
`CFI: Formal Verification of Microarchitectural
Control-flow Integrity

Katharina Ceesay-Seitz

ETH Zurich

Zurich, Switzerland

kceesay@ethz.ch

Flavien Solt

ETH Zurich

Zurich, Switzerland

flsolt@ethz.ch

Kaveh Razavi

ETH Zurich

Zurich, Switzerland

kaveh@ethz.ch

Abstract

Formal verification of hardware often requires the creation of clock-

cycle accurate properties that need tedious and error-prone adapta-

tions for each design. Property violations further require attention

from verification engineers to identify affected instructions. This

oftentimes manual effort hinders the adoption of formal verifica-

tion at scale. This paper introduces Microarchitectural Control-

Flow Integrity (`CFI), a new general security property that can

capture multiple classes of vulnerabilities under different threat

models, most notably the microarchitectural violation of constant-

time execution and (micro-)architectural vulnerabilities that allow

an attacker to hijack the (architectural) control flow. We show a

novel approach for the verification of `CFI using a single property

that checks for information flows from instruction operands to the

program counter by injecting taint at appropriate clock cycles. To

check arbitrary sequences of instructions and associate property

violations to a specific Instruction Under Verification (IUV), we

propose techniques for declassifying tainted data when it is being

written to registers and forwarded from the IUV through architec-

turally known paths. We show that our verification approach is low

effort (e.g., requires tagging six signals) while capturing all interac-

tions between unbounded sequences of instructions in the extended

threat model of `CFI. We verify four RISC-V CPUs against `CFI

and prove that `CFI is satisfied in many cases while detecting five

new security vulnerabilities (4 CVEs), three of which are in Ibex,

which has already been checked by state-of-the-art verification

approaches.

CCS Concepts

• Security and privacy→ Logic and verification.

Keywords

Hardware security; formal hardware verification; side-channels

ACM Reference Format:

Katharina Ceesay-Seitz, Flavien Solt, and Kaveh Razavi. 2024. `CFI: Formal

Verification of Microarchitectural Control-flow Integrity. In Proceedings of
the 2024 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’24), October 14–18, 2024, Salt Lake City, UT, USA. ACM, New York, NY,

USA, 18 pages. https://doi.org/10.1145/3658644.3690344

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0636-3/24/10

https://doi.org/10.1145/3658644.3690344

1 Introduction

With the increasing cost of compromising software due to the

plethora of mitigations and security analysis techniques [1, 2, 4,

8, 11, 30, 45, 62, 65, 93, 107, 111], the focus is shifting towards

hardware vulnerabilities, highlighting the need for better hardware

security analysis [21, 42, 44, 56, 58, 60, 67, 68, 78, 90, 96, 98, 103,

104, 105]. While there are recent advances in the area of hardware

fuzzing [16, 17, 19, 26, 48, 54, 55, 59, 88, 95], unlike formal verifica-

tion, these fuzzers are not complete by design. Formal verification,

however, requires significant per-design human effort due to the

lack of generic security properties and simple verification meth-

ods that apply to various hardware designs. This paper introduces

Microarchitectural Control-Flow Integrity (`CFI), a generic security

property that captures constant-time and control-flow violations

at the microarchitectural level and builds a novel approach for for-

mally verifying this new security property on existing open-source

RISC-V CPUs.

Hardware verification. To formally verify a hardware design at

the Register Transfer Level (RTL), verification engineers often need

to specify design-specific (security) properties which can then be

evaluated with a model checker. According to a recent study [87],

more than half of the human effort in the development of new

hardware designs is dedicated to verification, with debugging being

the largest effort (47%) during verification. With the increasing pop-

ularity of open-source RISC-V CPUs, their fast community-driven

development cycles, and the increasing number of hardware vul-

nerabilities, reducing the verification effort is of utmost importance

for ensuring reliable and secure CPUs in the future. New security

properties that generalize to existing designs have the potential to

capture different classes of security vulnerabilities while reducing

the verification effort through automation.

`CFI. We define the microarchitectural control flow as the Pro-

gram Counter (PC) values at each clock cycle and make a key

observation that a single generic security property can capture

multiple classes of hardware vulnerabilities, such as constant-time

violations or control-flow hijacks. This new property, which we call

Microarchitectural Control-Flow Integrity (`CFI), enforces that the

microarchitectural control flow is only influenced by instructions

for which the Instruction Set Architecture (ISA) explicitly allows a

control or data path from their operands to the PC. Data-dependent

execution timing of a given instruction causes the PC to have dif-

ferent values at certain clock cycles, violating `CFI. Furthermore,

(micro-)architectural vulnerabilities that allow an attacker’s input

to directly control the PC also violate `CFI. Hence, the verification

of `CFI captures both classes of security vulnerabilities.

`CFI verification. Previous approaches that aim to verify the

constant-time subset of `CFI either require manual extraction of

https://orcid.org/0000-0001-8398-2705
https://orcid.org/0000-0002-0872-5562
https://orcid.org/0000-0002-8588-7100
https://doi.org/10.1145/3658644.3690344
https://doi.org/10.1145/3658644.3690344

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Katharina Ceesay-Seitz, Flavien Solt, and Kaveh Razavi

design conditions and specification of candidate invariants [33, 34,

101], or cannot verify the interaction between secure and insecure

instructions [33, 34, 35], and neither can provide security classi-

fications per instruction for unconstrained instruction sequences.

Our verification approach aims to address these challenges in the

broader threat model of `CFI. We make a key observation that `CFI

can be verified using a single property that checks for all informa-

tion flows from critical input data, encompassing secret or attacker-

controlled data, to the PC. By declassifying valid flows through

instruction writeback and forwarding paths, `CFI can capture in-

formation flows from instructions to in-flight or future instructions

as well. The `CFI property can attribute property violations to

specific instructions and can check arbitrary and unbounded se-

quences of instructions, where instructions may operate on any

combination of public, secret, or attacker-controlled data.

Formal verification of Information Flow Tracking (IFT) proper-

ties using taint logic has so far been limited to individual modules

and properties expressed over interface signals [5, 47, 114]. Leverag-

ing and extending the state-of-the-art IFT logic, CellIFT [89], com-

bined with a state-of-the-art model checker [18], we formally verify

`CFI expressed over CPU internal signals spanning the entire CPU

pipeline. We evaluate `CFI against four open-source in-order RISC-

V processors: Kronos [57], PicoRV32 [75], Ibex [49], and Scarv [85].

We automatically (dis-)prove `CFI for an unbounded number of

clock cycles, and find five new vulnerabilities: two in Kronos that

had previously undergone fuzz testing [88] and three in Ibex that

had already been extensively verified [34, 35, 50, 101].

Contributions. We make the following contributions:

• We introduce `CFI, a generic security property, which enforces

that cycle-accurate values of the PC are not influenced by mi-

croarchitectural data dependencies, except via explicitly ISA-

specified control or data paths.

• We formally define `CFI as a generic information flow property.

• We develop the first generic and automated verification method

for formally proving the `CFI property using SystemVerilog

Assertions and an existing open-source IFT mechanism [89],

reusable across in-order RISC-V CPU designs, and capable of

verifying arbitrary and unbounded instruction sequences.

• We show that formal verification of cell-level taint tracking can

scale to in-order RISC-V CPU designs. We prove `CFI or find

counterexamples by verifying four RISC-V CPUs. In particular,

we find five new vulnerabilities: three in Kronos that had pre-

viously undergone fuzz testing [88] and two in Ibex that had

already been extensively verified [34, 35, 50, 101].

Open sourcing. We open source our toolchain to the extent that

the commercial licenses permit. More information can be found at:

https://comsec.ethz.ch/mucfi. The extended version of this paper,

including appendices, can be found in [25].

2 Background

We discuss CT and CFI, two generic software security properties

(Section 2.1) before providing background on hardware IFT and

formal property verification (Section 2.2). We then motivate why

microarchitectural security could similarly benefit from generic

hardware security properties and their verification (Section 2.3).

2.1 General software security properties

General software security properties can protect software against

various classes of software vulnerabilities like memory safety [10,

27, 83, 100, 102] and Control-Flow Integrity (CFI) [1, 14, 37, 84].

Some properties like constant-time (CT) programming [2, 3, 43, 70]

define guidelines for implementing software that is secure against

information leakage through software and hardware.

CFI. Control-flow hijacking attacks like ROP [76] or JOP [12]

abuse software vulnerabilities like buffer overflows to divert the

Control Flow (CF) of programs to carefully picked gadgets that

enable attackers to gain complete control over systems [20, 64,

105]. CFI aims to protect systems by enforcing the integrity of

the CF of a potentially vulnerable program at runtime [1, 108].

Software CFI mechanisms check the validity of a program’s CF at

the ISA level and detect variationswhen an attacker input influences

the CF [64]. Like all software security techniques, CFI assumes

hardware to be ISA-compliant. However, the continuous discovery

of security vulnerabilities in hardware designs demonstrates the

need for hardware-level security verification [44, 64, 68, 88, 90, 96].

CT. Timing side-channel attacks observe secret-dependent pro-

gram execution times to infer secrets. To prevent such leakages, the

CT programming principle states that secret data must not (a) in-

fluence the control flow of a program, (b) control memory accesses,

and (c) be passed to arithmetic instructions with data-dependent

execution latencies [53, 61, 69]. A large body of research on for-

mal verification methods attempts to guarantee CT at the software

level [2, 3, 7, 21, 31]. These methods rely on abstract models of the

hardware, with the ISA being the formal contract between software

and hardware. Intel’s recent announcement of the DOIT mode [52],

RISC-V’s Data-Independent Execution Latency (DIEL) mode [81], as

well as already-implemented data-dependent optimizations [72, 99]

highlight the need for reliable methods for classifying instructions

with respect to their CT property at the microarchitectural level.

2.2 Verification of hardware designs

Two known techniques for verifying hardware designs against

security vulnerabilities are Information Flow Tracking (IFT) and

Formal Property Verification (FPV).

Information Flow Tracking (IFT). Dynamic IFT, also known as

taint tracking, was initially designed for following the propagation

of information from (typically) user-defined taint sources to taint
sinks through a software program [92]. IFT has been adapted to

hardware and used in static and dynamic settings [46]. GLIFT [94]

proposes to instrument each logic gate with additional shadow logic,
which propagates labels that carry information about whether a

signal is affected by the value of a taint source, i.e., if the signal is

tainted. RTLIFT [6] operates on the Hardware Description Language

(HDL). CellIFT [89] operates at the (macro-)cell level, is open-source,

and has been shown to scale to the simulation of complex open-

source CPUs.

Formal Property Verification. Dynamic testing can usually

not guarantee the absence of security vulnerabilities because the

set of simulated stimuli is rarely exhaustive. Modern model check-

ers can exhaustively verify a property expressed over hardware

design signals, considering all possible input sequences [86] over

unbounded clock cycles, using methods like interpolants [66] or in-

ductive invariants [15]. Logic abstraction can be used to disconnect

https://comsec.ethz.ch/mucfi

`CFI: Formal Verification of Microarchitectural Control-flow Integrity CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

an internal signal from its driving logic, effectively making it an in-

put. Design inputs and abstracted signals may be left unconstrained

to consider arbitrary values, or constrained to specific sequences

via formal assumptions [22, 86]. Scalability remains a challenge,

which techniques like abstraction, modularization, and the addition

of invariants help to overcome [41, 79]. Model checking can effi-

ciently find property violations and present counterexamples that

demonstrate an input trace that leads to a violation [28]. The state-

of-the-art SystemVerilog Assertions (SVA) language can express

Linear Temporal Logic (LTL) properties, enhanced with sequential

regular expressions, but does not define an information flow op-

erator [51]. Information flow properties are hyperproperties [29]

specified over sets of traces. Such properties can be verified with

IFT logic [5], miter circuits [33, 34] or self-composition [101]. Man-

ually writing properties is time-consuming and error-prone. One

wrongly specified bit or clock cycle delay could lead to a false proof,

leading to wrong confidence in the design’s correctness [23, 24].

Generic and automated formal verification methods can alleviate

some of these burdens [73, 74, 80].

2.3 Motivation

Software properties like CT and CFI abstract away hardware details

and, therefore, cannot consider clock-cycle accurate control flow

variations caused by data dependencies. A program may be proven

to comply with software security concepts on an ISA-abstracted

hardware, while actual processor implementations might under-

mine these guarantees in many ways [90]. Hence, cycle-granular

dependencies must be verified at the hardware level. While formal

methods have a long history in hardware verification, completely

proving all functional and non-functional (e.g., security) aspects of

CPU implementations is often infeasible due to the complexity of

the verification problem and the required human effort [38, 79, 86].

Targeted security properties capturing different classes of security

vulnerabilities have the potential to increase trust in a hardware de-

sign even though it is not completely formally verified, e.g., due to

high cost. Generic CPU properties make their application practical

and low effort. With the ISA being the interface between HW and

SW, such properties can provide microarchitectural guarantees at

the instruction level. We define one such property and show how

it enables automated verification of hardware against microarchi-

tectural constant-time and control-flow hijacking vulnerabilities.

3 Microarchitectural Control-flow Integrity

The (architectural) control flow of a program is defined as the

sequence of architecturally-visible program addresses. Given this,

we define the microarchitectural CF as follows:

Definition 1 (`CF).AMicroarchitectural control flow (`CF) is

the clock-cycle accurate sequence of program counter values.

The difference between architectural and microarchitectural con-

trol flow is the granularity of Program Counter (PC) changes. The

`CF affects the clock-cycle-accurate PC valuation, while the archi-

tectural CF affects the PC value only at the instruction granularity.

We posit that the `CF can capture behavior relevant to various

classes of microarchitectural vulnerabilities.

As an example, the Constant Time (CT) programming principle

selects a group of instructions from the ISA that a program may use

add

CT-verified program

xor

add xorsub or

orsub

clock

Data leak

adddiv subor

div
xor jal

Manipulated control flow

sub

a b
Architectural control flow

Microarchitectural view

Architectural view

Figure 1: Examples of vulnerabilities only captured in the microar-

chitectural view. a Data leak via instruction timing and b an attacker-

diverted control flow.

when operating on secret data [61, 69]. Their timing must be inde-

pendent of their operand values. In other words, a CT instruction

must never influence a program’s execution time depending on its

operand values. From the perspective of the `CF, the PC values dur-

ing instruction execution always follow the same pattern for a CT

instruction in a given pipeline context, and its operand values do not

influence the PC values of any in-flight or future instructions. Fig-

ure 1- a depicts an instruction sequence that is executed with two

different data values for instruction sub. Architecturally, both exe-

cution sequences satisfy the CT programming principle. However,

if the microarchitecture implements data-dependent optimizations

(i.e., violating the CT principle), the `CF of two executions of the

same instruction may differ in a data-dependent manner.

Another example is a vulnerability that enables an attacker to

hijack program execution in the absence of software vulnerabilities.

Figure 1- b shows two instruction sequences, where the div instruc-
tion takes different values in each of them. In an ISA that specifies

no arithmetic exceptions, like RISC-V, a div instruction must never

trap, and execution should continue with the instruction at the

next program address. A vulnerable processor implementation may

trap in case of a division-by-zero and manipulate the trap return

address based on an attacker-provided input. In this case, the div
instruction may follow a different `CF depending on its operand

values, leading to a different architectural CF. As we show in Sec-

tion 7, issues exist in CPU designs that allow an attacker to hijack

the architectural CF even if the software is implemented correctly.

To capture these differences in the `CF, we define a new property

called Microarchitectural Control-Flow Integrity (`CFI):

Definition 2 (`CFI).Microarchitectural control-flow integrity

(`CFI) enforces that the microarchitectural control flow is only

influenced by instructions for which the ISA explicitly allows

a control or data path from their operands to the program

counter.

