INCEPTION: Exposing New Attack Surfaces with Training in Transient Execution

Daniél Trujillo ¥ Johannes Wikner ¥ Kaveh Razavi
ETH Zurich ETH Zurich ETH Zurich
T Equal contribution first authors
Abstract or the Branch Target Buffer (BTB) [49]. Consequently, to

To protect against transient control-flow hijacks, software re-
lies on a secure state of microarchitectural buffers that are
involved in branching decisions. To achieve this secure state,
hardware and software mitigations restrict or sanitize these
microarchitectural buffers when switching the security con-
text, e.g., when a user process enters the kernel. Unfortunately,
we show that these mitigations do not prevent an attacker from
manipulating the state of these microarchitectural buffers in
many cases of interest. In particular, we present Training in
Transient Execution (TTE), a new class of transient execution
attacks that enables an attacker to train a target microarchi-
tectural buffer after switching to the victim context. To show
the impact of TTE, we build an end-to-end exploit called
INCEPTION that creates an infinite transient loop in hardware
to train the return stack buffer with an attacker-controlled
target in all existing AMD Zen microarchitectures. INCEP-
TION leaks arbitrary kernel memory at a rate of 39 bytes/s on
AMD Zen 4 despite all mitigations against transient control-
flow hijacks, including the recent Automatic IBRS.

1 Introduction

Transient execution attacks let attackers execute code
in the victim’s context to leak sensitive informa-
tion [9, 30, 33, 36, 48, 49]. To hijack the transient control
flow, attackers need to manipulate microarchitectural buffers
involved in making branching decisions. A common approach
is restricting or sanitizing these microarchitectural buffers
when switching security contexts [6, 12, 14, 15,40]. In this
paper, we show that current approaches are insufficient
against an attacker that uses privileged software and hardware
as confused deputies to train microarchitectural branch
predictors with transiently executed instructions.

Hijacking transient execution and mitigations. To hijack
the transient control flow of privileged software, like the
kernel, attackers manipulate microarchitectural branch pre-
diction buffers, such as the Return Stack Buffer (RSB) [33]

protect privileged software, mitigations sanitize or restrict
these when switching to higher privilege mode. The RSB
may be sanitized by means of stuffing [15, 33], preventing
return instructions of other execution contexts to be hijacked
by poisoned RSB entries. A combination of retpoline [47]
and jmp2ret [6] mitigations transform all indirect branches
and returns into a single return instruction, whose prediction
is sanitized on kernel entry for certain AMD CPUs. Modern
microarchitectures support hardware-level features, such as
Automatic and Enhanced IBRS [12, 40], that restrict usage
of potentially-malicious branch predictions, providing a more
efficient mitigation against transient control-flow hijacks.

Training in Transient Execution. Restriction and sanitiza-
tion of branch predictors assume that an attacker is unable to
manipulate these predictors after entering the victim context,
such as the kernel. This is unfortunately not true. We present a
new class of transient execution attacks that do their Training
in Transient Execution (TTE). TTE expands the attack
surface of transient control-flow hijacks by using the kernel
and in some instances even the CPU as confused deputies for
manipulating the BTB and RSB. Our evaluation of the TTE
variants shows new capabilities in different scenarios: TTE of
the BTB (TTEgTg) trains the BTB in transient execution with
a target that is later consumed by a branch to trigger attacker-
controlled transient execution. Likewise, by executing a call
instruction in transient execution, TTE of the RSB (TTEgrsg)
trains the RSB with a target that is subsequently consumed
by a return instruction. While TTEgTp and TTERrgp can use
the kernel as a confused deputy to poison microarchitectural
buffers after kernel entry, they require specific gadgets that are
not necessarily trivial to find. Is it possible to lift this require-
ment by turning the CPU into a confused deputy instead?

INCEPTION. Recent work shows that PHANTOMJMPS enable
transient control-flow hijacking from an arbitrary instruction
on AMD Zen1(+) and Zen?2 [50], as well as the more
recent AMD Zen 3 and Zen4 [51]. If PHANTOMJIMPS allow
manipulation of the branch predictor in their short transient

window, synergies between PHANTOM and TTE would
allow for new variants of TTE. Our investigation shows
that TTERsp is possible inside a PHANTOMJIMP, even in the
absence of a call, using a new primitive which we refer to as
PHANTOMCALLS. By triggering this PHANTOMCALL inside
the transient window of a PHANTOMJMP, an attacker can
push an arbitrary return address to the RSB by injecting a call
prediction for an arbitrary instruction. In essence, the CPU
trains the RSB autonomously with a non-existent control
flow. PHANTOMCALLS manipulate the RSB regardless
of execution of the target, bypassing AMD’s hardware
mitigations such as Zen2’s chicken bit and the brand-new
Automatic IBRS feature for Zen 4.

Poisoning a single RSB entry alone, however, compli-
cates exploitation. Therefore, our proof-of-concept exploit
INCEPTION creates an infinite loop in transient execution
using a recursive PHANTOMCALL, poisoning multiple RSB
entries. Subsequent return instructions provide INCEPTION
with a long-lasting transient execution window from an
attacker-provided code location. On Zen 1(+) and Zen 2, this
return instruction is in fact the one sanitized on kernel entry
with jmp2ret, now again under transient control of the attacker
due to TTE. Our analysis of possible mitigations suggests
that a full flush of the branch predictor is necessary to mitigate
INCEPTION. Unfortunately, our analysis shows that Zen 3 and
Zen 4 do not provide hardware support for a full flush of the
branch predictor, requiring mitigations at the microcode level.

Contributions. Our contributions are as follows:

¢ Introducing the new TTE class and an evaluation of its
variants on Intel and AMD microarchitectures.

* Discovering PHANTOMCALL, allowing manipulation
of the RSB despite recent hardware mitigations on all
existing AMD Zen microarchitectures.

