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Abstract. The smartphone location is the basis for a plethora of popu-
lar applications, such as traffic navigation, games, and geotagging. Since
the user can manipulate the reported location, it is possible to com-
promise these applications with fake locations. These attacks generally
have a limited impact, but this is changing with the increasing level of
trust in the smartphone location. As a prominent example, recent trans-
port e-ticketing applications perform financial transactions based on the
assumption that the smartphone location represents that of the user.
Unfortunately, this assumption leads to location-based attacks with di-
rect financial implications. We present FreeRide, a real-world attack
that allows a malicious user to ride public transports for free. Existing
mitigations against FreeRide are either ineffective or impractical since
they attempt to enforce the integrity of the smartphone location. Instead
of enforcing location integrity, our proposed mitigation, PayRide, estab-
lishes the user’s location using the position of the public transport. We
have formally verified the PayRide protocol and evaluated its bound-
ary conditions based on a range of possible accuracies reported by the
smartphone and public transport.
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1 Introduction

Virtually everyone with a smartphone today can report their geographic loca-
tion to mobile applications. This has led to a viable market that companies have
been quick to capitalize on. Examples range from navigation to online dating
services. More recent ones include the mobile applications of public transport
companies in several European countries that rely on the smartphone’s location
to provide automated e-ticketing [7,30]. These applications make the crucial as-
sumption that the location reported by the smartphone is the same as the user’s
location. This assumption leads to practical location-spoofing attacks, which we
demonstrate in this paper. To protect against these attacks, transport e-ticketing
applications must preserve the link between the user and the smartphone despite
inaccuracies and lack of trust in the location data provided by the smartphone.
This paper presents PayRide, the first formally verified mitigation that pre-
serves this link and protects such applications against location-spoofing attacks.

Smartphone location security. Mobile applications implicitly trust the pro-
vided interface for receiving location information. Thus, these applications are



2 Marazzi et al.

exposed to Iago attacks [2], where either software or hardware manipulates the
location information before it reaches the implicitly trusted interface. Recent
Sybil attacks on Google Maps, for example, show that it is possible to fake
traffic jams by spoofing the location of multiple emulated devices [5].

A straightforward approach to mitigate such attacks is to provide the smart-
phone with a mechanism to obtain a proof of location, either via anchor nodes [12,
15, 22] or from other smartphones in the vicinity [8, 19, 33]. The application
can use the information from the nodes to attest the location provided by the
smartphone. These mitigations are not deployed due to the cost of deploying a
new infrastructure and the possibility of peer collusions. Another set of mitiga-
tions instead provides location integrity by ensuring that the GPS sensor data is
signed by a Trusted Execution Environment (TEE) [9, 14, 25]. The application
can then verify the integrity of the signed location information. Although loca-
tion integrity is potentially interesting to mitigate known (low-severity) attacks,
it does not provide sufficient protection in all scenarios of interest.

FreeRide. Recent transport e-ticketing applications make financial transactions
based on the assumption that the location of the user is the same as the location
reported by the smartphone. As we show in this paper, this extension of trust has
dire security implications. In the context of malware, previous work has discussed
that a malicious application could redirect requests intended for the TEE on a
target device to another malicious device [3, 21]. We make a key observation
that reversing this attack, i.e., using location information from another phone,
enables location-spoofing attacks that bypass location integrity in the context
of transport e-ticketing. We show a real-world instantiation of such attacks,
which we call FreeRide, on the automated e-ticketing application of the Swiss
public transport called SBB EasyRide. SBB EasyRide is designed to track the
movement of a user based on the location provided by the smartphone and to
charge the correct fare based on the distance traveled by different means of public
transport. FreeRide enables free traveling across Switzerland while generating
a valid ticket. The same applies to public transport of other European countries
that rely on the exact same backend technology as SBB EasyRide [7].