A hardware implementation that satisfies `CFI guarantees that

attacker-controlled data never manipulates the `CF via paths that

the ISA does not explicitly allow. Figure 2 shows how `CFI relates

to existing software security mechanisms. The CT programming

model enforces that the architectural CF of the program should not

be secret-dependent. If this property is violated on microarchitec-

tural level, then valid architectural control flows in the program

can leak information. The architectural CFI property enforces that

the architectural CF of the program should not be manipulated by

an attacker outside the valid control flows. Its violation can lead

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Katharina Ceesay-Seitz, Flavien Solt, and Kaveh Razavi

Architectural
control flow Microarchitectural control flow

CF: valid CF: manipulated

Information
leakage

Code
execution

Information
leakage

Code
execution

CT CFI CFI

CF: manipulated
μCF: manipulated

CF: manipulated
μCF: manipulated

CF: valid CF: manipulated
μCF: manipulatedμCF: manipulated

Figure 2: Relating `CFI to CT and CFI. `CFI provides similar security

guarantees for the microarchitecture as CT and CFI do for software. Vio-

lations of `CFI signal timing violations with valid architectural Control

Flow (CF) as well as cases where the architectural CF can be hijacked by an

attacker due to microarchitectural vulnerabilities.

Table 1: Information flows verified by `CFI cover four types of infor-

mation flows and different classes of hardware vulnerabilities.

Architectural

Control Flow

Input

Secret Attacker-controlled

Invalid (data flow) Data leak Control-flow hijack

Valid (timing flow) CT violation Delay injection

to control flow hijacking by an attacker. `CFI captures both these

properties for a given hardware design at the same time. Note that

while `CFI does not capture architectural control-flow issues at the

functional level (e.g., invalid branch or jump target calculations), it

does capture cases where the architectural CF gets compromised

via unspecified microarchitectural control or data paths. Further-

more, violating `CFI does not necessarily lead to an architectural

control-flow violation (e.g., operand-dependent instruction timing).

In the rest of this paper, we present a novel formal verification

method that detects the violations of `CFI or formally proves their

absence automatically by addressing a number of challenges.

4 Threat Model

We assume in-order RISC-V CPUs that have not necessarily under-

gone full formal verification, as is the case for all RISC-V CPUs that

we consider [49, 57, 75, 85]. `CFI verification considers four types

of information flows, each leading to a different class of hardware

vulnerabilities, as shown in Table 1.

A CF violation occurs when the CPU executes an invalid architec-

tural control flow due to a vulnerability (first row of Table 1). These

violations are the result of functional bugs with severe security im-

plications. If a CPU bug triggers an invalid CF that depends on secret

data, then the attacker can potentially leak the secret data [110]. For

example, imagine that a CPU only triggers a spurious exception if

an instruction has a certain operand value. Observing the exception

allows the attacker to leak the operand value (Data leak). If the

invalid CF is caused by attacker-controlled data, then the CPU bug

allows the attacker to hijack the architectural control flow, provid-

ing them with arbitrary code execution (Control-flow hijack).

Timing flows can happen even if the architectural CF remains valid

(second row of Table 1). In these cases, the information flows are due

to timing variations caused by a given instruction provided with

different operand values. If the operand is based on secret data, then

the information flow through timing results in a CT violation that

leaks all or part of the operand value. Alternatively, if the operand

value is attacker-controlled, then the attacker can perform Delay

injections attacks, potentially compromising real-time systems

or causing instruction re-ordering with architecturally-visible side

effects [9].

5 Formalizing `CFI

We now formalize the `CFI property as a Register Transfer Level

(RTL) verification problem. Architecturally, the execution time of a

program can be measured in instruction retirement counts and in

processor clock cycles per instruction [39]. Timing variabilities in

the `CF caused by structural hazards, external events, immediate

values, and data hazards are not data-dependent and, hence, do

not reveal information. However, when the actual number of clock

cycles taken by an instruction depends on the data values that are

or were being operated on, the timing of the instruction, reflected

in when the architectural PC is updated, leaks information about

that data. Furthermore, if attacker-chosen data is directly involved

in the calculation of the next PC, the attacker can influence and

potentially hijack the program’s CF [12, 76].

Observation 1. The information flows from instruction’s

operands to the PC can capture clock-cycle accurate data-

dependent timings of instructions, as well as the influence of

data on the microarchitectural control flow.

We refer to secret or attacker-controlled data as critical data. This
observation leads us to define the `CFI property as an information

flow property from critical data to the PC. There are different cate-

gories of instructions that may operate on critical data and some

may legitimately influence the PC, which we discuss next.

Instruction categories. We define instructions as non-
influencing (ni) when the ISA does not explicitly specify an

operand-dependent (architectural) CF manipulation. Arithmetic

or logic operations are in this category. We define instructions

as control-influencing (ci) instructions if they may only influence

the PC via a microarchitectural control path; thus, their operands

may only participate in the choice of PC values from a set of

otherwise operand-independent targets. For example, operands of

branch instructions control whether the branch is taken but are

not allowed to change the possible targets, or a load may allow

a control-flow transfer to a pre-defined exception handler when

its operand is a misaligned address. We define instructions as

value-influencing (vi) if the ISA explicitly allows the instruction to

manipulate the PC. For example, jump instructions are specified to

set the PC to a target depending on its operand and the architec-

turally known immediate. Therefore, the data dependencies of the

PC on these instructions’ operands are not violating `CFI. When

software deliberately allows attacker-controlled data to reach

vi-instructions, it explicitly allows an attacker to influence the CF.

Furthermore, under the CT threat model, compliant software must

not pass secret data to ci- or vi-instructions, as this would violate

CT on architectural level.

Observation 2. Instructions can be categorized based on the

(dis-)allowed microarchitectural data and control influences

of their operands on the PC.

ni-instructions must not influence the `CF and ci-instruction
may only influence the `CF via control flows. vi-instructions are
allowed to influence the `CF via their operands.

`CFI: Formal Verification of Microarchitectural Control-flow Integrity CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

arbitrary program length

add addsub

xor orsub

add addbne

addbnesub

bne

sub

sub

add

reset

ar
bi

tr
ar

y
pr

og
ra

m
s

Figure 3: Exhaustively verifying in-

struction sequences with multiple criti-

cal () operands. Any instruction can be-

come the IUV () at any possible clock

cycle in which it could read data from the

register file.

SRC
SINK

SINK
SRC

a

b

Figure 4: Handling non-

causal correlations a by dis-

connecting SRC to discover a

potential information flow b .

Arbitrary and interacting instructions. We aim to provide

a security classification per instruction with respect to the threat

models discussed in Section 4. Classification results should be valid

for any program, potentially infinitely long, where any instruction

may operate on public, secret, or attacker-controlled data. As shown

in Figure 3, we let every instruction become the Instruction Under

Verification (IUV) in any position of any instruction sequence start-

ing from the CPU’s reset state. Attributing property violations to

a specific instruction is challenging [35, 101] due to the inherent

parallelism of a pipelined CPU and potential data dependencies of

the microarchitectural state. Previous work that studied CT vio-

lations proposed excluding insecure instructions (e.g., branches),

which violate the CT property, from the instruction stream, pro-

viding security guarantees only for programs composed of secure

instructions [33, 35]. Real-world programs may interleave secure

instructions with insecure instructions that only operate on pub-

lic data. This seems secure from a software perspective, but due

to microarchitectural interactions, an allegedly secure instruction

might illegitimately influence an insecure one, even if the latter

did not operate on critical data. For example, the add in the first

row in Figure 3 may influence the timing or target of a younger

’branch if not equal’, bne, microarchitecturally, hence add is in-

secure when composed with branches. To obtain guarantees for

arbitrary contexts, such interactions must also be verified.

To solve this problem, in Section 5.1, we define the `CFI prop-

erty per instruction and operand, where information flows can be

verified in isolation, and each violation can be precisely attributed

to one instruction in a specific position in the sequence. However,

instructions can interact through architecturally known paths, such

as the register file and register-address controlled forwarding paths,

which should not be flagged as property violations. UPEC-DIT

and ConjunCT avoid this problem by excluding CT-violating in-

structions from the instruction stream, which reduces the security

guarantees [33, 34, 35]. `CFI solves this problem by formalizing

generic rules for declassifying legal information flows between

instructions, as discussed in Section 5.2.

5.1 The `CFI property

Wenow define a flow operator and then formalize the `CFI property.

Information flow operator. Equation 1 defines an information

flow operator over RTL circuits, which are deterministic finite state

machines. Let 𝑛 be a number of clock cycles, with 𝑛 = 0 the cycle in

which the design is in its reset state. Intuitively, an information flow

from a source (SRC) to a sink (SINK) signal in a logic circuit exists iff

there exists a sequence of values of SRC, 𝑆𝑠𝑟𝑐 := (𝑠𝑠𝑟𝑐,𝑛)𝑛≥0 where
a change in at least one bit of a value 𝑠𝑠𝑟𝑐,𝑛 of SRC values causes a

change of at least one bit of the corresponding sequence of SINK

values, 𝑆𝑠𝑖𝑛𝑘 := (𝑠𝑠𝑖𝑛𝑘,𝑛′)𝑛′≥0. To exclude non-causal correlations
between SRC and SINK, as illustrated in Figure 4 (a), where a change

in input 𝐼 would affect both SRC and SINK, we disconnect SRC from

its driving logic as shown in Figure 4 (b).

Let I := ({0, 1} 𝑗)N be the set of infinite input sequences to the

design, where 𝑗 is the sum of the bit widths of all design inputs,

except for SRC, and N are the natural numbers. There is an infor-

mation flow for a set S ⊆ I, denoted by
𝐼𝐹

, if there exists a

sequence 𝑆 := (𝑠𝑛)𝑛≥0 in S, and two (distinct) source sequences

𝑆𝐴𝑠𝑟𝑐 := (𝑠𝐴𝑠𝑟𝑐,𝑛)𝑛≥0, 𝑆𝐵𝑠𝑟𝑐 := (𝑠𝐵𝑠𝑟𝑐,𝑛)𝑛≥0 ∈ U that yield different

value sequences of 𝑆𝐼𝑁𝐾 as expressed in Equation 1. Like for S, we

define U as a subset of ({0, 1}𝑏)N, where 𝑏 is the bitwidth of SRC.

We define 𝑆𝐼𝑁𝐾 (𝑆, 𝑆𝑠𝑟𝑐) as the sequence of values of SINK given

the inputs 𝑆 ∈ S and the SRC values 𝑆𝑠𝑟𝑐 ∈ U.
Precise information flow operator:

𝑆𝑅𝐶 𝐼𝐹
S,U 𝑆𝐼𝑁𝐾 : ∃𝑆 ∈ S, 𝑆𝐴𝑠𝑟𝑐 , 𝑆𝐵𝑠𝑟𝑐 ∈ U |

𝑆𝐼𝑁𝐾 (𝑆, 𝑆𝐴𝑠𝑟𝑐) ≠ 𝑆𝐼𝑁𝐾 (𝑆, 𝑆𝐵𝑠𝑟𝑐)
(1)

For being able to express data flows only, we define a data flow

operator
𝐷𝐹

in the same way as
𝐼𝐹

, but with the restriction

that information flows via control wires of the RTL circuit are

excluded. We define control wires as the ones that either control

whether (time dimension) or via which path (spatial dimension)

another signal is updated. Aswewill discuss in Section 6, an existing

IFT method can implement the
𝐼𝐹

operator, and we build a new

data flow tracking method for implementing the
𝐷𝐹

operator.

Preliminary definitions. We define `CFI for in-order load-store

architecture CPUs with any number of pipeline stages, that load

data from memory or a Control and Status Register (CSR) into a

General-Purpose Registers (GPR), before an instruction operates

on the GPR. We define IW to be a microarchitectural signal that

holds the instruction word from which the CPU reads the register

addresses O𝑘_𝑎𝑑𝑑𝑟0≤𝑘<𝐾 needed to read the instruction’s operands

from the register file. K is the number of operands of the instruction,

e.g., 𝐾 = 2 for a branch. We further define𝑂𝑘 as the signal through

which operand 𝑘’s data transitions from the architectural state (the

register file) into the microarchitecture. Finally, the microarchitec-

tural PC refers to a register within a logic circuit that fulfills the

clock-cycle accurate property (𝑃𝐶)𝑛≥0 = (𝑃𝐴)𝑛≥0, where PA refers

to the program address of the currently executing instruction.

Defining the `CFI property. Following Definition 1 (Section 3),

we define the microarchitectural control flow `CF as a potentially

infinite sequence of PC values: `CF := (𝑃𝐶)𝑛≥0. Intuitively, the
`CFI property states that an 𝑛𝑖 (𝐼𝑈𝑉) never influences the PC via its

operands𝑂𝑘 , and that a 𝑐𝑖 (𝐼𝑈𝑉) only influences the PC via control

flows. Following Definition 2, `CFI does not consider 𝑣𝑖 instructions

given ISA-specified data flow from their operands to the PC. A CPU

implementation satisfies `CFI if it satisfies the `CFI property for all

instructions that it supports, and for all microarchitectural states 𝜎 :

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Katharina Ceesay-Seitz, Flavien Solt, and Kaveh Razavi

or

subxordecode
instr.

execute
instr. xor

blt

blt

Ok
A

Ok
B

1
5

6
8

2
2

7
7

PCA 80 84 88 20

or

subxor

xor

blt

blt

1
5

6
6

2
2

Ok
A =

Ok
B

80 84 88 20

add

a b

add

add

add

80 84 88 24 80 84 88 20PCB

add 1, 2
blt 6, 20, label
xor 2, 4
sub 7, 3

Ok
A

add 5, 2
blt 8, 20, label
xor 2, 4
sub 7, 3

Ok
B

aAssembly example for

time

Figure 5: Precise taint injection. a :Wrong classification: Both add
and blt read different values (purple background) in sequences𝑂𝐴

𝑘
and𝑂𝐵

𝑘
.

Information flow () to the PC is wrongly attributed to the add (the IUV ()

in this example, marked with a bold border). b : Correct classification:

Input sequences to 𝑂𝑘 are constrained () to be equal between any two

sequences compared in one proof whenever𝑂𝑘 is not read by the IUV.

`CFI property:

∀ 𝐼𝑈𝑉 ,∀𝜎 :

(𝑛𝑖 (𝐼𝑈𝑉) =⇒ ¬({𝑂𝑘 }𝑘∈𝐾 𝐼𝐹
V,O 𝑃𝐶)) ∧

(𝑐𝑖 (𝐼𝑈𝑉) =⇒ ¬({𝑂𝑘 }𝑘∈𝐾 𝐷𝐹
V,O 𝑃𝐶))

(2)

where V ⊆ I is the set of input sequences that lead to IW equaling

IUV’s type at a given clock cycle, and O is the set of source value

sequences passed to 𝑂𝑘 .

Precise taint injection. By the definition of
𝐼𝐹

and
𝐷𝐹

,

𝑂𝑘 must be disconnected from its driving logic, allowing all value

sequences to be considered. If two different sequences of 𝑂𝑘 can

lead to a different value of the PC, then there exists an information

flow. Considering the example instruction sequence in Figure 5, if

verify the `CFI property without further constraints for 𝑂𝑘 , any

instruction in that sequence that can read from𝑂𝑘 could potentially

cause a property violation. Branch instructions, for example, by

definition, influence the PC. When considering unconstrained and

infinite input sequences, every possible sequence may be extended

by a branch and thus, an information flow from𝑂𝑘 to the PC would

be detected. However, in Figure 5, our current IUV is the add, so
we are not interested in detecting the flow originating from the

subsequent ’branch if less than’, blt. Therefore, while verifying the

add, instead of excluding branches from the instruction sequence,

as done by [33, 34, 35], we constrain the proofs to only consider dif-

ferences among any two considered sequences to𝑂𝑘 when the add
can read from 𝑂𝑘 , while verifying every possible input sequence.

In Figure 5, case a exemplifies two differing input sequences to

𝑂𝑘 , where both add and blt read unconstrained data. They cause a

different PC value after the blt is executed. However, in this example,

we were verifying the add and would, therefore, wrongly associate

the blt’s information flow with the add instruction. For precise

instruction classification, we constrain O per proof as described in

Definition 3 and depicted in b . No change in input sequences to

𝑂𝑘 causes a different PC value when verifying the add. When, in

a separate proof, the blt is the IUV, a difference at the PC can be

observed, and it must have been caused by the blt’s operands.
Taint injection constraint. To associate a register access with

an IUV, we leverage the fact that the register address is part of

the instruction word and that it must be read no later than its use

to access the register. We define 𝑛𝑎𝑑𝑑𝑟𝑘 as a clock cycle in which

the register address O𝑘_𝑎𝑑𝑑𝑟 is read from the instruction word

register input

forwarded input

destination address

forwarded input

instruction result

register input

destination address

without
declassification

20

IW

2 3 4

a

51510instruction result

x
x x

1 2 3
20

add div

O2 addr.