» Constructing INCEPTION by creating nested PHANTOM-
CALLs to pollute the RSB recursively. INCEPTION leaks
/etc/shadow on fully patched AMD Zen 4 systems in
40 minutes, in 6 out of 10 trials.

» Evaluation of the ibpb mitigation against INCEPTION
on Zen1l(+) and Zen?2. This mitigation introduces
between 93.1% and 239.2% overhead on Zen 1(+) and
Zen 2, depending on the specific microarchitecture. Our
analysis shows that ibpb is not a sufficient mitigation
against INCEPTION on Zen 3 and Zen 4.

Responsible disclosure. We communicated with Intel and
AMD in February 2023. INCEPTION was under embargo until
August 8, 2023 to provide adequate time for development
and testing of new mitigations that require microcode
patching. INCEPTION is tracked under CVE-2023-20569.
Further information about INCEPTION can be found at:
https://comsec.ethz.ch/inception.

2 Background

We discuss the necessary background concepts for this
paper including speculative execution, branch prediction,
control-flow hijacks and their mitigation.

2.1 Speculative execution

To prevent under-utilization of execution units due to pipeline
stalls, a continual stream of instructions must be provided by
the CPU frontend. Slow operations, such as memory requests,
that dictate the control flow of a program, are examples
of such stalls. Speculative execution is a key technique for
avoiding stalls by predicting the control flow of the program.

A control-flow edge, or branch, needs a predicted branch
target before its potential dependencies (e.g., memory loads)
have been resolved. Branches are either conditional or un-
conditional, and direct or indirect. All types of branches need
predictions to avoid stalls. In particular, unconditional indirect
(e.g.,jmp [reg]) and conditional direct (e.g., cmp [reg], O; je L)
branches that depend on slow memory operations greatly ben-
efit from early predictions. Conditional branches can be pre-
dicted in two directions: taken or non-taken (i.e., fall through).

Direction prediction may be rule-based (i.e., static). For
example, a conditional backward branch is likely a loop, thus
likely taken, whereas a conditional forward branch is likely
from an error check, thus likely non-taken (i.e., fall through).
Programs are typically run in predictable patterns, so that
over time, branch predictors that remember previous branch
resolutions can predict current branches with barely any error.

2.2 Modern branch prediction

The branch prediction unit serves predictions for all types
of branches. It predicts the direction of conditional branches,
the target of conditional and unconditional direct branches,
indirect branches, and returns.

A Branch Target Buffer (BTB) stores branch targets
associated with different branches. The indexing and structure
of BTB entries varies across CPUs. Their purpose however
is to provide a branch target given the current instruction
pointer and branch history. Both direct and indirect branch
targets are provided by the BTB. Conditional direct branches
are moreover associated with a Pattern History Table (PHT)
that is indexed by the n last branch directions [54]. Modern
CPUs are known to use other prediction structures than PHT,
such as TAGE [43,45]. Return target predictions are managed
by the Return Address Predictor or Return Address Stack
(AMD terminology) or Return Stack Buffer (RSB) (Intel
terminology). We refer to this buffer as the RSB throughout
the paper. The RSB tracks return targets alongside the
architectural program stack to provide faster return target
predictions without needing to wait for memory-dependent
return targets on the program stack. Although RSBs often

https://comsec.ethz.ch/inception

behave like circular stacks [36], modern processors diverge
from such semantics, for example by being able to detect and
recover from incorrectly pushed and popped entries [4].

For an accurate prediction, the history of previous
branches is sometimes taken into account. This is particularly
important for indirect branches and conditional branches,
where the target may change during program execution. On
Intel CPUs, branch history is stored in a global per-thread
Branch History Buffer (BHB) as a footprint of the source and
target of the n previously taken branches [9,30].

Branch predictors receive feedback throughout program
execution. However, it is unclear at which stage in the
processor pipeline feedback is provided. Can branch
predictors receive branch resolution feedback from branches
that have not advanced through all pipeline stages?

2.3 Speculative control-flow hijacks

Spectre attacks abuse the above-mentioned buffers to
trigger controlled mispredictions, resulting in speculative
control-flow hijacks. Spectre-PHT [30] forces the direction
of a conditional branch to be mispredicted, Spectre-BTB [30]
forces a poisoned BTB entry to be served for an indirect
branch, and Spectre-RSB [33,36] forces a mismatch between
the return target on the program stack and RSB. While
software and hardware defenses exist to mitigate these,
researchers continue to find mitigation flaws that re-enable
these attacks [9, 37,48, 49].

Recent work on AMD CPUs shows that branch target pre-
diction occurs at an early stage in the pipeline, before instruc-
tions are decoded [50]. This means that the type of branch
(if any) is also subject to prediction, which introduces PHAN-
TOM speculation [51], also known as Branch Type Confusion
(BTC) [6]. As such, the prediction of branch type must also be
tracked in a data structure, which is assumed to be the BTB.

2.4 Mitigating speculative control-flow hijacks

Spectre-BTB can be mitigated using retpolines [47] or
IBRS [12, 40]. Retpolines replace indirect branches with
returns, forcing the RSB to be used instead of the BTB for
predictions. IBRS is a hardware mitigation that prevents
branch targets entries learned in a lower privilege mode
(e.g., user mode) to be used in a higher one (e.g., kernel
mode). Enhanced IBRS (eIBRS) [12] and Automatic
IBRS (AutoIBRS) [40], deployed in newer Intel and AMD
processors respectively, are more efficient by not requiring
MSR writes on privilege transitions.

Spectre-RSB is mitigated through RSB stuffing. By filling
up the RSB with harmless return targets when switching
execution context, the return predictions of the victim context
can not be influenced by an attacker. Return target prediction
can also be forced into BTB prediction by underflowing the
RSB [49]. RSB stuffing can be used in combination with

call-depth tracking to prevent this on Intel CPUs [56]. Modern
Intel CPUs instead support Restricted RSB Alternative to
prevent harmful speculation on RSB underflows [25].