PayRide. Given the increasing popularity of location-based e-ticketing appli-
cations and the severity of attacks such as FreeRide, developing a secure and
deployable mitigation is of the utmost importance. Preserving the link between
the user’s actual location and the location reported by the smartphone is nec-
essary for designing such a mitigation, which requires overcoming three main
challenges. First, the location reported by the smartphone cannot be trusted.
Second, the location information is inherently inaccurate, making it difficult to
establish this link. Last, potentially unreliable Internet connections imply that
this link cannot be preserved and verified in real-time.

We address these challenges in the design of PayRide, which is, to the best
of our knowledge, the first solution to secure transport e-ticketing applications
against location-spoofing attacks. To overcome the first challenge, PayRide re-
lies on the transport location as a trusted anchor. This means that our second
challenge must consider the location inaccuracies of both the smartphone user
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and the transport. We formalize and calculate the minimum distances that can
be charged based on these inaccuracies. Using these calculations, PayRide can
then distinguish malicious from honest users without needing to trust the re-
ported location. To address the last challenge, PayRide relies on a TEE to
enforce location sampling and to preserve the order of the recorded informa-
tion for calculating ticket prices or issuing fines in retrospect. Our evaluation of
PayRide considers its boundary conditions based on the smartphone location
accuracy, and our formal analysis proves its security.

Contributions. We make the following contributions:

1. We provide a security analysis of emerging transport e-ticketing applica-
tions, showing that existing mitigations cannot adequately protect against
location-spoofing attacks.

2. To demonstrate the practical relevance of this threat, we build FreeRide, a
real-world attack against the Swiss public transportation mobile application,
SBB EasyRide.

3. We design and evaluate PayRide, a new mitigation against attacks such as
FreeRide, and we formally verify the security of its protocol.

Responsible disclosure. We coordinated a responsible disclosure with SBB
and were able to discuss FreeRide and its mitigation PayRide in a meeting
with the company. SBB has assured us that effective measures have since been
implemented to prevent the use of FreeRide. We would like to point out that
using the public transport without a valid ticket in Switzerland has consequences
under criminal law. During our experiments with FreeRide, we therefore always
carried a valid ticket.

2 Background and Motivation

2.1 GPS on a Smartphone

A smartphone obtains its accurate location using a global navigation satellite
system (GNSS). The acronym “GPS” refers to the GNSS used in the United
States. Because of its widely accepted use, we will use GPS interchangeably
with GNSS throughout this paper. GPS is based on multiple satellites orbiting
around the Earth. Each GPS satellite continuously broadcasts a message to the
Earth, which is then received by the device. The message contains a time and
a position that allows the device to calculate its coordinates on Earth. Before
the era of smartphones, GPS was exclusively used for its designed purpose:
assisted navigation. GPS allows a user to pinpoint their location on a map in
challenging environments such as deserts or oceans. Once smartphones became
popular, applications like Google Maps made this service available to everyone.
Further, the Internet connectivity of smartphones allows using the user’s location
in participatory sensing applications. For example, Google Maps links aggregated
user locations to functional information such as car jams and crowded areas.
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2.2 Current Attacks on the User’s Location and Mitigations

Attacks on the user’s location have focused on two scenarios: spoofing the GPS
of the victim’s device and poisoning participatory sensing databases [5,13,23,28,
31,32]. In the first case, the victim is the user relying on their device to navigate.
An attacker spoofing the GPS signal can hijack the victim’s movement. In the
second case, the attack victims are applications that rely on the user’s location
for participatory sensing. Researchers have shown that an attacker can poison a
database by faking many identities, known as a Sybil attack [5]. In the context of
the user’s location, this translates to confusing services, such as making Google
Maps report a car jam on a completely empty street.

Mitigations. To mitigate these attacks, a substantial amount of research de-
scribes how to generate a user’s “proof of location”. The majority of proof-
of-location systems require deploying new infrastructures such as secure access
points that attest a user’s position [12, 15, 22]. However, none of them has been
deployed due to the high cost of new infrastructures. A second category proposes
to use nearby “witnessing” peers to verify a user’s location [19, 33]. This raises
privacy concerns and requires a certain number of trusted peers nearby.