O2

sub

80 88 92PC

2 3 4

d

10 15 5
20 10 x
x x 15

1 2 3
20 10 15

add divsub

80 88 92

2
10
20
x

1
20
sub

80

3 4
15 5
10 x
x 15

2 3
10 15

div

88 92

add

b

2 3 4
10 15 5
20 10 x
x x 15

1 2 3
20 10 15

add divsub

80 88 92

-
-
x

15

7
5

bne
μ

20

with
declassification

c

time

IW

O2 addr.

O2

PC

15
10

10 15

Figure 6: Same instruction sequence, different IUVs (). a : Informa-

tion propagates between instructions through architecturally legal paths

(instruction result to 𝑂2, which reads from register or forwarded input).

b - c : With legal paths declassified, flows can be associated with the caus-

ing instruction. d : Unexpected flows from add to a bne (here with public

operands) are not declassified and thus detected.

IW. Next, we define 𝑛𝑠𝑡𝑎𝑟𝑡𝑘 | 𝑛𝑎𝑑𝑑𝑟𝑘 ≤ 𝑛𝑠𝑡𝑎𝑟𝑡𝑘 as the next clock

cycle in which 𝑂𝑘 is read from the register file. Finally, we define

𝑛𝑠𝑡𝑜𝑝𝑘 | 𝑛𝑠𝑡𝑎𝑟𝑡𝑘 < 𝑛𝑠𝑡𝑜𝑝𝑘 as the next clock cycle in which 𝑂𝑘 is

overwritten. Intuitively, Equation 3 states that O
𝐴
𝑘
and O

𝐵
𝑘
may only

differ when the IUV can read from 𝑂𝑘 .

Instruction Operand Constraint (IOC):

V,O𝑘 := {𝑉 ,𝑂𝐴
𝑘
,𝑂𝐵
𝑘
| 𝐼𝑊𝑛𝑎𝑑𝑑𝑟 = 𝐼𝑈𝑉∧

∀𝑛 ∉ [𝑛𝑠𝑡𝑎𝑟𝑡𝑘 , 𝑛𝑠𝑡𝑜𝑝𝑘),O𝐴𝑘,𝑛 = O
𝐵
𝑘,𝑛

}
(3)

The IOC isolates the verification of information flows so that only

one instruction type can operate on secret data in any sequence.

Section 6 shows how our verification method captures information

flows from multiple instructions when verifying them individually.

Note that when the IOC forces the SRC (𝑂𝑘) signals to be equal

in some cycles, we do not consider reconvergent flows to the SRC

in these cycles. However, when the SRC signals only read from

declassified paths (see next) we do not need to check these flows.

5.2 Declassification of legal flows

By definition, information propagates from an instruction’s operand

to its outputs, i.e., the destination register and register address-

controlled forwarding paths. Information furhter propagates to a

subsequent instruction that operates on the previous instruction’s

destination register, which is an architecturally known path. For

example, in Figure 6- a , the IUV is a sub. This instruction does not

influence the PC, but it passes its result to the subsequent add (via

‘register input’), which passes its result to the div (via ‘forwarded in-
put‘). Without declassification, the div’s potential influence on the

PCwould be detected when verifying the sub. When considering un-

constrained instruction sequences, any sequence could be extended

`CFI: Formal Verification of Microarchitectural Control-flow Integrity CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

PC0

1

S0

fmuxlk

0

1

S0

mux

PC+4

forwarding
condition

frlk

filk

instr.
result

fom

REG Writeback

 stage

Execution

stageDecode stage

xdeclassification

Ok

Figure 7: Declassification and detection via forwarding paths. When

only monitoring information flows from𝑂𝑘 (cyan), flows from forwarded

input, 𝑓 𝑖𝑙𝑘 , to the 𝑙 ’th forwarding multiplexer, 𝑓 𝑀𝑢𝑥𝑙𝑘 , for operand 𝑘 (red),

are missed due to the declassification of forwarded results (𝑓 𝑜𝑚).

with an insecure instruction that receives information from previ-

ous instructions via such paths. This architecturally expected inter-

action between secure and insecure instructions complicates the

association of an information flow with a specific instruction. Previ-

ous CT verification methods avoid false classifications by restricting

the verified instruction sequences by excluding CT-violating in-

struction types [33, 35], which limits their guarantees to programs

composed of secure instructions only (e.g., containing no branches).

In our threat model, the software is responsible for architectural

information flows, e.g., from an instruction’s input operands to its

results. Hence, we declassify information flows via architecturally

specified paths during verification, and prove `CFI per instruction

type. The IOC constrains the input sequences to pass differing

inputs to only one IUV per verified sequence, while it can be sur-

rounded by arbitrary instructions of the same or different types. b
and c show the same instruction sequence as a , but with architec-

tural paths (through registers and forwarding paths) declassified.

Thus, the div’s CT violation does not get detected when verifying

sub (b), but when verifying div (c). Unexpected paths between

instructions, like depicted in d , are not declassified and are de-

tected. Since the `CFI property (Equation (2)) is proven for every

IUV and every microarchitectural context 𝜎 , every instruction in

every sequence is considered as IUV in some proof scenario.

Declassification Precondition. Declassification is sound if no

unexpected information flows to the PC could have been missed

when `CFI is proven. This is guaranteed iff the following precondi-

tion is proven on a design: all outgoing paths from a declassified

signal converge either into another declassified signal or one of the

SRC inputs to instructions before reaching the PC. This precondi-

tion ensures that there are no unconsidered information flows in

the fanout of declassified signals.

Declassification of register writes. We declassify data written

to the destination register of an instruction by disconnecting the

register data write signal from its driving logic and adding it to

the input sequences in V, allowing the signal to take on arbitrary

values that are never influenced by a change in 𝑂𝑘 .

Declassification of forwarding paths. CPU implementations

can forward instruction results to younger instructions in vari-

ous pipeline stages. As depicted in Figure 7, we define forwarding

multiplexers 𝑓 𝑀𝑢𝑥𝑙𝑘 as the ones that arbitrate between forwarded

data inputs 𝑓 𝑖𝑙𝑘 and register data 𝑓 𝑟𝑙𝑘 , selected by a condition

over matching dependent register addresses between instructions

(forwarding condition). 𝑙𝑘 is the number of forwarded inputs per

Processor
design CellIFT

IFT/DFT-
instrumented

processor designs

Signal
names

Formal testbench
General properties,

assumptions, tasks

Taint
Condition

Formal model
checker

Counter-exampleProof

CellDFT

Taint conditions

Yosys Passes

New

Existing

CPU specific

User
input

Figure 8: CPU-specific formal verification flow.

operand 𝑘 (typically present at the input of the execution stage).

Forwarded output data 𝑓 𝑜𝑚 are the signals that convey instruc-

tion results via forwarding paths.𝑚 is the number of forwarding

outputs, e.g., in the execution or writeback stage.

To avoid falsely attributing a property violation to an insecure

instruction that reads an older instruction’s result via forwarding

paths, we declassify forwarding output signals, 𝑓 𝑜𝑚 , by disconnect-

ing them from their driving logic and adding them to the input

sequences V. Since an IUV can operate on forwarded data inputs

𝑓 𝑖𝑙𝑘 , forwarded data must not influence the `CF in unexpected

ways. It is possible (although unexpected) that an instruction’s

operand only influences the PC if the instruction operates on for-

warded data 𝑓 𝑖𝑙𝑘 , and not if it operates on register data 𝑓 𝑟𝑙𝑘 , e.g., as

exemplified in Figure 7. When only monitoring data coming from

the register, REG, the information flow from 𝑓 𝑖𝑙𝑘 to the PC would

be missed in the scenario shown on the left. Therefore, we add

inputs 𝑓 𝑖𝑙𝑘 to the SRC signals by disconnecting them from their

driving logic and extending the IOC constraint as follows, with F
being input sequences to 𝑓 𝑖𝑙𝑘 :

V,O𝑘 , F𝑙𝑘 := {𝑉 ,𝑂𝐴
𝑘
,𝑂𝐵
𝑘
, 𝐹𝐴
𝑙𝑘
, 𝐹𝐵
𝑙𝑘

| 𝐼𝑂𝐶

∧ ∀𝑛 ∉ [𝑛𝑠𝑡𝑎𝑟𝑡𝑙𝑘 , 𝑛𝑠𝑡𝑜𝑝𝑙𝑘), 𝑓 𝑖
𝐴
𝑙𝑘 ,𝑛

= 𝑓 𝑖𝐵
𝑙𝑘 ,𝑛

}
(4)

6 Verifying `CFI

We now present how to express `CFI as RTL design properties

using SystemVerilog Assertions (SVAs), logic abstractions, and the

bit-precise cell-level IFT [89]. These properties can be verified with

any standard model checker that can obtain unbounded proofs for

SVAs [18]. First, we prove that cell-level IFT equals the information

flow described by the
𝐼𝐹

operator defined in Section 5.1 (Sec-

tion 6.1). We then introduce a new IFT mechanism that only tracks

data flows, called CellDFT (Section 6.2). Finally, we describe how to

construct the `CFI property in an SVA testbench (Section 6.3) and

how to declassify legal flows (Section 6.4).

Our tool flow, depicted in Figure 8, starts with processing a CPU

design with three Yosys [106] passes: (i) obtaining the taint condi-

tions (Appendix A.3 in [25]), (ii) cell-level IFT (CellIFT) based on

previous work [89], and (iii) CellDFT. The IFT and DFT instrumen-

tations add shadow taint logic to the design. The flow generates a

CPU-specific testbench connecting generic SVA assumptions and

assertions with the generated CPU-specific logic conditions. Names

of the following signals, which can be identified based on their

properties (see Section 5.1), must be user-provided: PC, IW (and

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Katharina Ceesay-Seitz, Flavien Solt, and Kaveh Razavi

register address), signals connected to the read/write port of the

register file, and forwarding outputs.

6.1 Modelling information flows with CellIFT

CellIFT [89] defines IFT logic on the cell level but does not specify

information flows over spatial and temporal compositions of cells.

We prove that if there is an information flow from a source to sink

according to Definition 1, CellIFT will propagate taints from the

source to the sink. The cell-level information flow rule [89] is given

as 𝐶𝑡 (𝐼 , 𝐼𝑡) 𝑗 = 1 ⇐⇒ ∃𝐼 | (𝐼 ⊕ 𝐼) ∧ 𝐼𝑡 = 0 and 𝐶 (𝐼) 𝑗 = 𝐶 (𝐼) 𝑗 ,
where I is a cell’s input, 𝐼𝑡 its corresponding taint input, C(I) the

cell’s output, and 𝐶𝑡 (𝐼) its corresponding taint output vector. 𝑗

refers to the 𝑗-th bit of the (taint) output vector.

CellIFT instruments designs by adding a so-called shadow logic.

Each state bit in the original design is augmented by one state

bit in the shadow logic. The shadow logic is designed to convey

information flows, i.e., to propagate taints if changes in the tainted

input bit values can provoke changes in the output bit values.

If there is an information flow from a SRC to a SINK as defined

in Section 5.1, then CellIFT propagates the taint from SRC to SINK,

as expressed by Theorem 6.1 proved in Appendix B in [25], where

I𝑡 and I𝑛𝑡 are the sets of input sequences to bits of which the

corresponding 𝐼𝑡 bits are 1 and 0, respectively and Y is a cell’s

output.

Theorem 6.1. Single-cell CellIFT equivalence.

𝐼𝑡 = 0 and 𝐼 𝐼𝐹
I𝑛𝑡 ,I𝑡 𝑌 ⇐⇒ 𝐶𝑡 (𝐼 , 𝐼𝑡) ≠ 0 (5)

Oberg et al. [71] showed that taint tracking methods detect tim-

ing dependencies. We prove in Appendix B in [25] that CellIFT

covers all information flows at design level, i.e., that CellIFT has

no false negatives. However, false positives are theoretically possi-

ble [89].

6.2 Data flow tracking with CellDFT

Implementing the
𝐷𝐹

operator requires distinguishing data and

control flows. CellIFT is incapable of it. Yet we observe that the

macrocell abstraction level (used by CellIFT) is suitable for making

this distinction. We introduce CellDFT, a variant of CellIFT that

propagates information via data flows only. It expresses data flows

by blocking taint propagation via control paths, which we define

as paths from a cell’s input to its output, that do not perform direct

assignments or data-manipulating operations. Control paths are

for example paths through comparison results, multiplexer select

signals or enable bits, which all control state changes or data flows.

CellDFT is a more restrictive variant of CellIFT in the sense that

any signal tainted by CellDFT would also be tainted by CellIFT. In

the following, we describe the variations from CellIFT that describe

CellDFT, which we define in Table 2 and describe below. We have

implemented CellDFT as a modified version of the CellIFT Yosys

pass and will release it as open source.

State elements with enable condition. We let (𝐸𝑁𝑖)0≤𝑖<𝑁𝑄

denote the enable condition expanded to the bitwidth 𝑁𝑄 of the

output vector 𝑄 of the cell, where ∀𝑖 ∈ (0 ≤ 𝑖 < 𝑁𝑄) holds
𝐸𝑁𝑖 = 𝐸𝑁 . 𝐷 is the input data vector. Intuitively, there is no data

flow coming from the enable signal.

Table 2: Cell definitions for CellDFT CellDFT’s version of CellIFT rules

(where modified), specified over Yosys’ cell port names. EN, D, A, B and S are

cell inputs,𝑄𝑡
𝑛 is a state cell output at clock cycle n, 𝑌 𝑡

is a combinational

cell output, ◦ represents shift operators.

Cell Name Definition

State elems. with enable (𝐸𝑁) 𝑄𝑡
𝑛 = (𝐸𝑁 ∧𝐷𝑡) ∨ (¬𝐸𝑁 ∧𝑄𝑡

𝑛−1)
2-input mux, aldff cells [106] 𝑌 𝑡 = (¬𝑆 ∧𝐴𝑡) ∨ (𝑆 ∧ 𝐵𝑡)
pmux cells [106] 𝑌 𝑡 = 𝐴 [𝑆]𝑡
Comparison/reduction cells 𝑌 𝑡 = 0

Shift cells 𝑌 𝑡 = 𝐴𝑡 ◦ 𝐵

2-input multiplexers and aldff cells [106]. Let S be the bit-

expanded select signal (like EN above), with same bit length as

Y. Let A and B the selected signals when S is 0 or 1, respectively.

Intuitively, there is no data flow coming from S.

pmux cells [106]. Yosys implements multiplexers with multiple

inputs 𝐴[0], . . . , 𝐴[𝑛 − 1] as pmux cells. The output taint corre-

sponds to the taint of the selected input.

Comparison and reduction cells. This rule describes the fol-

lowing single-output-bit cells: eq_ne, ge, gt, le, lt, logic_and, logic_or,
logic_not, reduce_and, reduce_xor. None of them propagates data.

Shift cells. We let A denote the data input and B the shift

amount. Let ◦ denote the cell’s operator. Intuitively, the shift

amount is not part of the data flow, but controls A’s data flow.

6.3 `CFI expressed over taint logic

We now formulate the `CFI property stated in Equation 2 as

SVAs [51, 86] over a CellIFT-/CellDFT- instrumented design.