Because return instructions can be confused with indirect
branches and hence be served BTB predictions on AMD
systems vulnerable to PHANTOM speculation, retpolines are
insufficient. jmp2ret mitigates PHANTOM speculation on
returns by replacing all returns (including those inside ret-
polines) with direct branches to a single, protected return. On
privilege transitions, this return is sanitized (i.e., untrained)
in the BTB by confusing it with a non-branch instruction [6].

PHANTOM speculation also occurs on non-branch instruc-
tions, known as PHANTOMJIMPS [50]. To mitigate this issue,
AMD revealed an undocumented MSR register bit, known
as the Spectral Chicken (Linux terminology [57]) or Sup-
pressBPOnNonBr (AMD terminology). When set, branch
prediction is limited to control-flow edges.

2.5 Discussion

The mitigations discussed above can be categorized as either
restricting or sanitizing predictions. Restricting predictions
either prevent use of certain predictions (AutoIBRS, and
eIBRS) or of an entire predictor (retpolines). Sanitizing
predictions, such as jmp2ret and RSB stuffing, sanitize
predictions before execution of vulnerable branches. The
main assumption behind both categories, is that predictions
must have been poisoned by the attacker before transitioning
to the victim context (e.g., the higher privileged kernel). The
question is whether this assumption is necessarily true, or
if branch predictions can be poisoned after switching to the
higher privilege through a confused deputy?

3 Threat Model

We consider a typical scenario where an unprivileged attacker
process aims to leak sensitive information from the kernel.
We assume the kernel to be free of software vulnerabilities,
and running on a processor that supports speculative and
out-of-order execution. Specifically, in this work we target the
Linux kernel running on x86-64 Intel and AMD processors.
We also assume the default configuration of all existing miti-
gations against transient execution attacks. These mitigations
include retpoline [3, 13], call-depth tracking [56], jmp2ret
and SuppressBPOnNonBr [6], user pointer sanitization [1],
KPTT [23], and disabling of unprivileged eBPF [38]. For
our TTE primitives, we consider CPUs from both Intel and
AMD, but our end-to-end exploit requires the processor to be
affected by PHANTOM speculation (AMD Zen 1 (+), Zen 2,
Zen3 or Zen4 [51]). For Zen4, we additionally consider
Automatic IBRS, supported in Linux 6.3 and later [40].

4 Overview

To prevent transient execution attacks, mitigations restrict
or sanitize branch predictors between privilege levels. De-
spite these mitigations, an attacker can still trigger (limited)
transient execution windows under which potentially invalid
control-flow transfers may be observed by the processor.
While these limited windows do not immediately lead to infor-
mation disclosure, they may be used to perform TTE. The first
challenge that we try to address in this paper is to understand
the conditions under which TTE is successful on either the
BTB or RSB and the requirements that it puts on the attacker.

Challenge (C1). Understanding the necessary conditions
for TTE and its requirements for an attack.

Section 5 addresses this challenge by reverse engineering
the conditions under which the BTB and RSB can be trained
in transient execution. In Section 5, we focus on TTE variants
that are relevant for our end-to-end attack, and we leave a
more thorough analysis of other TTE variants to Section 8.

Our analysis shows that TTE expands the attack surface of
transient execution, but the necessary gadget are sometimes
difficult to find [26,49]. Instead of using a kernel gadget as
our confused deputy, we use the CPU to perform TTE with
PHANTOM speculation. According to AMD however, the
SuppressBPOnNonBr bit (on-by-default in Linux) prevents
PHANTOM speculation arising from non-branch instructions
(i.e., PHANTOMIMPS) on Zen?2. Furthermore, PHANTOM
speculation does not trigger transient execution on Zen 3 and
Zen4 [51]. This leads us to our second challenge:

Challenge (C2). Understanding the impact of PHANTOM
speculation on TTE, considering its mitigations and its
limited effect on newer microarchitectures.

Section 6 introduces a new PHANTOM speculation
primitive that we refer to as PHANTOMCALL. PHANTOM-
CALL enables training of the RSB in transient execution
(TTERsg) using non-branch instructions, without requiring
any execution. Because of this, PHANTOMCALL is effective
on Zen 3 and Zen 4 as well, and neither SuppressBPOnNonBR
nor Automatic IBRS prevents PHANTOMCALLS.

While this primitive enables us to poison one RSB entry
in the kernel context, practical exploitation is difficult due to
the undocumented RSB recovery mechanisms. This provides
us with the last challenge:

Challenge (C3). Practical exploitation with PHANTOM-
CALL.

Section 7 describes INCEPTION, our end-to-end exploit
using TTErsp, and PHANTOMCALL. INCEPTION creates
an infinite hardware loop without the corresponding software

void TTE_pht_btb (state_t *a, woid (*b) ()) {
if (*a) {
b();
}

Listing 1: A code snippet vulnerable to TTEpy1-p1s

code in transient execution using recursive PHANTOMCALLS,
poisoning many RSB entries as a result. This mechanism
enables INCEPTION to hijack return instructions. There are a
number of additional practical challenges, such as bypassing
KASLR and finding disclosure gadgets, that we also discuss
in Section 7.

S5 Training in Transient Execution

The common setup of a transient execution attack is a
speculation gadget that is trained to transiently execute an
incorrect control flow where memory can be leaked through
a disclosure gadget. A common disclosure gadget loads a
secret from an attacker-controlled address, which is then
encoded in a subsequent dependent memory access that
leaves a trace in the cache, observable via a cache attack
such as Flush+Reload [53] or Prime+Probe [39]. TTE has
two interesting properties: (i) the injected branch target only
ever executes transiently, meaning it can contain, beyond a
disclosure gadget, arbitrary or invalid instructions, and (ii)
the attacker can escalate a limited speculation primitive under
certain conditions.