Trusted execution environment. Previous work suggests moving the GPS
sensors reading to a restricted Trusted Execution Environment (TEE) that would
sign the data and guarantee its integrity [9,14,25]. Even with the highest privi-
leges, a user cannot read or modify the memory areas of the TEE. The user will
access the TEE functionalities via specific API calls, typically used for crypto-
graphic operations [16]. Recent work shows potential security problems of using
TEEs as a trusted anchor [3, 21]. In particular, if malware is deployed on a vic-
tim machine, the user might have their TEE requests hijacked to a maliciously
controlled TEE. As we will show in this paper, variations of these issues also
affect transport e-ticketing applications.

2.3 Transport e-Ticketing

An emerging class of applications tracks the user’s location to provide auto-
matic ticketing for public transports [26]. While traveling, the user can show an
application-generated ticket, which is deemed valid by ticket controllers. Then,
when the user has reached their destination, these applications analyze the jour-
ney to determine the traveled distance, and the user is billed accordingly. This
mechanism was first introduced in Switzerland [26], and more recently, extended
to other countries such as Austria [34] and Germany [6]. It is currently being
implemented for Belgian [29] and French [7] public transports.

We show for the first time that the divergence from the intended GPS purpose
results in direct financial benefits to malicious users, who can perform practical
attacks on transport e-ticketing. This raises the following research question that
we address in this paper: can we achieve secure transport e-ticketing by relying
on the untrusted location provided by the smartphone?
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3 Threat Model

We assume a victim transport e-ticketing application that relies on the smart-
phone location to provide services to the malicious smartphone user. In particu-
lar, the victim application generates a public transport ticket and bills the user
at the end of their journey. The fare is derived from the user’s collected location
data. We assume that the malicious user wants to gain a direct financial benefit
by providing the application with locations that do not correspond to their real
physical positions. The aim of the attacker is to evade the detection of standard
ticket control techniques that catch classic fraudulent behavior. In other words,
we consider classical fraudulent behavior that would apply to standard tickets
out of scope. This includes, for example, using public transport without any
ticket, hoping not to get controlled. The application backend can rely on a TEE
deployed on the user’s smartphone, which is considered secure. We consider the
user’s GPS signal to be untrusted, which means that a malicious user can spoof
and control their reported GPS location. We assume the transport company
knows the location of their transport vehicles in real-time and that a controller
can be present on the transport to perform checks on the user’s ticket. These
are standard assumptions for companies employing e-ticketing.

4 Challenges Overview

Our first challenge is to demonstrate that the critical assumption that the smart-
phone location is the same as the user location can be exploited by a malicious
user targeting e-ticketing applications.

Challenge (C1). Demonstrating location-based attacks on real-world trans-
port e-ticketing applications.

To solve this challenge, we describe the architecture of transport e-ticketing
applications and the attacks against them, which we refer to as FreeRide (§ 5).
Then, in § 6, we perform real-world FreeRide attacks on the Swiss public
transport mobile application, SBB Mobile. Building these attacks required us to
reverse-engineer parts of the application. We show the scalability of FreeRide
by implementing location spoofing as a service, which significantly increases the
impact of the attack by making it accessible to non-technical users.

Our next challenge is understanding whether any existing solution is practical
and can secure transport e-ticketing applications.

Challenge (C2). Anaylsis of the security of existing proof-of-location pro-
posals and their applicability to transport e-ticketing applications.

We address this challenge in § 7, where we present our security analysis of
existing mitigations towards attacks such as FreeRide. We show that the exist-
ing proposals cannot protect e-ticketing applications or are severely impractical.
Therefore, we consider the end-to-end deployment of a mitigation and study
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the design requirements to make it practical and secure. Our last challenge is
developing a mitigation based on the derived requirements.