Formal setup overview. A SystemVerilog bind statement inserts

SVA assumptions and assertions into the CPU’s top module. We

abstract [86] the memory so that the CPU receives unconstrained

and infinitely long instruction sequences (including illegal ones) via

its instruction word input. We leave all original design inputs un-

constrained, which models arbitrary external interrupts, bus errors,

etc [22]. Definition 1 requires that the information source (SRC, i.e.,

𝑂𝑘) is disconnected from its driving logic. Using the taint tracking

logic, we only abstract the taint signal of 𝑂𝑘 , while leaving the de-

sign signal untouched. This models unconstrained inputs, because

taint propagation is symbolic, i.e., design bit values, of which the

corresponding taint bits are set, are not influencing the taint propa-

gation [89]. Furthermore, we constrain all taint input signals at the

top level to constant zero during the whole proof. This guarantees

that the operand data is the sole taint source. We constrain the taint

source as described in Section 5.1, for automatic identification of a

specific instruction and operand combination as root cause of the

`CFI property violation, without needing further analysis or hu-

man interpretation as is often the case [34, 35, 101]. We implement

declassification of valid flows as defined in Section 5.2 and state the

`CFI property as an SVA assertion regarding the PC’s taint. In the

following we detail these steps.

Taint injection location In Section 5.1, we defined 𝑂𝑘 as the

signal through which register data passes first when entering the

microarchitecture (𝑂𝑘 could be the same for all𝑘 operands). Figure 9

categorizes cases of𝑂𝑘 interfacing with the register file (REG). In 1 ,

𝑂𝑘 is a microarchitectural state element that is directly connected to

the REG’s read port, but is updated only when its enable condition

`CFI: Formal Verification of Microarchitectural Control-flow Integrity CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

REG Ok

0

1

S0

mux
Ok

REG

S/fom
REG

Okreg. read

3

1

2

reg. read

Figure 9: Taint injection through𝑂𝑘 . In 1 ,𝑂𝑘 reads from REG condi-

tionally. In 2 ,𝑂𝑘 reads from REG via some cell, e.g., via a multiplexer that

arbitrates between REG and any other signal "S" (e.g. 𝑓 𝑜𝑚). In 3 ,𝑂𝑘 reads

from REG unconditionally.

bnebne

clock

IW

reg. read

Signal
names add xor

taint start
 taint stop

op1 data A B I 0 I
op1 addr. 2 31

add1 xor

A B I 0 I
2 21

add1

A B I I
2 21

bne xor
1 2 3

Figure 10: Taint injection examples. Corresponding taint start and stop

cycles are drawn in equal line color. Taint injection windows start (e.g., blue

taint start) in every clock cycle in which IW matches IUV’s () type and

IUV reads (reg. read high) from the register file (blue/green background)

through𝑂𝑘 (op1 data), and stop (e.g., blue taint stop) with the next clock

cycle after taint start in which𝑂𝑘 may change. 1 : Two reads per IUV, 2nd

one e.g., due to writeback (green background). 2 :𝑂𝑘 is invalidated (orange

background) after the read. 3 : Since every clock cycle where IW=xor is a
taint start and stop condition, there is one taint window per clock cycle.

is true. 2 refers to all cases where 𝑂𝑘 may read from REG via

some logic cell. Here, 𝑂𝑘 may be a wire or a state element. Finally,

3 refers to cases where 𝑂𝑘 reads from REG unconditionally, i.e.,

either continuously if it is a wire or in every clock cycle if it is a

state element.

Temporal aspects of taint injection. Following the formaliza-

tion in Section 5.1, and in particular the IOC defined in Equations (3)

and (4), we verify `CFI per instruction and operand and let any

instruction become the IUV at any possible clock cycle in which it

could read data from the register file.

In the formal testbench, we sample the instruction word signal

IW in the same condition in which the CPU reads the register

address from it. This condition models 𝑛𝑎𝑑𝑑𝑟𝑘 , and we can extract

it automatically as discussed in Appendix A.3 in [25]. We associate

any register read with the latest sampled instruction. Whenever at

the same time a register reading condition happens, and IW holds an

instruction of the currently examined type, this instruction turns

into the IUV, and the reading cycle becomes 𝑛𝑠𝑡𝑎𝑟𝑡𝑘 (i.e., a taint

start signal is set), taint is injected into the abstracted taint signal

of 𝑂𝑘 . A register reading condition is any condition in which 𝑂𝑘
can read the latest value of REG. Note that the register reading
condition does not depend on the actual value change of 𝑂𝑘 , i.e., a

new taint window also starts in case an instruction reads from the

same register address as the previous one or if the values in two

consecutive instruction’s input registers match coincidentally.

Figure 9, cases 1 and 2 have a dedicated read enable signal.

In case 3 , the reading condition is always true when IW matches

the IUV’s type, as 𝑂𝑘 reads from REG unconditionally. We stop

taint injection any time 𝑂𝑘 ’s valuemay change again, i.e., in any

clock cycle in which𝑂𝑘 is not updated with its own previous value.

Note that the taint stop condition is also true when a signal is

overwritten with the same value as its previous one, e.g., if a register

is updated to an instruction’s result that coincidentally matches the

previous register value. This taint stop condition models 𝑛𝑠𝑡𝑜𝑝𝑘 .

Examples of taint injection. Figure 10 shows an example of

taint injection for each of the three cases when reading registers.

Taint start and stop signals of one injection window are shown in

matching line colors. Example 1 shows an add that reads from

register 1 two times. The second read (green background) could

happen if the add was stalled and register 1 is updated due to a

writeback. The IOC constraint considers both reading conditions,

each being a taint start condition for an individual taint injec-

tion window. Hence, the first read’s taint stop condition overlaps

with the second read’s taint start condition. In Example 2 , 𝑂𝑘 is

overwritten with non-register values (orange background) after the

first read. In this case, the taint stop condition is true, but no new

taint start condition happens. In case 3 , the taint start (and taint

stop) condition is true in every clock cycle in which IW matches

the current IUV’s type, meaning that a taint flow originating from

all of these cycles is verified (individually).

Discussion. In Figure 9, case 2 , unexpected taint flowing to S

cannot propagate further, because 𝑂𝑘 ’s taint signal is abstracted,

which means that the logic between S and 𝑂𝑘 is ignored in the

proof. To avoid missing flows, we check that 𝑂𝑘 is only driven by

declassified flows by either choosing the REG’s output port as 𝑂𝑘
or by ensuring that the only cell between REG’s output and 𝑂𝑘
is a forwarding multiplexer through which we inject taint as well

(Section 6.4). If an instruction mistakenly would not read any data

(e.g., due to a pipeline flush) the `CFI property would trivially hold.

Automated taint injection. We control the taint source with a

generic set of SVA assumptions detailed in Appendix A.2 in [25], to

which we pass the signal names, the register reading condition and

the taint stop condition. In Appendix A.3 in [25], we detail how we

automatically extract these conditions from CPU designs via static

design analysis. That way, we do not rely on fully verified CPU

functionality as previous work [101], or detailed design knowledge

as [33, 101], but rather track data whenever the CPU under verifi-

cation in its current state of implementation can let architectural

data enter the microarchitectural world.

Information flow detection. A CPU design can store the PC

in multiple pipeline registers. An appropriate taint sink is one that

holds the current PC for every instruction, e.g., one passed to the

execution stage. Since tainted data must never reach the PC, we can

prove the absence of information flow unconditionally by asserting

that the taint signal of the PC is always zero. Since the property

is proven in an isolated environment per instruction and operand

with the operand as the only taint source, a violation is directly

attributable to this instruction and operand combination. A proof

of this property guarantees `CFI for the same combination.

From individual to full proofs. In Appendix A.1 in [25], we

prove that if a set of inputs and input taints results in some output

bit being tainted, then all but one tainted input bit can be untainted

while preserving the output bit taint, given a well-chosen valuation

of the design bits of which the corresponding taint bits were previ-

ously tainted. Given this property of CellIFT, it is sufficient to prove

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Katharina Ceesay-Seitz, Flavien Solt, and Kaveh Razavi

`CFI for all sequences in which one IUV could have read tainted

data to guarantee `CFI for all other sequences in which the IUV

may be interleaved with any other instructions that may operate on

untainted (public), or tainted (secret or attacker-controlled) data.

6.4 Declassification of legal flows

In Section 5.2, we defined which information flows are legal within

our threat models and explained why they need to be declassified. In

the formal verification setup, we declassify flows by abstracting the

taint signal of a chosen design signal and constraining it to zerowith

an SVA assumption. As mentioned in Section 5, the declassification

precondition must be satisifed per verified CPU design.

Register file. We declassify data written to the register via a

signal REG_WRITE_DATA that is directly connected to the register

write port. Checking the functional correctness of register writes is

out of the scope of `CFI verification. The declassification precondi-

tion is guaranteed if register write data can only propagate to the

signal connected to the register read port, which is our taint source.

Forwarding paths. Recall that the forwarding outputs 𝑓 𝑜𝑚 for-

ward instruction results to earlier pipeline stages, 𝑓 𝑖𝑙𝑘 and 𝑓 𝑟𝑙𝑘 are

the forwarded and register inputs to an instruction, respectively,

and 𝑓 𝑀𝑢𝑥𝑙𝑘 selects between the two. Our tool takes user-provided

𝑓 𝑜𝑚 signals for declassification and checks that all of their fanout

logic feeds into 𝑓 𝑖𝑙𝑘 or REG_WRITE_DATA signals. If we then

consider all 𝑓 𝑖𝑙𝑘 as additional taint sources to the IUV, the declassi-

fication precondition is fulfilled.

Constraining taint of forwarded inputs. To avoid having to

identify all clock cycles in which an instruction can operate on 𝑓 𝑖𝑙𝑘
in different pipeline stages and to keep our method generic across

CPU designs, we let the IUV operate on 𝑓 𝑟𝑙𝑘 in the forwarding cases

by abstracting and unconstraining the 𝑓 𝑀𝑢𝑥𝑙𝑘 ’ select signals, while

the corresponding taint signal remains unchanged, and keep 𝑂𝑘 as

the only taint sources. However, although register data can reach

𝑓 𝑟𝑙𝑘 when the forwarding condition is false, it might not reach it in

the forwarding case. Therefore, we extend the IOC (Equation (4))

with the following:

V,O𝑘 , F𝑙𝑘 := {𝑉 ,𝑂𝐴
𝑘
,𝑂𝐵
𝑘
, 𝐹𝐴
𝑙𝑘
, 𝐹𝐵
𝑙𝑘

| 𝐼𝑂𝐶 (6)

∧ ∀𝑛 ∈ [𝑛𝑠𝑡𝑎𝑟𝑡𝑙𝑘 , 𝑛𝑠𝑡𝑜𝑝𝑙𝑘) | 𝑓 𝑟
𝐴
𝑙𝑘 ,𝑛

≠ 𝑓 𝑟𝐵
𝑙𝑘 ,𝑛

=⇒ 𝑓 𝑖𝐴
𝑙𝑘 ,𝑛

≠ 𝑓 𝑖𝐵
𝑙𝑘 ,𝑛

}
Intuitively, this equation states that whenever an instruction can

read from𝑂𝑘 , if 𝑓 𝑟𝑙𝑘 is tainted, also 𝑓 𝑖𝑙𝑘 is tainted. Taint reachability

condition: This is guaranteed, as we show in Appendix D.1 in [25],

if we can prove per verified CPU that 𝑓 𝑟𝑙𝑘 is an unconditional and

undelayed assignment from𝑂𝑘 , or, if there is a cell on the path from

𝑂𝑘 to 𝑓 𝑟𝑙𝑘 , it is another 𝑓 𝑀𝑢𝑥𝑙𝑘 that fulfills the same condition.

Lastly, if we inject taint not directly into the register reading port

but into𝑂𝑘 (to account for potential conditional reads), the declassi-

fication of the𝑚𝑢𝑥 shown in example 2 of Figure 9 would happen

(structurally) before 𝑂𝑘 . Therefore, if there is an 𝑓 𝑀𝑢𝑥𝑙𝑘 between

𝑂𝑘 and REG, where 𝑓 𝑟𝑙𝑘 equals REG, the taint start condition has

to be extended by the case where 𝑂𝑘 reads from 𝑓 𝑜𝑚 .

Automated declassification. Our Yosys pass automatically ex-

tracts 𝑓 𝑀𝑢𝑥𝑙𝑘 select signals via static design analysis, based on

the user provided 𝑓 𝑜𝑚 signals. It verifies the declassification pre-
condition by traversing all outgoing cell connections of 𝑓 𝑜𝑚 until

reaching an 𝑓 𝑀𝑢𝑥𝑙𝑘 , 𝑂𝑘 or a declassified signal, and checking that

Table 3: Design complexity comparison of the uninstrumented (U),

CellDFT- (D), and CellIFT (I)-instrumented design considering nets, gates,

and register (R.) bits. All values in thousands (k).

Design
Nets [k] Gates [k] R. Bits [k]

U D I U D I U D I

Kronos 1.4 3.0 6.8 13.0 43.4 77.1 2.0 3.9 3.9

PicoRV32 1.6 3.8 9.5 27.0 67.6 114.3 3.2 5.1 5.3

Scarv 6.7 11.5 30.1 58.7 176.6 309.3 2.3 4.6 4.6

Ibex (small) 4.5 8.0 17.5 39.9 82.5 160.5 2.4 4.7 4.7

Ibex (custom) 4.6 8.5 18.3 40.7 86.2 166.7 2.5 4.9 5.0

the user provided PC signal has not been passed. It further checks

the taint reachability condition and informs the taint condition gen-

eration about additional 𝑓 𝑀𝑢𝑥𝑙𝑘 before 𝑂𝑘 .

7 Evaluation

We evaluate the proposed `CFI verification method in terms of

runtime and verification results for four open-source RISC-V de-

signs. PicoRV32 [75] (f00a88c3) is a size-optimized CPU written

almost entirely in one Verilog module. Kronos [57] (a41629d) is

a CPU designed for FPGA applications, written in SystemVerilog.

For PicoRV32 and Kronos we verify CPU versions with fixes for

bugs found by the state-of-the-art Cascade CPU fuzzer [88]. We

also include Scarv [85] (bb52627) which is a side-channel hardened

CPU implementing the RISC-V scalar cryptography extensions [81],

and Ibex [49] (bbb91c56, opentitan fork), an extensively verified

CPU [34, 35, 50, 101, 113] used in real-world designs such as the

OpenTitan root of trust [63].

Testbed. We formally verified the SVAs with Cadence’s Jasper

Formal Property Verification (FPV) App, v2022.09 [18], configured

to provide proofs for an unbounded number of cycles, executed on

a server with the following configuration: Intel Xeon, 3.4 GHz, 60

logical cores, 1.25 TB RAM.

Cost of instrumentation. While CellIFT is designed to have a

small performance and area overhead [89], its overhead in terms of

netlist composition has not yet been extensively studied. Table 3

reports design complexity statistics. The instrumentation multiplies

the number of nets by a factor 4.0 (Ibex small, secure) to 5.9 (Pi-

coRV32). The number of gates is multiplied by a factor of 4.1 (Ibex

small, secure) to 5.9 (Kronos). CellDFT only adds a net and gate

overhead of max. 2.4x (PicoRV32) and 3.4x (Kronos) respectively.

The instrumentation serves verification purposes only and is absent

in physical CPU implementations; hence, area overheads are not

relevant in the verification context. CellIFT logic added a larger gate

overhead to Scarv despite similar state bit counts to Ibex, which

explains the larger proof runtime on Scarv.

Annotation burden. 6 signals need to be manually extracted

from all CPU designs, based on their mentioned properties in Sec-

tion 5.1 and Section 6.3: IW, one register address, signals connected

to the register read and write ports and the PC. Forwarding output

annotations depend on the number of pipeline stages that forward

results: 0 for PicoRV32, 1 for Ibex and 0 for Kronos, because it reuses

the register write signal. Scarv has wider outputs for cryptogra-

phy instructions, which adds 5 annotations. For the forwarding

declassification precondition check the name of the register file is

needed.

https://github.com/YosysHQ/picorv32/commit/f00a88c3
https://github.com/SonalPinto/kronos/commit/a41629d466235ae85feffaafe43ef725c4c930cf
https://github.com/scarv/scarv-cpu/commit/bb52627
https://github.com/lowRISC/opentitan/commit/bbb91c56

`CFI: Formal Verification of Microarchitectural Control-flow Integrity CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Table 4: Verification runtime (MM:HH:SS) for all four considered RISC-

V CPUs. (I = CellIFT, D = CellDFT, t. = time, c = custom, s = small). Ibex

configurations: secure + slow multiplier.