We experiment with various transient execution windows
to see whether they can manipulate the BTB or RSB. We con-
sider four methods to trigger a transient execution path where
the BTB or RSB may be trained: (1) through conditional
branches, (2) indirect branches, (3) returns, or (4) through
Out-of-Order (OoO) execution, which causes a transient
execution path, for example after a faulting instruction. We
note that other methods are possible, for example transient
windows caused by store-to-load forwarding [28] and spec-
ulative store bypass [24], which we leave for future work. We
use TTE, g to refer to using a transient execution triggered
by method A to train the microarchitectural buffer B. In this
section, we discuss the general method to accomplish TTE
and leave the details of the individual variants to Section 8.

5.1 BTB training in transient execution

Listing | demonstrates an example of a code snippet,
potentially exploitable with TTEgTg. If the condition of the
branch on line 2 holds, an indirect branch to b is executed,
which trains the BTB. If the attacker can skew the direction
of this conditional branch so that b() is executed transiently
(TTEput-T8), We hypothesize that the BTB is also trained
with the attacker-controlled value b as branch target.

R

void TTE_pht_rsb (state_t *a) {
if (*a) { mispredict as true
Z(0) g oush re arge
DISCLOSURE_GADGET;
}

return; predict DISCL(RE._GADGET target

Listing 2: A code snippet vulnerable to TTEpyr.rss

To turn TTE of the BTB into arbitrary transient code
execution, two conditions must be fulfilled: (i) we can skew
the conditional branch direction, and (ii) we control b to
inject an arbitrary branch target. To furthermore leak memory,
an attacker needs additional control over at least a memory
pointer to some secret of interest. Leveraging TTE with this
example, the attacker gains an extra primitive: they can train
the indirect branch using transient execution in a preparatory
step. Afterwards, they can run the victim again and provide
an arbitrary value in b while still reaching the previously
injected branch target.

However, indirect branches are commonly replaced by
retpolines on many microarchitectures, since they are known
to be vulnerable to Spectre-BTB. Additionally, meeting
condition (ii) means the attacker already has arbitrary
transient code execution but uses it for training instead of
leaking data. More complex scenarios exist than the toy
example in Listing 1, for example caused by speculative
type confusion [29]. Regardless, TTEgTp exposes new
possibilities for the attacker, and we discuss its variants in
Section 8. Next, we discuss TTE for the RSB, that loosens
requirements from the viewpoint of an attacker.

5.2 RSB training in transient execution

Listing 2 demonstrates a piece of code that may update the
RSB in with a transiently executed call instruction triggered
by a mispredicted conditional branch (TTEpyrgsg). This
piece of code yields some interesting results: the transiently
executed call updates the RSB only on all AMD microar-
chitectures, although unreliably. To investigate further, we
construct a more thorough experiment using TTEgrp_gsz-

Experiment setup. Figure | illustrates how we verify RSB
training through a mispredicted indirect branch with a training
procedure (T}) and a training in transient execution procedure
(TTE). The goal of the experiment is to determine whether
a call instruction executed in transient execution manipulates
the state of the RSB. Green nodes (D;, 0 <i < x) are disclo-
sure gadgets that we try to inject into the RSB by transiently
executing call sites E;, 0 <i<x (yellow nodes) that immedi-
ately precede the disclosure gadgets. For each D;, a different
memory load inside a reload buffer is used to indicate which
D; transiently executed. E; calls the next call site E;;, in
sequence, such that D; becomes the return target of E; 1, until
reaching E,. Gray nodes E, and C, are barrier gadgets to stop

AL g Architectural path— ———»
B: jmp [r5] Transient path---------- >

rq=8&B

T
1 ro=&C 1nitial Uiz
state

10—0—-0,0 -0-0
g °

Figure 1: Injecting RSB entries in the transient execution window
of an indirect branch (TTEgrg_rsg). In 77, A is trained to execute
B. Next, in TTE, A transiently executes B, which in turn executes a
series of call gadgets E;, each followed by a disclosure gadget D;.

rq1=&C
ro=&Eq 1nitial

state

id =0
.rept
call

load (RB + 1d*4096),
1: 1fence

pop

id = +

0 N o AW —

.enar

Listing 3: Pseudo-assembly priming the RSB with N different return
targets before the TTERgp experiment. Execution is measured with
a cache side-channel. N is the RSB capacity.

.rept N
push 1
ret
i3

.endr

v W —

Listing 4: Inferring the RSB state by issuing N returns.

speculation using a memory barrier instruction (e.g., mfence).
We run our experiment for 0 <x <50 to be able to compare
the results of executing different numbers of transient calls.

To recover from call instructions which are executed tran-
siently, return target predictors implement mechanisms that
restore the RSB to a consistent state [4]. This means that RSB
entries manipulated in transient execution may become in-
valid and unusable as a consequence. The D; gadgets are thus
only observable for transiently pushed entries that were not
invalidated. To also observe invalidated entries, we establish a
known state of the RSB by priming it fully using N calls pre-
ceding N additional disclosure gadgets, as shown in Listing 3,
where N is the size of the target RSB (e.g. 31 on Zen 1, Zen +
and Zen2). We flush the x + N reload buffer (RB) entries
from the cache hierarchy before running the experiment.