Challenge (C3). Designing a secure mitigation against location-spoofing
attacks for transport e-ticketing applications.

We address this challenge with the design of PayRide, our proposed miti-
gation discussed in § 8. PayRide preserves the link between the location of the
smartphone and the user without needing to trust the position reported by the
user. Designing PayRide requires answering the following fundamental ques-
tions: (i) How are GPS accuracies handled? (ii) How are communication delays
addressed? (iii) Which impact do GPS accuracy and communication delays have
on the application security? We provide a detailed analysis of PayRide bound-
ary conditions based on the smartphone location accuracy and formally prove
the security guarantees of its protocol. Because multiple European states share
the same backend technology provider [7], FreeRide urges for the deployment
of PayRide.

5 Functioning and Security of e-Ticketing Applications

We now describe the functioning of tracking-based e-ticketing applications.

Honest behavior. A user taking public transport starts the application and
checks in to activate the tracking mode. From now on, their location is tracked
as they travel, and a QR code representing a valid ticket is created. The ticket
becomes immediately valid as the user can be controlled at any time during
their journey. In case of a ticket inspection, the user shows the QR code, which
is verified by the controller’s application. After they reach their destination, the
user stops the tracking mode and is billed according to the crossed geographical
zones during their journey. Crossing more zones will result in a higher final ticket
price. If the ticketing application does not detect that the user has traveled on
public transport, the user is not billed [27].

Dishonest behavior. The public transports covered by e-ticketing applications
do not employ physical barriers for checking the tickets. Instead, passengers
traveling without a ticket are fined once a controller checks them. This is the same
for both e-ticketing and paper-based ticketing users. To avoid fines, users must
activate the tracking functionality before accessing the train and keep it active
throughout the whole journey, as the user can be checked at any time. Users that
have started the tracking mode after the controller entered the transportation
are fined. In the next section, we will provide more details about the functioning
of e-ticketing applications and reverse engineer SBB EasyRide.

Ticket applicability. Depending on the transport company and pricing model,
the tracking ticket can be valid for multiple means of transportation. In the case
of Swiss public transport, the same ticket is valid for all buses, trams, and trains.
For simplicity and without loss of generality, we consider trains as an
example in the remainder of this paper.
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Fig. 1: FreeRidelocal. A malicious user is
on public transport. The application back-
end receives location updates correspond-
ing to walking, providing the malicious user
with a free but valid ticket.

5.1 Attacking Public Transport e-Ticketing

In our attack FreeRidelocal, a malicious user makes use of the public transport
service without paying for a ticket or getting fined. To this end, they exploit the
public transport e-ticketing application, performing a local (on-device) location-
spoofing attack. During the attack, the malicious user wants the application
backend to receive user locations that do not correspond to a train ride. The
locations can be crafted to appear as realistic movements, representing low-
fare pathways or simulating low GPS accuracy with high communication delays.
In Fig. 1, we report an example of FreeRidelocal. In this scenario, the malicious
user generates a walking pattern to bypass straightforward mitigations, such as
invalidating a ticket corresponding to a user who is standing still. As we discuss
in § 7, this simple attack could be mitigated with GPS integrity supported by
TEE [14, 25]. However, slight variations bypass these mitigations, as we show
next.

5.2 Bypassing Mitigations

We now discuss how an attacker can exploit the fact that the location of the
smartphone and the user are not necessarily the same to bypass strong mitiga-
tions. Conceptually, this type of attack is similar to the Cuckoo attack originally
commented in the context of malware [3, 21]. In a Cuckoo attack, malware in-
stalled on the victim device redirects requests that are originally intended for the
local TEE to an attacker-controlled device. In this scenario, the victim cannot
verify that they are interacting with their trusted device and not a malicious
one. The owner of the device is thus the victim of the attack. In the context of
wireless systems, this might also be interpreted as a wormhole attack [10].

