.amd.com/en/resources/product-security/bulletin/amd-sb-1040.html
https://lwn.net/Articles/962782/

Appendix A.
IBPB-on-entry mitigation

These are the key-changes made to mitigate PB-
Inception, applied on top of v6.11.0.
diff --git a/arch/x86/include/asm/cpufeatures.h b/arch/x86/include/asm/cpufeatures.h
index 3c7434329661..7c56a45d8a32 100644
--- a/arch/x86/include/asm/cpufeatures.h
+++ b/arch/x86/include/asm/cpufeatures.h
@@ -348,6 +348,7 @@
#define X86_FEATURE_CPPC (13*32+27) /* Collaborative Processor Performance Control */
#define X86_FEATURE_AMD_PSFD (13*32+28) /* "" Predictive Store Forwarding Disable */
#define X86_FEATURE_BTC_NO (13*32+29) /* "" Not vulnerable to Branch Type Confusion */
+#define X86_FEATURE_AMD_IBPB_RET (13*32+30) /* IBPB clears return target predictions. */
#define X86_FEATURE_BRS (13*32+31) /* Branch Sampling available */

/* Thermal and Power Management Leaf, CPUID level 0x00000006 (EAX), word 14 */
@@ -523,4 +524,5 @@
#define X86_BUG_DIV0 X86_BUG(1*32 + 1) /* "div0" AMD DIV0 speculation bug */
#define X86_BUG_RFDS X86_BUG(1*32 + 2) /* "rfds" CPU is vulnerable to Register File Data Sampling */
#define X86_BUG_BHI X86_BUG(1*32 + 3) /* "bhi" CPU is affected by Branch History Injection */
+#define X86_BUG_IBPB_RET X86_BUG(1*32 + 4) /* "ibpb_ret" IBPB omits return target predictions */
#endif /* _ASM_X86_CPUFEATURES_H */
index 07a34d723505..4035c8757f5d 100644
--- a/arch/x86/kernel/cpu/common.c
+++ b/arch/x86/kernel/cpu/common.c
@@ -1443,6 +1443,10 @@ static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)

boot_cpu_has(X86_FEATURE_HYPERVISOR)))
setup_force_cpu_bug(X86_BUG_BHI);

+ if (cpu_has(c, X86_FEATURE_AMD_IBPB) && !cpu_has(c, X86_FEATURE_AMD_IBPB_RET)) {
+ setup_force_cpu_cap(X86_BUG_IBPB_RET);
+ }
+

if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
return;

diff --git a/arch/x86/entry/entry.S b/arch/x86/entry/entry.S
index d9feadffa972..83d999a076b7 100644
--- a/arch/x86/entry/entry.S
+++ b/arch/x86/entry/entry.S
@@ -9,6 +9,8 @@
#include <asm/unwind_hints.h>
#include <asm/segment.h>
#include <asm/cache.h>
+#include <asm/cpufeatures.h>
+#include <asm/nospec-branch.h>

#include "calling.h"

@@ -19,6 +21,11 @@ SYM_FUNC_START(entry_ibpb)
movl $PRED_CMD_IBPB, %eax
xorl %edx, %edx
wrmsr

+ /*
+ * entry_ibpb should have similar semantics across processors, including
+ * those where IBPB may not clear return target predictions.
+ */
+ FILL_RETURN_BUFFER %rax, RSB_CLEAR_LOOPS, X86_BUG_IBPB_RET
RET
SYM_FUNC_END(entry_ibpb)
/* For KVM */

Appendix B.
Meta-Review

The following meta-review was prepared by the program
committee for the 2025 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

B.1. Summary

This paper studies Spectre v2 countermeasures present in
recent CPUs from Intel and AMD. After reverse engineering
when the CPU’s branch predictors use Instruction Pointer
(IP) or pattern based prediction, and when the CPU falls
back to alternate predictors, the paper proceeds to discuss
what branch predictors that are sanitized IBPB and, more
importantly, those which are not. The authors then proceed
to describe exploits, showing an ASLR break on Intel ma-
chines and a kernel read primitive on AMD.

B.2. Scientific Contributions

• Provides a Valuable Step Forward in an Established
Field

• Identifies an Impactful Vulnerability

B.3. Reasons for Acceptance

1) The paper provides a valuable step forward in an
established field, by reverse engineering details of
opaque prediction structures in modern CPUS. The
discovery of how CPUs can fall back to various
modes of prediction has the potential to branch
off into new research directions on how to do this
securely.

2) The paper identifies an impactful vulnerability,
showing how RSBA is not properly flushed by
IBPB, allowing for cross-process attacks despite
barriers assuming suitable gadgets exist in the vic-
tim code. The security implication of this issue are
then demonstrated via exploits, showing an ASLR
break and a root password hash recovery on Intel
machines and a kernel read primitive on AMD.

	Introduction
	Background
	Branch Prediction
	Spectre
	Spectre Gadgets

	Threat Model
	Overview of Challenges
	Alternating Branch Predictors
	IBPB and alternating branch predictors

	RSB Alternate Predictions
	Post-IBPB RSBA

	Cross-process Attack
	Address Space Layout Randomization (ASLR)
	Cross-process Memory Leak

	Bypassing IBPB-on-entry
	Exploit procedure and new challenges

	Evaluation
	Primitives
	Cross-process attack
	IBPB-on-entry

	Mitigation
	Related Work
	Conclusion
	References
	Appendix A: IBPB-on-entry mitigation
	Appendix B: Meta-Review
	Summary
	Scientific Contributions
	Reasons for Acceptance