We first execute Ty, which trains the BTB to transiently
execute B in the TTE step. Next, we prime the RSB according
to Listing 3. We then execute TTE, which triggers a series
of calls to E;, potentially manipulating the RSB. After
performing the experiment, we examine the RSB state. To do
this, we execute N returns, as shown in Listing 4. If the RSB
was not manipulated by TTE, we expect to have transiently

2 2 2 2
1 1 1 1
0 -» 8 8 -» 8
-» 7 -» 7 = < 7
6 6 6 6
5 5 5 5
4 4 4 4
3 3 3 3
RSB RSB RSB RSB

® @ ® ®

Figure 2: An implementation of a circular RSB with a committed
top-of-the-stack pointer (shown in blue) and a speculative counterpart
(shown in red). RSB entry numbers indicate their insertion order
(O first, 8 last). Entries depicted in red were inserted transiently. (D
shows RSB state before transient execution. (2) pushes an entry
to the RSB transiently. In (), the transient window is over and the

speculative pointer is restored. (4) shows the RSB state after 7 returns.

executed the primed return sites in Listing 3. If an RSB entry
was manipulated but invalidated, we expect it to no longer
be used. If an RSB entry was manipulated but not invalidated,
we expect to observe a memory access triggered by D;.

Results. The results show that manipulating the RSB
with TTEgTp.rsp 1s feasible on all considered AMD
microarchitectures, but not on Intel microarchitectures
(Table 1 in Section & includes all our TTE results). This is in
line with the Software Optimization Guide, which states that
transient pushes and pops to the RSB may occur [4,5]. We
observe that transiently executed calls evict the oldest entries,
at the bottom of the RSB. That means that, in the case of a
single transiently executed call, the last return will not use
its corresponding primed RSB entry. Likewise, executing two
transient calls evicts two entries at the bottom of the RSB,
causing the last two returns executed to their corresponding
RSB entries. RSB manipulation of the bottom entries could
be explained by having two RSB pointers for a circular buffer:
a committed one and a speculative one, as shown in Figure 2.
Upon misprediction, the speculative pointer restores to the
committed one, which effectively puts transiently injected
entries at the bottom of the buffer.

However, the returns associated with the corrupted entries
do not consume the injected D; targets, nor the previously
primed entries. Instead, RSB entries untouched by the
transiently executed calls are recycled. For example, in
step @ of Figure 2, entry 1 may be predicted instead of
the overwritten entry 8. This suggests that AMD’s return
predictors implement recovery mechanisms for handling
transiently pushed entries. We find that we can bypass
these mechanisms by executing multiple calls in a transient
window. For example, on Zen 1(+) and Zen 2, this happens
as soon as we overwrite all 31 RSB entries. We will discuss
this in more detail in Section 7.1.

Observation (O1). We can corrupt return predictions
on AMD microarchitectures with TTEgTB-rRSB-

On Intel microarchitectures, we were unable to poison
any RSB entry with TTE. Intel patents describe speculative
RSBs [19,27], which could result in the behavior we observe.

We will further show in Section 8§ that other transient
execution windows have a similar effect on AMD’s RSB.
However, finding exploitable gadgets similar to Listing 2 in
the victim code might be difficult. The question is whether
we can relax this constraint by abusing other properties of
AMD microarchitectures.

6 PHANTOM and TTE

AMD Zen microarchitectures are known to be vulnerable
to PHANTOM speculation, leading to additional potential
variants of TTE. PHANTOM is a class of transient execution
issues arising when the predicted branch type, stored in the
BTB, conflicts with the actual instruction [6,51]. For example,
the BTB may contain a prediction for an indirect jump, while
the actual code location contains a return, resulting in the re-
turn being predicted as an indirect branch. PHANTOM can also
occur in absence of any branch, triggering speculation from
non-branch instructions, referred to as PHANTOMIMPS [50].

Chicken out from PHANTOMJMPS. In response to the
discovery of PHANTOM, AMD revealed an undocumented
configuration of Zen 2 CPUs that can be enabled by setting
MSR bit 0xC00110E3[1], known as SuppressBPOnNonBr.
This is a chicken bit that configures the CPU’s branch target
predictor to suppress predictions for non-branch instructions.
The configuration promises that all speculative execution
on non-branch instruction is prohibited, which reduces the
attack surface of PHANTOM to arbitrary branches only. This
mitigation is currently enabled by default on Linux.

PHANTOM on Zen 3 and Zen 4. While AMD originally
claimed that Zen 3 and Zen 4 are immune to PHANTOM,
later work has shown that these microarchitectures are also
affected by PHANTOM, although only partially [51]. In
particular, transient execution due to a PHANTOMJIMP is not
possible on these newer microarchitectures, but the predicted
target is still fetched and decoded.

6.1 Synergies between TTE and PHANTOM

Recalling the hard-to-find gadget in Listing 2, we want to
know whether it can be simplified using PHANTOM. Our first
observation is that a conditional branch is unnecessary if we
can trigger a call transiently using PHANTOM. Since PHAN-
TOM on Zen 1(+) and Zen 2 results in transient execution, we
can use any branch to trigger a transient call to manipulate
the RSB. On Zen 1(+), we can even hijack non-branch in-
structions. Hence, PHANTOM would significantly relax the

BTB

» @@ . .
@ CALL mp | Pe
CALL|...

PHANTOM -

JMP .

PHANTOM: CALL
>

X
[%2]
o]

-]

Arch. path — Spec. path ---»
Figure 3: Experiment setup to test feasibility of executing a

PHANTOMCALL in a PHANTOMJMP. Green and blue colors indicate
two different BTB mappings.

constraints of the original gadget, since it can be split into two.
The first half of the gadget only needs to contain an arbitrary
instruction that can be poisoned with PHANTOM, followed by
areturn. The second half, being a call followed by a disclosure
gadget, can be anywhere in the executable address space.

Training the RSB in a PHANTOM window. With PHANTOM,
the architectural branch type solely dictates the length of the
transient execution window [6], giving rise to two cases which
lead to transient execution: a short transient window, concern-
ing architectural direct branches or non-branch instructions,
and a long transient window, concerning architectural indirect
branches and returns. We are mostly interested in the cases
yielding a short transient window, since they can be triggered
on arbitrary branches on both Zen 1(+) and Zen 2.