↰Method /Design → Kronos PicoRV32 Ibex (s) Ibex (c) Scarv

I Mean t. FAIL 0:00:37 1:05:47 2:25:22 3:18:06 0:10:56

Mean t. PROVE 0:16:29 16:55:43 6:14:33 8:46:12 14:16:56

Max. t. PROVE 0:29:19 21:42:28 7:15:27 11:01:26 23:58:31

Peak memory [GB] 22.9 126.9 63.0 64.0 77.3

D Mean t. FAIL 0:00:15 0:08:29 0:03:04 0:06:14 0:34:20

Mean t. PROVE 0:00:30 0:08:22 0:04:35 0:10:05 0:50:50

Max. t. PROVE 0:00:58 0:19:07 0:09:01 0:15:30 1:27:31

Peak memory [GB] 4.6 37.6 12.0 20.7 36.7

7.1 Verification runtime

The generation of taint conditions, discovery of multiplexer select

signals and the declassification precondition check are implemented

as Yosys passes and Python scripts, which complete in less than 5

minutes per verified CPU.

Table 4 summarizes the verification runtimes with CellIFT and

CellDFT. For a fair comparison, we verify all RV32I instructions for

both versions and report the mean time over all assertion failures,

as well as the mean and maximum time over all instructions that

were proven. Aggregated runtime and peakmemory usage numbers

are based on the reports produced by Jasper FPV. The results are

for unbounded proofs over unrestricted instruction sequences. All

other top level inputs are unconstrained as well, except on Kronos

(see below). CellDFT is significantly faster than CellIFT, due to the

lower instrumentation cost.

Due parallelization the actual total runtime was much lower

than the aggregated one. Initially, for Scarv, the Jasper FPV did

not produce results after 24 hours. We then chose Jasper’s engine

modes M, N, AM and Mp, because they can exchange proof results.

For Scarv we also included Ht. For each taint logic state we added a

helper assertion stating that the state never gets tainted. The formal

tool may use their results as invariants [24]. Together with these

assertions, the `CFI property could be proven in the reported time.

We extended our tool flow to generate these supportive assertions

automatically with a Python script after obtaining the taint state

signal names from the Yosys CellIFT pass [89]. For a fair comparison,

we add these assertions to all cores. However, they do not always

improve the runtime.

7.2 `CFI violations in existing hardware designs

Table 5 shows satisfaction (✓) and violation (✗) of `CFI per CPU

and instruction, which we will discuss in detail next. Instructions

are grouped per category defined in Section 5. Non-influencing

(ni) instructions are verified using CellIFT. Control-influencing (ci)
instructions are verified using CellDFT. vi instructions are specified
to influence the PC, thus their information flows do not violate

`CFI. However, our toolchain is able to check for their operand’s

information flows and confirms a data flow to the PC using CellDFT.

Most instructions provably satisfy `CFI. We also show CellDFT

results for instructions that fail using CellIFT. If proven with

CellDFT, these instructions are not causing CF violations. While

we are the first to study `CFI violations, Scarv and Ibex (in small

configuration) were previously verified for CT violations. Besides

confirming known vulnerabilities, we discovered five new vulnera-

bilities. In the following we discuss our newly discovered security

Table 5: `CFI results per instruction grouped by instruction category (ni,
ci). `CFI satisfactions are marked with ✓, violations with ✗. Ibex (custom

config.) results are for non-secure / secure mode with IUV started in data-

independent timing mode and slow multiplier. ni instructions that violate
`CFI with CellIFT (I) are checked with CellDFT (D) as well. ci instructions
are only verified with CellDFT.𝑂𝑘 = operand k.

Instruction Kronos PicoRV32 Scarv Ibex

ni I add, and(I), or(I), slli, slt(u),

srli, srai, sub, xor(I)

✓ ✓ ✓ ✓

I sll, sra, srl ✓ ✗ ✓ ✓
D sll, sra, srl ✓ ✓ ✓ ✓
I slti(u), addi ✗ ✓ ✓ ✓
D slti(u), addi ✗ ✓ ✓ ✓
I O1: div(u), mul(h), mulhsu,

mulhu, remu

– ✓ ✓ ✓/ ✓

I O1: rem – ✓ ✓ ✗/ ✗

D O1: rem – ✓ ✓ ✓/ ✓

I O2: div(u), mul(h),

mulh(s)u, rem(u)

– ✓ ✓ ✗/ ✗

D O2: div(u), mul(h),

mulh(s)u, rem(u)

– ✓ ✓ ✓

I lb(u), sb ✓ ✓ ✗ ✓
D lb(u), sb ✓ ✓ ✓ ✓
I Scalar crypto – – ✓ –

ci D lh, lhu, lw, sh, sw ✗ ✓ ✓ ✓
D beq, bge(u), blt(u), bne ✓ ✓ ✓ ✗

Listing 1: `CFI violation through data dependency.

load program address into general-purpose register x8
0x800001F8: lui x8, 0x80000
0x800001FC: addi x8, x8, 0x400
0x80000200: csrrw x0, mtval ,x3 # legal instruction
0x80000204: (il)legal instr # arbitrary instruction
0x80000208: addi x6, x8, 0x3050 # `CFI tracks data operand
0x8000020C: (il)legal instr
...
trap can steer the control flow to attacker-chosen value
0x80000400 <trap_handler >:
0x80000400: ...

vulnerabilities and reference the corresponding GitHub issues and

newly assigned CVE numbers.

7.2.1 Kronos: Kronos does not implement the RISC-V M exten-

sions; therefore, these instructions are marked with ’-’.

Kronos: Control-flow hijack (CVE-2024-44927) - Issue 17. If

Kronos is integrated with a memory that does not always acknowl-

edge requests in the next clock cycle, there are cases where a ’jalr’ or

branch instruction reads from the previous instruction’s input regis-

ter. If the previous instruction was operating on attacker-controlled

data, an attacker can hijack the CF. If that data was secret, it would

be leaked by the data-dependent CF deviation. Therefore, without

input constraints, `CFI was violated for all instructions.

Kronos: Control-flow hijack (CVE-2023-51973) - Issue 12.

We further verified a setup with ’data_ack’ and ’instr_ack’ inputs

constrained to be always high. Table 4 and Table 5 show results

with this setup. These constraints model fault injections on the bus,

or a memory that does not comply with the pipelined Wishbone

protocol. We discovered a control-flow hijack vulnerability, where

a data operand of an addi, slti or sltiu could be directly copied into

the mtvec CSR, which is the machine trap-vector base address. On

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Katharina Ceesay-Seitz, Flavien Solt, and Kaveh Razavi

RISC-V, by default, all traps are handled in machine mode. Such vul-

nerabilities allow attackers with only user-mode access to influence

the architectural CF in machine mode.

Listing 1 shows assembly code replicating a counterexample re-

turned by Jasper FPV for the addi instruction. The two instructions
load a program address into GPR x8. Then, a legal csrrw instruction

is decoded, followed by an arbitrary instruction. Then follows an

addi, of which the `CFI property tracked the data operand. Due to

a CPU bug, an internal CSR write enable signal is high when the

addi instruction is executed. That signal depends on a CSR decode

signal that was earlier set due to the legal CSR instruction. In the

example shown, the higher-order bits of the immediate with value

0x305 are interpreted as the address of the mtvec CSR. The value
stored in x8 gets stored into mtvec. A subsequent trap can steer the

CF to the value chosen by an attacker. Execution will continue at

this address in machine mode. This enables, for example, powerful

code-reuse attacks [12, 76, 105]. Constraining the formal tool allows

obtaining diverse violation traces. When forbidding CSR instruc-

tions, the bug was not revealed, which confirms the necessity for a

legal csrrw instruction to be used together with the malicious addi.
UPEC-DIT [34] and ConjunCT [35] could not have found this bug.

Kronos: Constant time violation (CVE-2023-51974) - Issue 13.

In the same setup with unexpected bus behavior we further discov-

ered a timing flow from addi, slti, and sltiu instructions, violating

the CT principle if the immediate value matched a performance

counter address. The performance counter increase takes one clock

cycle longer whenever the upper word of the counter needs an

increment.

Furthermore, loads can cause a control-flow violation. If a mis-

aligned load leads to an exception, the faulting address is loaded

into the CSR ’mtval’ according to the ISA [82]. If it is followed by a

csrrw(i) and an illegal instruction where the uppper bits match the

’mtval’ register address, the faulting address can be transferred into

the ’mepc’ register due to a bug. A subsequent mret would jump

to that address. This bug has the same root cause as the already

reported issue 15.

When using input assumptions tomodel one specific scenariowhere

a memory always responds within one clock cycle, all instructions

satisfy `CFI on Kronos. If these memory interface assumptions can

be proven in the integration setup, Kronos can be trusted to be free

from `CFI violations.

7.2.2 Ibex: Table 5 shows results for a custom Ibex configuration

with writeback stage and branch predictor enabled (see Appendix

C.1 in [25]). On Ibex, multiplications and divisons were known

to be non-CT in its small, non-secure configuration [34, 35, 101].

However, previous methods did not discover the CT violations

caused by div/mul-type instructions that we discuss below, even
though they affected the small configuration. Table 5 shows results

for a custom Ibex configuration (see Appendix C.1 in [25]). None of

the earlier methods tracked data flows; hence, none of them could

have detected the control flow violation caused by branches.

Ibex: Data leakage (CVE-2024-28365) - Issue 2144. Ibex reacts

to an external memory data error signal, even if it has not started

a memory operation. This caused `CFI to fail for rem, operand

1. While investigating, we discovered a data leakage to arbitrary

architectural registers. The underlying bug in the multiplication

and division state-machine was fixed by the maintainers of Ibex.

Ibex: CT violation - Issue 2144. Operand 2 of div/mul-type in-
structions that were executed in Ibex’ data-independent timing (dit)

mode can influence the timing of younger instructions, which are

executed after data-independent timing mode is disabled via a csrrw.
UPEC-DIT [34] and ConjunCT [35] cannot find such violations be-

cause a csrrw is required to trigger them, which is an instruction

that these methods exclude. LeaVe did not scale to the full uncon-

strained pipeline of Ibex [101]. Thus, these methods cannot reason

over instruction sequences that alter the dit-mode configuration.

The fix for CVE-2024-28365 also resolved this violation and another

where all instructions were affected in the Ibex small configuration

in case of unexpected errors on the data bus.

Ibex: Control-flow hijack - Issue 2169. Using CellDFT, we

discovered a control-flow violation in Ibex in our custom configura-

tion. The operands of branches can direct the PC to arbitrary values

(instead of the branch targets only), which can allow attackers to

execute arbitrary code. According to Ibex maintainers, our configu-

ration (writeback stage without branch target ALU) is unsupported.

However, this was nowhere documented and thus poses a hidden

risk.

7.2.3 PicoRV32 and Scarv: PicoRV32 implements (and documents)

data-dependent shift durations in its default configuration. Apart

from that, it satisfies `CFI.

Our results confirm a known violation in Scarv, where byte-wise

memory accesses leak whether a memory-mapped IO address is

accessed [34]. Scarv additionally implements the RISC-V scalar

cryptography extension [81], which has not been verified against

CT before. We provide results for single and multi-cycle versions

in Appendix C in [25]. All cryptography instructions satisfy `CFI.

8 Discussion

Scope of `CFI verification. Because ci and vi instructions are
allowed to influence the PC in someways, we cannot verify their CT

property. However, in the CT threat model this is of little interest,

since these instructions are not CT-secure at architectural level.

There could be bugs where a CT-violating instruction influences the

timing of younger instructions other than through its own variable

latency. None of the state-of-the-art CT verification methods [33,

35, 101], including `CFI, can detect these. While irrelevant under

CT, these cases could be of interest if software is protected by time-

balancing [77]. To ensure the functional correctness of the `CF,

functional verification methods [79] for ci and vi instructions can
be applied.

State of functional verification. `CFI verification does not re-

quire as precondition that a CPU has undergone complete formal

functional verification, which is rarely the case in practice [79, 87].

Naturally, as for any verification method, there remains the possi-

bility that bugs mask other bugs until the CPU has been completely

formally verified. For example, because we associate every read

with an instruction, if a CPU contains faults in its register reading

logic, in the worst case, we could potentially associate a `CFI viola-

tion with a wrong instruction. Violations of `CFI on functionally

verified designs are either of timing or CF violation nature. If a

`CFI: Formal Verification of Microarchitectural Control-flow Integrity CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Table 6: Verified threat models and automation support in `CFI and

relatedwork.We compare our four considered threat models (see Section 4)

and support for automation, instruction classification (Instr. class.), and

arbitrary instructions (Arb. instrs.).

Threat model

Method
Data

leak

CF

hijack

CT

viol.

Delay

inj.

Auto-

mation

Instr.

class.

Arb.

instrs.

`CFI

ConjunCT [35]

LeaVe [101]

UPEC-DIT [33, 34]

CPU has undergone a complete formal functional verification, `CFI

violations will always be related to timing.

Verifying larger CPUs. Advanced optimizations (e.g., macro-op

fusions, speculative execution, or data-dependent prefetch) could

cause `CFI violations if they are value- and not register address-

dependent. Developing declassification rules for these optimizations

is an interesting direction for future work. Our current implementa-

tion does not track data loaded from memory into a GPR. This can

be addressed by identifying the memory data ports and tainting in-

coming data like for GPRs. In the cores we studied, memories were

abstracted. Including caches into the verification would require

further declassification rules, which we leave for future work, or

memory instrumentation [71, 91]. We obtained unbounded proofs

on the studied cores. However, for larger cores, typical abstrac-

tion techniques will be required [86], which opens future research

directions for applying `CFI.

9 Related Work

Table 6 compares different aspects of `CFI with related work:

Threat model: Related methods focus on timing varieties only [35,

40, 97], explicitly disregarding data flows [33, 34, 101]. UPEC-DIT

and ConjunCT determine a set of instructions that produce CT-

secure programs when only these instructions are combined [33,

34, 35].Automation: LeaVe [101] and UPEC-DIT [33] require man-

ual extraction of design conditions and specification of candidate

invariants to exclude known or discovered (or in case of UPEC

also spurious) violations. While LeaVe can manually declassify data

used by a CT-violating instruction via contract specification, it is

not able to generate these non-trivial contract statements auto-

matically [101]. UPEC needs the verification engineer to decide

about the validity of information flows in multiple iterations before

obtaining a proof [33, 34]. ConjunCT [35] learns invariants and

requires only the annotation of a few signals, in the same order

as `CFI. Instruction classification: LeaVe [101] can precisely

find the root cause of a violation, but requires manual relation

of the resulting design condition to instructions. UPEC-DIT [33]

and ConjunCT [35] provide results per instruction, but with limita-

tions. UPEC-DIT excludes violating instructions from the proof [33],

leading to a reduced threat model. ConjunCT may misclassify in-

structions in certain cases [35]. `CFI precisely relates a violation

to an instruction by design. Arbitrary instructions: UPEC-DIT

and ConjunCT cannot detect cases where CT instructions interact

with non-CT instructions, because the non-CT instructions need

to be removed from the proof [33, 35]. Most importantly, these

two methods cannot detect cases where an instruction that is CT

in itself influences the timing of a younger instruction. For exam-

ple, in Kronos we found that an add instruction that satisfies `CFI

on its own can cause a `CFI violation only if it is followed by a

csrrw. Using an approach like ConjunCT or UPEC-DIT, the csrrw
would have to be excluded from the verified instructions due to

its own influence on the PC and therefore the violation would not

be detected. While LeaVe can detect such case (related to CT), it

requires manual association of the result to a specific instruction.

LeaVe declassifies CT violations by adding relational constraints to

the contract. `CFI leverages a property of CellIFT’s taint tracking

logic that allows the individual verification of instructions (see A.1

in [25]). Therefore, the instruction sequence does not need to be

restricted for both methods. [36] verifies the CT property of a small

custom CPU without forwarding.