We design an experiment to determine the feasibility of
manipulating the RSB within a PHANTOM-induced transient
window. For this, we execute an indirect branch to trigger
a PHANTOMJMP at the victim instruction using out-of-place
training. We set the target of the indirect branch to an address
that contains a call instruction. To determine whether the
PHANTOMIJMP interacts with the RSB, we prime the RSB
as as shown in Listing 3 and 4.

Results. Our results show that we can manipulate the RSB
within a PHANTOM-induced window on both Zen 1(+) and
Zen?2. On Zen 1(+) the PHANTOMIMP to the call can be
triggered even on non-branch instructions, which is expected,
since mitigations against this are only available on Zen 2.

Observation (02). We can manipulate the RSB using
PHANTOM speculation on Zen 1(+) and Zen 2.

However, PHANTOM speculation on non-branch instruc-
tions is prevented with the SuppressBPOnNonBr mitigation
on Zen 2. Likewise, on Zen 3 and Zen 4, PHANTOM specula-
tion does not allow transient execution. Section 6.2 discusses
how we bypass SuppressBPOnNonBr on Zen 2 with a new
primitive we refer to as PHANTOMCALL, and Section 6.3
discusses how minor adaptations to PHANTOMCALL makes
it effective on Zen 3 and Zen 4 as well, despite AutoIBRS.

6.2 Bypassing SuppressBPOnNonBr with
PHANTOMCALL

We hypothesize that TTE of the RSB using PHANTOM works
because of a call prediction on the PHANTOMIMP target, and
not because of the call instruction itself. We design an exper-
iment to test our hypothesis, as shown in Figure 3, with the
state of the BTB and RSB shown after each step. In training
step Ty, we first execute a branch from training branch source
Ty to PHANTOMCALL source Pc. This creates a BTB entry
for a branch, with its target set to Pc, which only contains
NOPs. In training step T», we execute a 3-byte wide call
instruction at call source Tc, inserting a BTB entry for a call
(target not relevant). Tc and Pc map to the same BTB entry.
After performing steps T and T,, we fully prime the RSB
with distinct return sites, each issuing an identifiable memory
access, as shown in Listing 3. In step TTE, we execute the
NOP instructions at PHANTOMJIMP source Py, which collides
with the BTB entry of Tj. Thanks to step T, we expect Pc
as the predicted target of P;. Thanks to step T, because
there exists a call-prediction for Pc, we expect the CPU to
transiently push a return target (Pc+3) onto the RSB. Lastly,
we flush our reload buffer and execute return instructions
according to Listing 4. We reload our memory pointers to
determine which of the RSB entries are invalid or still intact.

The results confirm our hypothesis: the last return does
not transiently execute the primed return site, meaning we
have overwritten an RSB entry using a PHANTOMCALL
inside a PHANTOMJIMP-induced speculation window (i.e.,
nested PHANTOM speculation). If there exists a call-target
prediction at our PHANTOMJIMP target, we presume the
CPU does not need to decode before pushing its predicted
return target to the RSB. We therefore conclude that the
call prediction alone prematurely pushes to the RSB, before
instructions are decoded. Supporting this conclusion, we find
that the PHANTOMJIMP to the PHANTOMCALL manipulates
the RSB even when both branches are injected on non-branch
instructions, despite the Zen 2 SuppressBPOnNonBr mitiga-
tion. Given this, we hypothesize that SuppressBPOnNonBr,
while suppressing transient execution of PHANTOMJMP
targets, does not suppress BTB consultation, allowing RSB
manipulation without execution.

We refer to this new primitive as PHANTOMCALL,
allowing us to manipulate the RSB from any instruction,
without any architectural call instruction on the transient path.

Observation (03). We can corrupt an RSB entry
using a PHANTOMCALL on Zenl(+) and Zen2
microarchitectures, bypassing SuppressBPOnNonBr.

6.3 PHANTOMCALLon Zen3and Zen4

Given that our results show that we can perform TTERrgsp
without any transient execution using a PHANTOMCALL,

h:l" __PhantomJMP m Y
CL: A A+1 B B+1

Figure 4: Triggering TTERsp inside a PHANTOM speculation
window on Zen 3/4. The colored boxes identify different cache lines.
Architectural and transient branches are indicated by solid black and
dashed red arrows, respectively.

we investigate whether we can use this primitive on Zen 3
and Zen 4 as well. After additional reverse engineering, we
find that TTERrsp using PHANTOM on Zen 3 and Zen4 is
effective, but only under certain circumstances. In particular,
TTERsp using PHANTOM requires both the PHANTOMJMP
and the PHANTOMCALL to be at specific memory addresses
relative to those used for BTB consultation.

To successfully trigger the call in a PHANTOMJIMP target,
we consider four different cache lines as shown in Figure 4.
We inject the PHANTOMJMP on a cache line A+1, which
linearly follows the cache line of a preceding branch target.
Similarly, we place the PHANTOMCALL on a cache line B+1,
which is the cache line following that of the PHANTOMJMP
target. We hypothesize that this is necessary to delay the
decoder. The time it takes for the frontend to fetch the next
cache line and feed it to the decoder may introduce enough
delay to allow manipulation of the RSB before the decoder
can detect that predictions are incorrect.

We find that AutoIBRS does not prevent RSB manipulation

due to a PHANTOMCALL inserted in a lower privilege level.

This is in line with our observations on Zen?2, where
we bypassed the SuppressBPOnNonBr mitigation with
PHANTOMCALL. We thus hypothesize that AutoIBRS only
prevents transient execution at the target of a PHANTOMJMP,
and not consultation and manipulation of the BTB and
RSB respectively. We can also deduce this from statements
previously released by AMD [6], which mention that IBRS
is effective for branches decoded as indirect, indicating the
restriction is enforced after instructions have been decoded.

Observation (0O4). PHANTOMCALL works on Zen 3 and
Zen4 as well under certain circumstances, bypassing
AutoIBRS.

PHANTOMCALLS significantly simplify the requirements
for exploitation with TTErsg. We can insert the address of
an arbitrary disclosure gadget into the RSB by injecting a
PHANTOMCALL right before it. Furthermore, by performing
this PHANTOMCALL inside a PHANTOMJMP, we can trigger
this from anywhere. We leverage these capabilities in our
end-to-end exploit, INCEPTION, which we discuss next.

7 INCEPTION

To turn PHANTOMCALL into an end-to-end exploit, we need
to overcome two challenges. First, to bypass mechanisms that

BTB

@ CALL mp | P
CALL| P,
® 0@ L
Jme - CALL[P

C

PHANTOM

Pl
2]
W

-~

|

)|

Arch. path — Spec. path ---p»

Figure 5: The experiment setup to test the number of entries we can
pollute with a recursive PHANTOMCALL in a PHANTOMJMP. Green
and blue colors indicate two different BTB mappings.

restore the RSB, we need to overwrite multiple RSB entries,
as pointed out in Section 5.2. We thus need to construct a
chain of PHANTOMCALLS, where the last PHANTOMCALL
has to precede a disclosure gadget. In particular, on Zen 1(+)
and Zen 2 we need to overwrite all 31 RSB entries to bypass
the recovery mechanism. Second, the short transient execution
window, caused by a PHANTOMJMP, needs to somehow fit the
chain of PHANTOMCALLS to overwrite all these RSB entries.
Addressing this challenge requires new insights that we
discuss in Section 7.1 and Section 7.2. We then proceed to the
design of our end-to-end exploit INCEPTION in Section 7.3
through Section 7.7. Lastly, we evaluate INCEPTION on Zen 2
and Zen 4 in Section 7.8 and Section 7.9, respectively.

7.1 Recursive PHANTOMCALL

To turn PHANTOMCALLS into a practical exploit, we need
a large number of PHANTOMCALLS in a single transient
window. We therefore construct a chain of PHANTOMCALLS
to determine how many we can execute using a single
PHANTOMJMP. We realize that we can establish a single
PHANTOMCALL that branches into itself, i.e. a recursive loop
of PHANTOMCALLS. By avoiding changing the (transient)
instruction pointer, we assume that the CPU can manipulate
the most RSB entries in a single transient window.
Repeating the experiment described in Section 6.2, we
monitor the number of RSB entries that get corrupted by
a recursive PHANTOMCALL. However, this time, the call
at T¢ branches into Pc, at which the PHANTOMCALL will
be triggered, thus establishing a recursive prediction. An
overview of the experiment is shown in Figure 5. Since Pc
executes after Tc in T,, and Pc and T¢ map to the same BTB
entry, executing Pc should invalidate the prediction from T¢
to Pc. To avoid this, we make sure that the indirect call in step
T, page faults, by temporarily unmapping Pc. Regardless
of the page fault, we expect the BTB to be primed with a
prediction, as shown in previous work [49]. Interestingly,
unmapping is unnecessary on Zen 1(+) and Zen 2. We believe
that this could be due to a race condition that happens to be
in our favor. The prediction associated with T¢ may not have

RSB entry

fend 2T)

en _

Zen 1+

Zen 1+ (27) _

Zen 2

Zen2 (T) _

Zen 3 =
Zon 4 S Y

Figure 6: Entries affected by the recursive PHANTOMCALL. Yellow
shows invalidated entries that remain unconsumed, while red indicates
poisoned entries consumed for prediction, enabling arbitrary transient
code execution. The size of the RSB is 31 on Zen 1(+) and Zen 2 (or
15 in 2T mode), while it contains 32 entries on Zen 3 and Zen 4.

updated the BTB when we are executing Pc.

Results. Figure 6 shows that we can corrupt a large number
of RSB entries using our recursive PHANTOMCALL in a
PHANTOMIJIMP on all Zen microarchitectures. An interesting
observation we make is that the PHANTOMCALL at P¢ is
not invalidated after the TTE step for most of the iterations,
unlike the prediction for the PHANTOMJIMP. This is beneficial
for our attack, since it allows us to trigger the recursive
PHANTOMCALL multiple times after priming the BTB.

As discussed in Section 5.2, corrupted entries are not al-
ways used for return prediction, due to the RSB recovery
mechanisms. On Zen 3 and Zen 4 however, we find that our re-
cursive PHANTOMCALL overwrites enough entries to bypass
the recovery mechanisms, as shown in Figure 6. Specifically,
on Zen 3 microarchitectures we hijack a single return instruc-
tion by first exhausting 17 uncorrupted RSB entries. On Zen 4,
we need to exhaust 8 uncorrupted RSB entries, after which we
control the next 16 return target predictions. We find that the
number of RSB entries polluted heavily relies on the exact lo-
cation at which we trigger PHANTOM speculation, the state of
the cache, the state of the BTB, and the preceding control flow.

On Zen 1(+) and Zen 2 microarchitectures, however, we
do not overwrite enough RSB entries to bypass the recovery
mechanisms. Our results in Section 5.2 showed that tran-
siently overwriting all 31 RSB entries leads to all corrupted
entries being used for prediction on these microarchitectures.
We therefore expect that overwriting all RSB entries using
a recursive PHANTOMCALL would allow us to bypass the
recovery mechanisms on Zen 1(+) and Zen 2 as well.