Verification automation. Zeng et al. [112] proposed a method

to generate update functions from an RTL design. This function

captures the data a signal is updated to, whereas we capture the

condition under which it is updated. Some RISC-V cores implement

the riscv-formal interface [109]. Being an observational circuit, it

cannot be used for taint injection. Furthermore, the connection

of signals to this interface is a manual effort and most signals are

bulk updated in the last pipeline stage [109], making it difficult

to check intermediate states. Borkar et al. [13] propose a fuzzer

for finding timing violations. Being a simulation-based method, it

cannot provide guarantees of absences.

IFT verification. Kastner et al. [32] presented a tool to mine

information flow properties from simulation traces to test themwith

a proprietary tool. Information flow properties that are specified

allow taint flows under certain conditions. The method we propose

can be extended in the same manner. Since the condition would

always be true in case of the `CFI property, we let our IFT property

unconditioned. Ardeshiricham et al. [5] proposed a timing flow

logic implemented in a proprietary tool. Such a logic could be used

to distinguish between timing and control dependencies.

10 Conclusion

We presented the `CFI property that ensures that instructions are

data oblivious and do not influence the control flow unless explicitly

specified by the ISA. We developed the first automated and reusable

method for formally verifying `CFI based on detecting information

flows from instruction’s operands to the PC. Our taint injection

and flow declassification mechanisms allow us to verify interac-

tions between arbitrary instruction combinations in unbounded

sequences, where each of them may operate on public, secret or

attacker-controlled data. Leveraging taint logic based IFT verifica-

tion of the entire pipeline, `CFI verification requires tagging only a

few signals and can associate the violation of `CFI to an offending

instruction, simplifying verification and triaging. Applying `CFI

verification to four in-order RISC-V cores, we proved the `CFI prop-

erty in many cases and found five new security vulnerabilities,

including in previously verified CPUs.

Ethical considerations. We have reported the property viola-

tions to the maintainers of the respective repositories.

Acknowledgments

The authors would like to thank the anonymous reviewers for their

valuable feedback, Patrick Jattke for his help in formatting the pa-

per, and the maintainers of the designs we verified for their support

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Katharina Ceesay-Seitz, Flavien Solt, and Kaveh Razavi

in understanding and fixing some of the bugs. This work was sup-

ported by the Swiss State Secretariat for Education, Research and In-

novation under contract number MB22.00057 (ERC-StG PROMISE).

References

[1] Martin Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. 2009. Control-

flow integrity principles, implementations, and applications. ACM TOPS ’09,
13, 1, Article 4, (Nov. 2009). https://doi.org/10.1145/1609956.1609960.

[2] Jose Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François Dupressoir, and

Michael Emmi. [n. d.] Verifying Constant-Time Implementations. In USENIX
Security 2016.

[3] Jose Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Vincent Laporte, and

Tiago Oliveira. [n. d.] Certified compilation for cryptography: Extended x86

instructions and constant-time verification. In INDOCRYPT 2020. Springer.
[4] Marc Andrysco, Andres Nötzli, Fraser Brown, Ranjit Jhala, and Deian Stefan.

[n. d.] Towards verified, constant-time floating point operations. In ACM
SIGSAC 2018.

[5] Armaiti Ardeshiricham, Wei Hu, and Ryan Kastner. [n. d.] Clepsydra: Model-

ing timing flows in hardware designs. In IEEE/ACM ICCAD 2017.
[6] Armaiti Ardeshiricham, Wei Hu, Joshua Marxen, and Ryan Kastner. [n. d.]

Register transfer level information flow tracking for provably secure hardware

design. In IEEE DATE 2017.
[7] Gilles Barthe, Gustavo Betarte, Juan Campo, Carlos Luna, and David Pichardie.

[n. d.] System-level non-interference for constant-time cryptography. In ACM
SIGSAC 2014.

[8] Gilles Barthe, Sandrine Blazy, Benjamin Gregoire, Remi Hutin, Vincent La-

porte, David Pichardie, and Alix Trieu. [n. d.] Formal verification of a constant-

time preserving C compiler. In ACM POPL 2019.
[9] Mohammad Behnia et al. 2021. Speculative interference attacks: breaking

invisible speculation schemes. In ASPLOS 2022.
[10] Emery D. Berger and Benjamin G. Zorn. [n. d.] DieHard: Probabilistic memory

safety for unsafe languages. In ACM PLDI ’06.
[11] Sandrine Blazy, David Pichardie, and Alix Trieu. 2019. Verifying constant-time

implementations by abstract interpretation. Journal of Computer Security, 27.
[12] Tyler Bletsch, Xuxian Jiang, Vince W Freeh, and Zhenkai Liang. [n. d.] Jump-

oriented programming: a new class of code-reuse attack. In ASIACCS 2011.
[13] Pallavi Borkar, Chen Chen, Mohamadreza Rostami, Nikhilesh Singh, Rahul

Kande, Ahmad-Reza Sadeghi, Chester Rebeiro, and Jeyavijayan Rajendran.

WhisperFuzz: White-box fuzzing for detecting and locating timing vulnera-

bilities in processors. ().

[14] Jay Bosamiya, Wen Shih Lim, and Bryan Parno. [n. d.] Provably-Safe Multi-

lingual Software Sandboxing Using Webassembly. In USENIX Security 2022.
[15] Aaron R. Bradley. 2011. Sat-based model checking without unrolling. In

Springer Berlin Heidelberg.

[16] N. Bruns, V. Herdt, D. Große, and R. Drechsler. [n. d.] Efficient cross-level

processor verification using coverage-guided fuzzing. In VLSI 2022.
[17] N. Bruns, V. Herdt, E. Jentzsch, and R. Drechsler. [n. d.] Cross-level proces-

sor verification via endless randomized instruction stream generation with

coverage-guided aging. In DATE 2022.
[18] [n. d.] Cadence jasper formal property verification (fpv) app. Accessed: 2024-

07-10. https://www.cadence.com/en_US/home/tools/system-design-and-ve

rification/formal-and-static-verification/jasper-gold-verification-platform

/formal-property-verification-app.html.

[19] S. Canakci, C. Rajapaksha, L. Delshadtehrani, A. Nataraja, M. B. Taylor, M.

Egele, and A. Joshi. [n. d.] ProcessorFuzz: Processor fuzzing with control and

status registers guidance. In HOST 2023.
[20] Nicholas Carlini, Antonio Barresi, Mathias Payer, David Wagner, and Thomas

R Gross. [n. d.] Control-Flow Bending: On the Effectiveness of Control-Flow

Integrity. In USENIX Security 2015.
[21] Sunjay Cauligi, Craig Disselkoen, Klaus v Gleissenthall, Dean Tullsen, Deian

Stefan, Tamara Rezk, and Gilles Barthe. [n. d.] Constant-time foundations for

the new spectre era. In ACM SIGPLAN 2020.
[22] Katharina Ceesay-Seitz, Hamza Boukabache, and Daniel Perrin. 2020. A func-

tional verification methodology for highly parametrizable, continuously oper-

ating safety-critical fpga designs: applied to the cern radiationmonitoring elec-

tronics (crome). InComputer Safety, Reliability, and Security. António Casimiro,

Frank Ortmeier, Friedemann Bitsch, and Pedro Ferreira, (Eds.) Springer Inter-

national Publishing, Cham, 67–81. isbn: 978-3-030-54549-9.

[23] Katharina Ceesay-Seitz, Hamza Boukabache, and Daniel Perrin. [n. d.] Semi-

formal reformulation of requirements for formal property verification. In

accellera DVCON EUROPE 2019.
[24] Katharina Ceesay-Seitz, Sarath Kundumattathil Mohanan, Hamza Bouk-

abache, and Daniel Perrin. [n. d.] Formal property verification of the digital

section of an ultra-low current digitizer asic. In accellera DVCON EUROPE
2021.

[25] Katharina Ceesay-Seitz, Flavien Solt, and Kaveh Razavi. 2024. `CFI: formal

verification of microarchitectural control-flow integrity. In Extended version
of this paper. https://comsec.ethz.ch/wp-content/files/mucfi_ccs24.pdf.

[26] C. Chen, R. Kande, N. Nyugen, F. Andersen, A. Tyagi, A. R. Sadeghi, and J.

Rajendran. HyPFuzz: Formal-assisted processor fuzzing. ().

[27] Nathan Chong, Byron Cook, Konstantinos Kallas, Kareem Khazem, Felipe R.

Monteiro, Daniel Schwartz-Narbonne, Serdar Tasiran, Michael Tautschnig,

and Mark R. Tuttle. [n. d.] Code-Level Model Checking in the Software Devel-

opment Workflow. In ACM/IEEE ICSE 2020 (Icse-Seip 2020).

[28] Edmund M. Clarke, Thomas A. Henzinger, and Helmut Veith. 2018. Handbook
of Model Checking. Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith,

and Roderick Bloem, (Eds.) Springer International Publishing, Cham. https:

//doi.org/10.1007/978-3-319-10575-8.

[29] Michael R Clarkson and Fred B Schneider. 2010. Hyperproperties. Journal of
Computer Security, 18, 6.

[30] John Criswell, Nathan Dautenhahn, and VikramAdve. [n. d.] KCoFI: Complete

control-flow integrity for commodity operating system kernels. In IEEE S&P
2014.

[31] Lesly-Ann Daniel, Sébastien Bardin, and Tamara Rezk. [n. d.] Binsec/rel:

Efficient relational symbolic execution for constant-time at binary-level. In

IEEE S&P 2020.
[32] Calvin Deutschbein, Andres Meza, Francesco Restuccia, Ryan Kastner, and

Cynthia Sturton. [n. d.] Isadora: Automated information flow property gener-

ation for hardware designs. In ACM ASHES 2021.
[33] Lucas Deutschmann, Johannes Müller, Mohammad R. Fadiheh, Dominik Stof-

fel, and Wolfgang Kunz. 2024. A scalable formal verification methodology

for data-oblivious hardware. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 1–1. doi: 10.1109/TCAD.2024.3374249.

[34] Lucas Deutschmann, Johannes Müller, Mohammad R. Fadiheh, Dominik Stof-

fel, and Wolfgang Kunz. [n. d.] Towards a formally verified hardware root-of-

trust for data-oblivious computing. In ACM/IEEE DAC 2022.
[35] S. Dinesh, M. Parthasarathy, and C. Fletcher. [n. d.] ConjunCT: Learning

inductive invariants to prove unbounded instruction safety against microar-

chitectural timing attacks. In IEEE S&P 2024.
[36] Ning Dong, Roberto Guanciale, Mads Dam, and Andreas Lööw. [n. d.] Formal

verification of correctness and information flow security for an in-order

pipelined processor. In FMCAD 2023.
[37] Yufei Du, Zhuojia Shen, Komail Dharsee, Jie Zhou, Robert J Walls, and John

Criswell. [n. d.] Holistic control-flow protection on real-time embedded sys-

tems with kage. In USENIX Security 2022.
[38] Limor Fix. 2008. Fifteen Years of Formal Property Verification in Intel. In 25

Years of Model Checking: History, Achievements, Perspectives. Orna Grumberg

and Helmut Veith, (Eds.) Springer Berlin Heidelberg, 139–144. https://doi.org

/10.1007/978-3-540-69850-0_8.

[39] Lukas Gerlach, Daniel Weber, Ruiyi Zhang, and Michael Schwarz. [n. d.] A

security RISC: Microarchitectural attacks on hardware RISC-v cpus. In IEEE
S&P 2023.

[40] Klaus v Gleissenthall, Rami Gökhan Kıcı, Deian Stefan, and Ranjit Jhala. [n. d.]

IODINE: Verifying Constant-Time Execution of Hardware. In USENIX Security
2019.

[41] Aman Goel and Karem Sakallah. [n. d.] Model checking of verilog rtl using

ic3 with syntax-guided abstraction. In NFM 2019. Springer.
[42] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Cristiano Giuffrida.

[n. d.] ASLR on the line: Practical cache attacks on the MMU. In NDSS 2017.
[43] Marco Guarnieri, Boris Köpf, Jan Reineke, and Pepe Vila. [n. d.] Hardware-

software contracts for secure speculation. In IEEE S&P 2021.
[44] Lorenz Hetterich andMichael Schwarz. [n. d.] Branch different-spectre attacks

on apple silicon. In DIMVA 2022. Springer.
[45] Karine Heydemann, Jean-François Lalande, and Pascal Berthome. 2019. For-

mally verified software countermeasures for control-flow integrity of smart

card C code. Computers & Security, 85.
[46] Wei Hu, Armaiti Ardeshiricham, and Ryan Kastner. 2021. Hardware informa-

tion flow tracking. ACM Comput. Surv., 54, 4, Article 83, (May 2021), 39 pages.

doi: 10.1145/3447867.

[47] Wei Hu, Lingjuan Wu, Yu Tai, Jing Tan, and Jiliang Zhang. 2020. A unified

formal model for proving security and reliability properties. In 2020 IEEE 29th
Asian Test Symposium (ATS), 1–6. doi: 10.1109/ATS49688.2020.9301533.

[48] J. Hur, S. Song, D. Kwon, E. Baek, J. Kim, and B. Lee. [n. d.] Difuzzrtl: Differ-

ential fuzz testing to find cpu bugs. In IEEE S&P 2021.
[49] [n. d.] Ibex CPU. Accessed: 2024-04-16. https://github.com/lowRISC/opentitan.

[50] [n. d.] Ibex documentation - verification stages. Accessed: 2024-04-16. https:

//ibex-core.readthedocs.io/en/latest/03_reference/verification_stages.html.

[51] 2018. IEEE standard for SystemVerilog–unified hardware design, specification,

and verification language. IEEE Std 1800-2017 (Revision of IEEE Std 1800-2012).
[52] Intel Corporation. [n. d.] Data Operand Independent Timing ISA Guidance.

[Updated 13-February-2023]. https://www.intel.com/content/www/us/en/dev

eloper/articles/technical/software-security-guidance/best-practices/data-o

perand-independent-timing-isa-guidance.html.

https://doi.org/10.1145/1609956.1609960
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform/formal-property-verification-app.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform/formal-property-verification-app.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform/formal-property-verification-app.html
https://comsec.ethz.ch/wp-content/files/mucfi_ccs24.pdf
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1109/TCAD.2024.3374249
https://doi.org/10.1007/978-3-540-69850-0_8
https://doi.org/10.1007/978-3-540-69850-0_8
https://doi.org/10.1145/3447867
https://doi.org/10.1109/ATS49688.2020.9301533
https://github.com/lowRISC/opentitan
https://ibex-core.readthedocs.io/en/latest/03_reference/verification_stages.html
https://ibex-core.readthedocs.io/en/latest/03_reference/verification_stages.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-operand-independent-timing-isa-guidance.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-operand-independent-timing-isa-guidance.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-operand-independent-timing-isa-guidance.html

`CFI: Formal Verification of Microarchitectural Control-flow Integrity CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

[53] Jan Jancar, Marcel Fourne, Daniel De Almeida Braga, Mohamed Sabt, Pe-

ter Schwabe, Gilles Barthe, Pierre-Alain Fouque, and Yasemin Acar. [n. d.]

“They’re not that hard to mitigate”: What cryptographic library developers

think about timing attacks. In IEEE S&P 2022.
[54] N. Kabylkas, T. Thorn, S. Srinath, P. Xekalakis, and J. Renau. [n. d.] Effective

processor verification with logic fuzzer enhanced co-simulation. In IEEE/ACM
MICRO 2021.

[55] R. Kande, A. Crump, G. Persyn, P. Jauernig, A. R. Sadeghi, A. Tyagi, and J.

Rajendran. [n. d.] TheHuzz: Instruction Fuzzing of Processors Using Golden-

Reference Models for Finding Software-Exploitable Vulnerabilities. In USENIX
Security 2022.

[56] Paul Kocher et al. [n. d.] Spectre attacks: Exploiting speculative execution. In

IEEE S&P 2019.
[57] [n. d.] Kronos RISC-v (cascade fixes integrated). Accessed: 2024-07-10. https:

//github.com/cascade-artifacts-designs/cascade-kronos.