7.2 Dual-threaded mode

Rather than trying to achieve 31 transient recursions in the
transient window of a PHANTOMJMP, we consider whether
the capacity of the RSB can be reduced. When two sibling
threads are operating in parallel, Zen 1(+) and Zen 2 cores
switch to dual-threaded mode (2T-mode) [5], reducing the
RSB to only 15 entries per thread, instead of 31. As shown
in Figure 6, we can poison 18 entries in nested PHANTOM
speculation on Zen 1(+) and Zen 2, and we thus potentially

BTB

]
[72]
@

IMP mp [Pe I]
s (@
X I
>4 L |
2
E @ CALL P TP][]
< I
CALL| Pc
m GEHAN_T_Q ; KN
= Jup CALL| P. | [G
= PHANTOM C
)
H
@ @
RETURN
Arch. path — Spec. path ---p Page fault —»

Figure 7: INCEPTION visualized. The BTB and RSB state is shown
following steps Ty, T», and TTE. Green and blue colors indicate two
different BTB mappings.

control the entire RSB associated to a sibling thread under
dual-threaded mode.

We verify that the RSB capacity decreases from 31 to 15
entries for our thread while executing a workload in parallel
from the sibling thread. Repeating the experiment shown in
Figure 5 reveals that we can indeed overwrite all 15 RSB en-
tries on Zen 1(+) and Zen 2 microarchitectures. Having over-
written all entries, our transiently injected return target is used
by all following returns, as shown in Figure 6. This means that
we do not rely on deep call stacks on Zen 1(+) and Zen 2: any
return can be hijacked in dual-threaded mode by triggering
the recursive PHANTOMCALL right before it is executed.

7.3 Exploit design

We are now able to hijack return instructions by injecting arbi-
trary return targets using our recursive PHANTOMCALL on all
AMD Zen microarchitectures. Using this, we will construct
our exploit INCEPTION on Zen 1 (+), 2, and 4. INCEPTION is
not fully successful on Zen 3, as discussed later this section.

Figure 7 shows a visualization of INCEPTION together
with the resulting state of the BTB and RSB after each
training step. In the first training step Tj, the attacker
executes a training branch at Ty, which collides with the BTB
entry of PHANTOMJIMP source Py. Residing in the kernel
address space, Py is the address that initiates the recursive
PHANTOMCALL. The victim return Vy is allocated after P;
in the control flow. The target of the PHANTOMIJIMP is set to
Pc, at which the recursive PHANTOMCALL will be triggered.
In training step T, the attacker executes a training call at
T that collides with Pc in the BTB, which will establish the
prediction for the PHANTOMCALL. The target of this training
call at is set to Pc, establishing a recursive PHANTOMCALL
prediction. Upon execution of Pc, the CPU will thus
recursively inject RSB predictions to disclosure gadget G,
whose location immediately follows the PHANTOMCALL at
Pc. As Pc resides in kernel space, the training branches Ty
and Tc¢ will trigger page faults, which we recover from.

On Zen3 and 4, we take the cache line placement of
the branches at Ty and T¢ into account. Concretely, this
means that the PHANTOMCALL in Pc may be preceded
by different instructions to ensure that the start of Pc and
the PHANTOMCALL fall in different cache lines. Likewise,
the PHANTOMJMP in Py may be preceded by different
instructions, depending on the address using which the BTB
is indexed before executing Py.

After steps T and T, we invoke the kernel using a system
call to trigger the TTE step. Whenever we reach Py, the BTB
provides the prediction to Pc, and the speculative instruction
pointer is set to Pc. Since there exists a prediction for a call
at Pc, G is pushed to the RSB. Since the call prediction
is recursive, we will continue the loop of 1) updating the
instruction pointer, 2) consulting the BTB and 3) pushing to
the RSB. This recursion continues until the actual instruction
at the location of the PHANTOMJMP in Py is eventually
decoded and the CPU corrects the misprediction by resetting
the instruction pointer back to Py. Finally, in step S the victim
return at VR will take a prediction from the RSB. Since we
have overwritten RSB entries with return target G during
the TTE step, we start executing the disclosure gadget at
G, accomplishing a long speculation window in which we
control the executed instructions.

7.4 Dueling recursive PHANTOMCALLS

The desired disclosure gadget may not exist in the kernel code,
specially if the hijacked return is in a deep call stack (i.e., on
Zen 3 and Zen 4). In this case, INCEPTION can execute two
separate disclosure gadgets within the same transient window,
that together perform the desired operation, similar to [55].
INCEPTION achieves this by introducing two recursive
PHANTOMCALLS, or dueling recursive PHANTOMCALLS,
establishing a transient Return-Oriented Programming
(ROP) chain. The first recursive PHANTOMCALL trains the
RSB with the first disclosure gadget, G, while the second
recursive PHANTOMCALL inserts the address of the second
disclosure gadget G,. As a result, some entries in the RSB
contain the address of G, while others contain the address
of G,. If G| ends with a return instruction, G, potentially
executes in the same speculation window. However, for this to
work, RSB recovery mechanisms must be bypassed without
overwriting all entries, which is only possible on Zen 3 and 4.

The end goal of dueling recursive PHANTOMCALLS is to
have some (ideally one) of the newer RSB entries contain the
address of G, and to have the other, older RSB entries contain
the address of G,. Figure 8 shows a possible progression of
the RSB state over time. (1) shows the unmodified RSB, before
the first recursive PHANTOMCALL. (2) shows the state after
triggering the first recursive PHANTOMCALL, which precedes
G1. B shows the state after two returns. @ shows the state
after issuing the second recursive PHANTOMCALL, which
precedes G,. Lastly, step (5 shows the RSB state after addi-

Figure 8: Triggering dueling recursive PHANTOMCALLS to
chain two disclosure gadgets G| and G, together. The arrow is the
committed top-of-the-stack pointer.

tionally two returns. The next return will transiently execute
G1, and until its return target has been resolved, subsequent
returns will keep taking predictions from the RSB, eventu-
ally leading to tra