[58] Michael Kurth, Ben Gras, Dennis Andriesse, Cristiano Giuffrida, Herbert Bos,

and Kaveh Razavi. [n. d.] NetCAT: Practical cache attacks from the network.

In IEEE S&P 2020.
[59] K. Laeufer, J. Koenig, D. Kim, J. Bachrach, and K. Sen. [n. d.] RFUZZ: Coverage-

directed fuzz testing of RTL on fpgas. In ICCAD 2018.
[60] Moritz Lipp et al. [n. d.] Meltdown: Reading kernel memory from user space.

In USENIX Security 2018.
[61] Chang Liu, Michael Hicks, and Elaine Shi. [n. d.] Memory Trace Oblivious

Program Execution. In IEEE CSF 2013.
[62] Arthur Costa Lopes and Diego F Aranha. 2017. Benchmarking tools for verifi-

cation of constant-time execution. SBSEG. Bento Goncalves, Brazil: SBC.
[63] lowRISC contributors. [n. d.] OpenTitan root of trust. Accessed: 2024-07-10.

https://opentitan.org/.

[64] Andrea Mambretti, Alexandra Sandulescu, Alessandro Sorniotti, William

Robertson, Engin Kirda, and Anil Kurmus. [n. d.] Bypassing memory safety

mechanisms through speculative control flow hijacks. In IEEE EuroS&P 2021.
[65] Ali Jose Mashtizadeh, Andrea Bittau, Dan Boneh, and David Mazieres. [n.

d.] CCFI: Cryptographically enforced control flow integrity. In ACM SIGSAC
2015.

[66] K. L. McMillan. [n. d.] Interpolation and sat-based model checking. In CAV
2003.

[67] Ahmad Moghimi, Jan Wichelmann, Thomas Eisenbarth, and Berk Sunar. 2019.

MemJam: a false dependency attack against constant-time crypto implemen-

tations. IJPP 2019, 47, 4, (Aug. 2019), 538–570.
[68] Daniel Moghimi. [n. d.] Downfall: Exploiting speculative data gathering. In

USENIX Security 2023.
[69] David Molnar, Matt Piotrowski, David Schultz, and David Wagner. [n. d.]

The program counter security model: Automatic detection and removal of

control-flow side channel attacks. In USENIX Security 2005.
[70] Nicholas Mosier, Hanna Lachnitt, Hamed Nemati, and Caroline Trippel. [n.

d.] Axiomatic hardware-software contracts for security. In ACM ISCA 2022.
[71] Jason Oberg, Sarah Meiklejohn, Timothy Sherwood, and Ryan Kastner. 2014.

Leveraging gate-level properties to identify hardware timing channels. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 33,
9, 1288–1301.

[72] Oleksii Oleksenko, Christof Fetzer, Boris Köpf, and Mark Silberstein. [n. d.]

Revizor: Testing black-box CPUs against speculation contracts. In ASPLOS
2022.

[73] Marcelo Orenes-Vera, Aninda Manocha, David Wentzlaff, and Margaret

Martonosi. [n. d.] AutoSVA: Democratizing formal verification of RTL module

interactions. In ACM/IEEE DAC 2021.
[74] Marcelo Orenes-Vera, Hyunsung Yun, NilsWistoff, Gernot Heiser, Luca Benini,

David Wentzlaff, and Margaret Martonosi. [n. d.] AutoCC: Automatic discov-

ery of covert channels in time-shared hardware. MICRO 2023, 51.
[75] [n. d.] PicoRV32 - a size-optimized RISC-V CPU. Accessed: 2024-07-10. https:

//github.com/YosysHQ/picorv32.

[76] Marco Prandini and Marco Ramilli. [n. d.] Return-oriented programming. In

IEEE S&P 2012. Vol. 10.
[77] Qi Qin, JulianAndres JiYang, Fu Song, Taolue Chen, and Xinyu Xing. [n.

d.] Dejitleak: eliminating jit-induced timing side-channel leaks. In (ACM

ESEC/FSE 2022).

[78] Hany Ragab, Alyssa Milburn, Kaveh Razavi, Herbert Bos, and Cristiano Giuf-

frida. [n. d.] Crosstalk: Speculative data leaks across cores are real. In IEEE
S&P 2021.

[79] Alastair Reid et al. [n. d.] End-to-end verification of processors with ISA-

formal. In CAV 2016.
[80] Jan Richter-Brockmann, Jakob Feldtkeller, Pascal Sasdrich, and Tim Güneysu.

2022. Verica - verification of combined attacks: automated formal verification

of security against simultaneous information leakage and tampering. IACR
Transactions on Cryptographic Hardware and Embedded Systems, 2022, 4, (Aug.
2022), 255–284. doi: 10.46586/tches.v2022.i4.255-284.

[81] RISC-V. 2024. RISC-v cryptography extension. Accessed: 2024-09-23. https:

//github.com/riscv/riscv-isa-manual/releases/tag/20240411.

[82] RISC-V. 2024. Risc-v isa specifications. Accessed: 2024-09-23. https://riscv.org

/technical/specifications/.

[83] Grigore Roşu, Wolfram Schulte, and Traian Florin Şerbănuţă. [n. d.] Runtime

verification of C memory safety. In RV ’2009. Springer.
[84] Sarwar Sayeed, Hector Marco-Gisbert, Ismael Ripoll, and Miriam Birch. 2019.

Control-flow integrity: attacks and protections. Applied Sciences, 9, 20.
[85] [n. d.] SCARV: processor core implementation. Accessed: 2024-07-10. https:

//github.com/scarv/scarv-cpu.

[86] Erik Seligman, Tom Schubert, and Achutha M. V. Kiran Kumar. 2023. Formal
Verification. An Essential Toolkit for Modern VLSI Design. (2nd ed.). Elsvier

Science & Technology.

[87] Siemens AG. [n. d.] The 2022 Wilson Research Group Functional Verification

Study. Accessed: 2024-4-28. https://blogs.sw.siemens.com/verificationhorizo

ns/2022/12/12/part-8-the-2022-wilson-research-group-functional-verificat

ion-study/.

[88] Flavien Solt, Katharina Ceesay-Seitz, and Kaveh Razavi. [n. d.] Cascade: CPU

Fuzzing via Intricate Program Generation. In USENIX Security 2024.
[89] Flavien Solt, Ben Gras, and Kaveh Razavi. [n. d.] CellIFT: Leveraging Cells for

Scalable and Precise Dynamic Information Flow Tracking in RTL. In USENIX
Security 2022.

[90] Flavien Solt, Patrick Jattke, and Kaveh Razavi. [n. d.] RemembERR: Leveraging

microprocessor errata for design testing and validation. In IEEE/ACM MICRO
2022.

[91] Flavien Solt and Kaveh Razavi. [n. d.] Hybridift: scalable memory-aware

dynamic information flow tracking for hardware. ICCAD 2024.
[92] G Edward Suh, Jae W Lee, David Zhang, and Srinivas Devadas. 2004. Secure

program execution via dynamic information flow tracking. ACM Sigplan
Notices, 39, 11.

[93] Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Checkoway, Ul-

far Erlingsson, Luis Lozano, and Geoff Pike. [n. d.] Enforcing forward-edge

control-flow integrity in GCC & LLVM. In USENIX Security 2014.
[94] Mohit Tiwari, HassanMGWassel, Bita Mazloom, Shashidhar Mysore, Frederic

T Chong, and Timothy Sherwood. [n. d.] Complete information flow tracking

from the gates up. In ASPLOS 2019.
[95] T. Trippel, K. G. Shin, A. Chernyakhovsky, G. Kelly, D. Rizzo, and M. Hicks.

[n. d.] Fuzzing Hardware Like Software. In USENIX Security 2022.
[96] Daniël Trujillo, Johannes Wikner, and Kaveh Razavi. [n. d.] INCEPTION:

Exposing New Attack Surfaces with Training in Transient Execution. In

USENIX Security 2023.
[97] Klaus v. Gleissenthall, Rami Gökhan Kıcı, Deian Stefan, and Ranjit Jhala. [n.

d.] Solver-aided constant-time hardware verification. In ACM SIGSAC 2021.
[98] Stephan Van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro Frigo, Giorgi

Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. [n. d.] RIDL:

Rogue in-flight data load. In IEEE S&P 2019.
[99] Jose Rodrigo Sanchez Vicarte, Michael Flanders, Riccardo Paccagnella, Grant

Garrett-Grossman, Adam Morrison, Christopher W. Fletcher, and David

Kohlbrenner. [n. d.] Augury: Using data memory-dependent prefetchers to

leak data at rest. In IEEE S&P 2022.
[100] Huibo Wang et al. [n. d.] Towards memory safe enclave programming with

rust-sgx. In ACM SIGSAC 2019.
[101] Zilong Wang, Gideon Mohr, Klaus von Gleissenthall, Jan Reineke, and Marco

Guarnieri. [n. d.] Specification and verification of side-channel security for

open-source processors via leakage contracts. In ACM SIGSAC 2023. Weizhi

Meng, Christian Damsgaard Jensen, Cas Cremers, and Engin Kirda, (Eds.)

ACM, 2128–2142. https://doi.org/10.1145/3576915.3623192.

[102] Tobias Wiersema, Stephanie Drzevitzky, and Marco Platzner. [n. d.] Memory

Security in Reconfigurable Computers: Combining Formal Verification with

Monitoring. In IEEE FPT 2014.
[103] Johannes Wikner, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. [n. d.]

Spring: Spectre Returning in the Browser with Speculative Load Queuing and

Deep Stacks. InWOOT 2022.
[104] Johannes Wikner and Kaveh Razavi. [n. d.] RETBLEED: Arbitrary Speculative

Code Execution with Return Instructions. In USENIX Security 2022.
[105] Johannes Wikner, Daniël Trujillo, and Kaveh Razavi. [n. d.] Phantom: Exploit-

ing decoder-detectable mispredictions. MICRO 2023.
[106] Clifford Wolf, Johann Glaser, and Johannes Kepler. [n. d.] Yosys-a free Verilog

synthesis suite. In Austrochip 2013.
[107] Xiaoyang Xu, Masoud Ghaffarinia, Wenhao Wang, Kevin W Hamlen, and

Zhiqiang Lin. [n. d.] Confirm: Evaluating Compatibility and Relevance of

Control-Flow Integrity Protections for Modern Software. In USENIX Security
2019.

[108] Sungbae Yoo, Jinbum Park, Seolheui Kim, Yeji Kim, and Taesoo Kim. [n. d.]

In-Kernel Control-Flow Integrity on Commodity OSes using ARM Pointer

Authentication. In USENIX Security 2022.
[109] Yosys Open SYnthesis Suite. [n. d.] RISC-V Formal Verification Framework.

Accessed: 2024-07-10. https://github.com/YosysHQ/riscv-formal.

https://github.com/cascade-artifacts-designs/cascade-kronos
https://github.com/cascade-artifacts-designs/cascade-kronos
https://opentitan.org/
https://github.com/YosysHQ/picorv32
https://github.com/YosysHQ/picorv32
https://doi.org/10.46586/tches.v2022.i4.255-284
https://github.com/riscv/riscv-isa-manual/releases/tag/20240411
https://github.com/riscv/riscv-isa-manual/releases/tag/20240411
https://riscv.org/technical/specifications/
https://riscv.org/technical/specifications/
https://github.com/scarv/scarv-cpu
https://github.com/scarv/scarv-cpu
https://blogs.sw.siemens.com/verificationhorizons/2022/12/12/part-8-the-2022-wilson-research-group-functional-verification-study/
https://blogs.sw.siemens.com/verificationhorizons/2022/12/12/part-8-the-2022-wilson-research-group-functional-verification-study/
https://blogs.sw.siemens.com/verificationhorizons/2022/12/12/part-8-the-2022-wilson-research-group-functional-verification-study/
https://doi.org/10.1145/3576915.3623192
https://github.com/YosysHQ/riscv-formal

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Katharina Ceesay-Seitz, Flavien Solt, and Kaveh Razavi

[110] Jiyong Yu, Trent Jaeger, and Christopher Wardlaw Fletcher. [n. d.] All your

PC are belong to us: Exploiting non-control-transfer instruction BTB updates

for dynamic PC extraction. In ACM ISCA 2023.
[111] Bin Zeng, Gang Tan, and Greg Morrisett. [n. d.] Combining control-flow

integrity and static analysis for efficient and validated data sandboxing. In

ACM CCS 2011.
[112] Yu Zeng, Aarti Gupta, and Sharad Malik. [n. d.] Automatic generation of

architecture-level models from RTL designs for processors and accelerators.

In IEEE DATE 2022.
[113] Anthony Zgheib, Olivier Potin, Jean-Baptiste Rigaud, and Jean-Max Dutertre.

[n. d.] A CFI verification system based on the RISC-v instruction trace encoder.

In IEEE DSD 2022, 456–463.
[114] Qizhi Zhang, Jiaji He, Yiqiang Zhao, and Xiaolong Guo. 2020. A formal frame-

work for gate- level information leakage using z3. In AsianHOST, 1–6. doi:
10.1109/AsianHOST51057.2020.9358257.

A Information Flow Tracking Property Details

A.1 Combining taints

We now prove that it suffices to verify taint flows individually

per input bit value to capture also all taint flows possible in the

presence of any combination with other input taints. In particular,

we prove that every taint flow can be reduced to a single input taint

value. This allows us to verify taint flows per instruction and input

sequence in isolation, while guaranteeing that no taint flows are

missed. Intuitively, the proof states that taint never removes taint

from other bits.

In the following, we prove the property 𝑃𝑛 defined in Equation 7

of the set𝐶𝑛 of cells with 𝑛 input bits and one output bit. Note that

a cell with𝑚 output bits can be transformed into𝑚 cells with one

output bit each without loss of generality. We use the notations

introduced by CellIFT [89]. 𝐼 is a set of input bits 𝑖 , 𝐼𝑡 is a set of

tainted input bits 𝑖𝑡 , and 𝐻 is the hamming weight function.

Theorem A.1.

𝑃𝑛 : ∀𝐶 ∈ 𝐶𝑛
[(
∃𝐼 , 𝐼𝑡 | 𝐶 (𝐼 , 𝐼𝑡)𝑡

)
=⇒

(
∃𝐼 , 𝐼𝑡 | 𝐶 (𝐼 , 𝐼𝑡)𝑡 ∧

[
𝐻 (𝐼𝑡) = 1

])] (7)

We prove 𝑃𝑛 by induction on 𝑛. The base case 𝑃1 holds because

at least one bit of the input must be tainted for the output to be

tainted, hence 𝐼 := 𝐼 and ˜𝐼𝑡 := 𝐼𝑡 is a satisfying assignment. Now

let 𝑛 > 1 and assume that 𝑃𝑛−1 holds. Let’s consider a cell 𝐶 ∈ 𝐶𝑛 ,
and let 𝐼 := 𝑖0, · · · , 𝑖𝑛−1. Assume that there exist 𝐼 and 𝐼𝑡 such that

𝐶 (𝐼 , 𝐼𝑡)𝑡 . Additionally consider the cells 𝐶0 ∈ 𝐶𝑛−1 and 𝐶1 ∈ 𝐶𝑛−1
defined as 𝐶 with 𝑖𝑛−1 respectively fixed to 0 and 1 and 𝑖𝑡

𝑛−1 = 0.

We distinguish three cases. (a) If there is an 𝐼 such that 𝑖𝑡 = 1𝑡=𝑛−1
and 𝐶 (𝐼 , 𝑖𝑡)𝑡 = 1, then 𝑃𝑛 holds for 𝐶 . (b) Else, if there exist 𝐼

and 𝐼𝑡 such that 𝑖𝑡
𝑛−1 = 0 such that 𝐶 (𝐼 , 𝐼𝑡)𝑡 , then by 𝑃𝑛−1, 𝑃𝑛

holds for 𝐶 . (c) Else, we know that there is no 𝐼 and 𝐼𝑡 such that

𝐶 (𝐼 , 𝐼𝑡)𝑡 ∧ 𝐻 (𝐼𝑡) = 1. We show that this case can only happen for

a constant cell. If there existed 𝐼 and 𝐼 such that 𝑖𝑛−1 = ˜𝑖𝑛−1 ∧
𝐶𝑖𝑛−1 (𝐼) ≠ 𝐶𝑖𝑛−1 (𝐼), then information flows through 𝐶𝑖𝑛−1 , hence

case (b) would apply. Therefore, we know that the value of 𝐶 only

depends on 𝑖𝑛−1. Additionally, because (c) excludes (a), information

never flows exclusively form 𝑖𝑡
𝑛−1 to the cell’s output. Given that

the other input bits of the cell do not influence its output (and hence,

no information flows), we conclude that 𝐶 is a constant cell, which

contradicts the existence of 𝐼 and 𝐼𝑡 such that 𝐶 (𝐼 , 𝐼𝑡)𝑡 , hence case
(c) cannot happen. We proved that 𝑃𝑛 holds for all 𝑛 > 0.

We hence conclude that when finding a correct assignment of

non-tainted inputs, which is provided by the formal verification

engine, there exists a single input bit that can be tainted to taint

the output bit.

Figure 11: Taint injection example.

A.2 Generic taint injection assumptions

In the following, we describe our generic taint injection assump-

tions that act as input constraints. They are placed inside a Sys-

temVerilog checker, together with the `CFI property that checks

for taint flows to the PC. The checker takes three parameters: a

taint start and stop condition and the taint source. For each instruc-

tion and operand we instantiate one checker in a separate task.

Within this task, the operand signal’s corresponding taint signal

is abstracted and controlled by the assumptions. The taint start

condition is a conjunction of the generated CPU-specific register

reading condition (per operand) and an instruction type check (per-

formed on the sampled instruction word). The taint stop condition

is true whenever the register reading signal can receive new data.

See Appendix A.3 for details.

Figure 11 shows an example wave form that we will use to ex-

plain the signals involved in taint injection. Signals start_condition
and stop_condition are the input parameters described above. Taint

injection starts, when the taint_start signal rises. For being able

to precisely attribute a counter example to a specific instruction

within a sequence, we allow only one instruction per sequence

to read tainted data. Appendix A.1 proved that taint injection per

single instruction generalizes to sequences where multiple instruc-

tions read tainted data. This is controlled by the tainted_once signal
that remains high forever as soon as taint was injected once. If we

let the taint_start signal rise whenever the start_condition is true,

it would always rise whenever the start_condition is true for the

fist time. The taint_once signal would then prevent that taint_start
rises again, which means we would only verify taint injection on

the first possible occurrence of the currently verified instruction

type within any sequence. Even though a this first occurrence may

happen at any possible clock cycle in which new instructions can

read from the register file, there are cases that we would miss to

verify: If the same instruction type appears multiple times within

one sequence, we would only verify `CFI for the first occurrence.

To be exhaustive, while tainting only one instruction at a time, we

introduce another signal: taint_optional. This signal is a free signal,
which means it is not driven by any logic, and treated by the formal

tool like an unconstrained input. The taint_start is constrained to

only rise when the start_condition is true, tainted_once is not yet
high, and taint_optional is true. As for all inputs, the formal tool will

consider all possible input sequences to taint_optional. This means,

every sequence in which in some clock cycles the start_condition
is true and tainted_once is low at the same time, will be verified

with taint_optional being 0 and 1 at these times. Thus, like shown

in Figure 11, taint is not injected on every first occurrence of a

https://doi.org/10.1109/AsianHOST51057.2020.9358257

`CFI: Formal Verification of Microarchitectural Control-flow Integrity CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

start_condition (a->c). It is injected if all three conditions are met

(1->5), and not injected if tainted_once is already high (d->f).

Another free signal, called taint_active, is controlled via an as-

sumption that states that taint_active shall be high starting in any

clock cycle in which taint_start is high and no taint check has been

started before, until one clock cycle before the taint_stop signal

becomes high. The taint_stop signal is assigned in the same clock

cycle in which the stop condition is true and only if the taint was

active in the previous clock cycle. Taint injection is stopped before

the stop_condition is true, because the stop_condition equals the reg-

ister reading signals ’update condition’ (see Appendix A.3), which

is true whenever the register reading signal reads new data. This

new read may already belong to the next instruction. (If it does

not, a sequence in which taint_start is high in this clock cycle is

considered as well by the formal tool).

One assumption controls that taint_active remains low before

taint_start and another one forces taint_active low until taint_start
would rise again (if we would remove the tainted_once signal).

The SystemVerilog checker that contains the taint injection as-

sumptions takes the data source signals’ taint signal as untyped

input. One assumption forces this signal to 0 iff taint_active is low.
Another assumption treats the taint source as signed signal and

forces it to -1 iff taint_active is high. That way, leveraging Sys-

temVerilog’s sign extension, we force all taint bits to 1, regardless

of the actual bit width of the taint source.

A.3 Taint injection condition extraction

In Section 6, we discussed the taint start and stop conditions needed

for creating the `CFI property. Algorithm 1 presents a novel method

at cell level to automatically construct the Update Condition (UC)

of a given signal by traversing back its driving logic. We define the

UC as the condition in which a signal is updated with another value

than its own previous value. The Yosys pass finds the provided

signal name in the flattened design and traverses its driving logic

backwards. The pass or-connects all conditions in which a signal

can be assigned. It constructs the UC by and-ing control signals

(enable and multiplexer selects) with 0 or 1, depending on whether

a path leads to a self-assignment or not. The taint stop condition is

the generated UC of 𝑂𝑘 .

A similar algorithm constructs the condition under which a

signal is assigned with values from specific other signals (provided

as parameters to the Yosys pass). This version returns 1 for paths

in which the signal is assigned with the data from the specified

signals, and 0 otherwise. We use this second option to construct the

condition under which the register address signal is read from the

instruction word. The formal setup then samples the instruction

word whenever this condition is true. The taint start condition is

obtained by generating the condition in which the register reading

signal (𝑂𝑘) reads from the register file. In the formal setup it is

conjoined with the sampled instruction word. This is important to

synchronize the start of taint injection with the register read of the

currently examined instruction.

We implemented the algorithm as a Yosys pass that creates a

new update signal for some given input signal and adds it to the

design. Then, we reconstruct the UC from Yosys’ HDL output with

a Python script that traverses back the UC logic and replaces all

Yosys-generated itermediate signals with their assigned expressions

Algorithm 1 (Update condition). Automatically constructs the

Update Condition (UC) of a given signal.

procedure uc(signal)

if is_module_input(𝑠𝑖𝑔𝑛𝑎𝑙) | |is_const(𝑠𝑖𝑔𝑛𝑎𝑙) then
return 1

else if assigned_with_wire(𝑠𝑖𝑔𝑛𝑎𝑙) then
return uc(𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑒)

else if assigned_with_state_cell(𝑠𝑖𝑔𝑛𝑎𝑙) then
return $past(uc(𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑒))

else if assigned_with_state_en_cell(𝑠𝑖𝑔𝑛𝑎𝑙) then
return $𝑝𝑎𝑠𝑡 (𝑒𝑛𝑎𝑏𝑙𝑒&&uc(𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑒))

else if assigned_with_mux_cell(𝑠𝑖𝑔𝑛𝑎𝑙) then
return !𝑠&&uc(𝑚𝑢𝑥_𝑖𝑛_𝑎) | |𝑠&&uc(𝑚𝑢𝑥_𝑖𝑛_𝑏)

else if assigned_with_logic_cell(𝑠𝑖𝑔𝑛𝑎𝑙) then
return 1

end if

end procedure

assert property: (##1 $changed(O_k)

|-> UC(O_k));

Listing 2: Update condition sanity check.

until ultimately experessions are obtained that consist of orignal

design signal values only. It is also possible to directly use the

generated signal in the formal testbench, if the pass is executed in

the same Yosys flow as the CellIFT/CellDFT pass.

The property in Listing 2 guarantees that we have correctly

constructed the UC, basically serving as a sanity check of our pass’

output. We successfully proved this property per operand and CPU.

B CellIFT Covers IFT Over Sequential circuits

In this Appendix, we show that CellIFT covers information flows. At

cell level, Theorem 6.1 matches exactly the definition of information

flow tracking introduced and covered by CellIFT [89]. Beyond the

single-cell case we proceed by induction on the maximal number 𝑑

(depth) of cells on the longest path between the input and a given

output bit. Theorem 6.1 establishes the base case 𝑙 = 1. Let’s consider

a circuit C of depth 𝑙 > 1. Assume that there is an information flow

from some input to some output of C. We take a minimal subset of

the input bits SRC such that removing one more bit would vanish

the information flow. There is an information flow through the

first layer: each output bit of the first layer is influenced by at least

one input bit of SRC. By Theorem 6.1, the taint of the first layer

is propagated to the second layer. By the induction hypothesis for

depth 𝑙 − 1, the taint of the second layer is propagated to the output.

Finally, the equivalence between CellIFT and the information flow

operator holds in time, as the taint as well as the information flow

is propagated with one cycle latency through stateful elements

(flip-flops and latches). Hence, any information flow in space and

time will be captured by CellIFT.

C Additional Results

C.1 Configurations

Runtime and design statistics were shown for PicoRV32 with the

following deviations from default configurations: PicoRV32 with

ENABLE_MUL=1, ENABLE_DIV=1, COMPRESSED=1.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Katharina Ceesay-Seitz, Flavien Solt, and Kaveh Razavi

0

1

S0

mux
0

1

S0

fmux1k
REG

fi1k

forwarding
condition

reg. read

fr1k

0

1

S0

fmux1k
0

1

S0

fmux2kfi2k

fr2k

forwarding
condition

x

x

x

REG

fom

CPU1 CPU2

fi1k

Figure 12: CPU1: Temporally incorrect 𝑓 𝑀𝑢𝑥𝑙𝑘 declassification. CPU2:

Correct 𝑓 𝑀𝑢𝑥𝑙𝑘 declassification.

0

REG 0

1

S0

mux
0

1

S0

fmux1kfi1k

fr1k

forwarding
condition

x

CPU3

Figure 13: Incorrect 𝑓 𝑀𝑢𝑥𝑙𝑘 declassification.

Our custom Ibex configuration is as follows: PMPEnable=0,

PMPGranularity=0, PMPNumRegions=4, MHPMCounterNum=0,

MHPMCounterWidth=40, RV32E=0, RV32M=RV32MSlow,

RV32B=RV32BNone, RegFile=RegFileFF, BranchTargetALU=0,

WritebackStage=1, ICache=0, ICacheECC=0, BranchPredic-

tor=1, DbgTriggerEn=0, DbgHwBreakNum=1, SecureIbex=1,

ICacheScramble=0, RndCnstLfsrSeed=RndCnstLfsrSeedDefault,

RndCnstLfsrPerm=RndCnstLfsrPermDefault, DmHal-

tAddr=32’h1A110800, DmExceptionAddr=32’h1A110808,

Lockstep=0, ResetAll=1

C.2 Scarv

The Scarv processor implements the RISC-V scalar cryptography

extensions [81] of which we verified the `CFI property for the

following instructions in both the single- and multi-cycle configu-

ration: AES64DSM, SHA512SIG1H, AES32ESMI, SHA512SUM0R,

SM3P0, AES32DSI, AES32DSMI, AES32ESI, AES64KS2, AES64KS1I,

AES64DS, SHA512SUM0, SHA256SUM1, SHA256SUM0, AES64ESM,

SHA256SIG0. All of them satisfy `CFI.

D Additional Proofs

D.1 Sound and unsound 𝑓 𝑀𝑢𝑥𝑙𝑘 select

abstraction

We first discuss some examples of designs where the forwarding

abstraction is sound, and some where it is not. The abstraction is

sound if register taint reaches the 𝑓 𝑀𝑢𝑥𝑙𝑘 in case of forwarding. For

example, in Figure 12, in CPU 2, taint always reaches 𝑓 𝑟𝑑2𝑘 , because

the only cells that could block taint propagation from the register

file REG are 𝑓 𝑀𝑢𝑥𝑙𝑘 with abstracted select signals. However, in CPU

1, taint injection may have stopped when the forwarding condition

is true, because 𝑓 𝑟𝑑1𝑘 was overwritten with the untainted data of

the next instruction (if reg. read was true one clock cycle before the

forwarding condition was true). In this case, 𝑓 𝑟𝑙𝑘 would equal 𝑂𝑘
(because it is the first signal through which register data passes)

and so we would see a potential `CFI violation when verifying any

next instruction and obtain false positives, but no false negatives.

However, in Figure 13, 𝑓 𝑟𝑙𝑘 would be connected to constant 0 in

the forwarding case and therefore, declassification with 𝑓 𝑀𝑢𝑥𝑙𝑘
select abstraction would be incorrect, as for any input sequence

A,B: ∀𝑛 : 𝑓 𝑑𝑖𝐴
𝑙𝑘 ,𝑛

= frd
𝐴
𝑙𝑘 ,𝑛

= 𝑓 𝑑𝑖𝐵
𝑙𝑘 ,𝑛

= frd
𝐵
𝑙𝑘 ,𝑛

.

Proving the declassification precondition for forwarding

paths. The constraint expressed in Equation 6 states that taint

must reach 𝑓 𝑟𝑙𝑘 whenever IUV would receive data from 𝑓 𝑖𝑙𝑘 . This

is satisfied if we can prove that 𝑂𝑘 always reaches 𝑓 𝑟𝑙𝑘 , indepen-

dent of the forwarding condition. The declassification precondition

can be fulfilled by disconnecting 𝑓 𝑖𝑙𝑘 from its driving logic and

either constrain it to allow arbitrary values when an instruction

can read from it, or we ensure that 𝑂𝑘 always reaches 𝑓 𝑟𝑙𝑘 and

disconnect the driving logic of the corresponding forwarding mul-

tiplexer 𝑓 𝑀𝑢𝑥𝑙𝑘 ’s select signal and leave it unconstrained. The

declassification precondition can be proven on a design as follows:

If there exists a case where the register data does not reach the

forwarding multiplexer, there must exist some logic cell on the

path between the register file and the 𝑓 𝑖𝑙𝑘 that blocks the infor-

mation flow. Therefore, if we can show that no other gates exists

between the register file and 𝑓 𝑟𝑙𝑘 , then the register data is guar-

anteed to reach the forwarding multiplexer independently of the

microarchitecural state. Thus, for any 𝑓 𝑀𝑢𝑥𝑙𝑘 of which 𝑓 𝑟𝑙𝑘 is an

unconditional and undelayed assignment from the register file the

declassification precondition is trivially fulfilled.

Otherwise, the only cells between the register file output (REG)

and 𝑓 𝑟𝑙𝑘 that would not block the flow are either: (a) cells that

select between new data from REG and 𝑓 𝑟𝑙𝑘 or (b) other forwarding

multiplexers that fulfill the declassification precondition. Our Yosys

pass for finding forwarding multiplexers verifies via static design

analysis that the verified designs fulfill these structural patterns.

The checks are true for all the CPUs that we verified. If a CPU does

not fulfill these patterns, our declassification method can be used if

one finds another way to prove that taint reaches the 𝑓 𝑀𝑢𝑥𝑙𝑘 in

the forwarding case.

	Abstract
	1 Introduction
	2 Background
	2.1 General software security properties
	2.2 Verification of hardware designs
	2.3 Motivation

	3 Microarchitectural Control-flow Integrity
	4 Threat Model
	5 Formalizing CFI
	5.1 The CFI property
	5.2 Declassification of legal flows

	6 Verifying CFI
	6.1 Modelling information flows with CellIFT
	6.2 Data flow tracking with CellDFT
	6.3 CFI expressed over taint logic
	6.4 Declassification of legal flows

	7 Evaluation
	7.1 Verification runtime
	7.2 CFI violations in existing hardware designs

	8 Discussion
	9 Related Work
	10 Conclusion
	A Information Flow Tracking Property Details
	A.1 Combining taints
	A.2 Generic taint injection assumptions
	A.3 Taint injection condition extraction

	B CellIFT Covers IFT Over Sequential circuits
	C Additional Results
	C.1 Configurations
	C.2 Scarv

	D Additional Proofs
	D.1 Sound and unsound fMuxlk select abstraction