FreeRideremote. We make a key observation that “reversing” the Cuckoo at-
tack, i.e., using location information from another phone, enables location-spoofing
attacks that bypass location integrity in the context of transport e-ticketing. We
refer to this attack as FreeRideremote. This attack type applies to any scheme
that aims to obtain location integrity via a TEE or similar technologies. This is
because the backend cannot verify that it is communicating with the smartphone
that the malicious user is physically traveling with in place of a different one.

In FreeRideremote (Fig. 2), two or more phones are used; one that the mali-
cious user carries and others at different locations. For simplicity, in this example,
we consider only one extra phone at a different location. Whenever requested, an
honest user sends the position reported by the smartphone to the application.
A malicious user, however, replays the decoy location provided by the second



8 Marazzi et al.

�������������

����������������������

����������������������

�����������

Vendor public key

�����������

��

�
	�������

Vendor privatekey�����������
�����������������

������
������������

Fig. 2: FreeRideremote attack scheme. An
online server requests the user’s location. The
malicious user forwards the request from the
first to the second device. The second device
is used to sign a different location with its
TEE and sends it back.

phone (placed at a different location) to the application. Consequently, without
any possible way to check the link between the location of the user and the
smartphone, the application believes that the location of the user is the same as
the (decoy) location of the second phone. Variations of this scenario are possible.
For example, the phone is not required to be completely still. It could be held
by a different user who does not take public transport, or it could be kept on
local trains that remain in the same billing zone to travel a longer distance for
a reduced fare. Further, the second device might contain the user private key.

Impact on mitigations. The impact of FreeRideremote is severe as it by-
passes proposed mitigations based on location integrity [9]. These mitigations
propose that a secure device (e.g., TEE) would sign the user location as proof of
its integrity. However, the phone with the decoy location forwards a signed loca-
tion to the phone carried by the malicious user. As such, the application cannot
detect the ongoing attack. Unfortunately, of the previously proposed mitigations,
location integrity is the only practically deployable solution, as we discuss in § 7.
Our mitigation, discussed in § 8, assumes that the user location is untrusted and
will not rely on location integrity to provide security.

6 FreeRide

We now describe our attacks performed on the e-ticketing application of the
Swiss national railway company, SBB Mobile. First, we explain how Android
applications obtain the user location (§ 6.1). Then, we obtain important insights
by reverse engineering the SBB application (§ 6.2), and based on them, we exe-
cute both FreeRidelocal and FreeRideremote (§ 6.3). We conclude by demon-
strating a Location-Spoofing-as-a-Service platform (§ 6.4). To the best of our
knowledge, this is the first time in the literature that a location-based attack
creates a direct financial advantage for the user.

6.1 Android Location API

To protect the users’ privacy, applications that seek to obtain the smartphone
location need to be granted specific permissions. The permissions are divided
into (i) foreground, (ii) background, (iii) approximate, and (iv) precise location.
The difference between foreground and background permissions is the allowed
duration of the location access, while precise and approximate refers to the
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location accuracy. Lastly, the application will further specify requirements such
as the location update interval and priority, both affecting power consumption.

Fused location. The API provides a fused location, which is based on (i) power
consumption, (ii) interface availability, and (iii) reported accuracy. GPS is pre-
ferred if network scanning is unavailable or if a higher precision is needed. Due
to the nature of the transport e-ticketing applications, i.e., high precision and
coverage, the location relies on the GPS sensor. Currently, to the best of our
knowledge, there exists no TEE implementation of an integrity-protected GPS.

6.2 Application Reverse Engineering

We reverse engineer the SBB application (i.e., APK) using the dex-to-Java de-
compiler jadx. Using static analysis, we do not find any efforts to prevent the
execution on a rooted device. To understand how the application works while the
location data is used, we instrument it using the dynamic instrumentation frame-
work Frida. EasyRide (the application tracking functionality) uses a rebranded
version of the tracking technology by fairtiq, a service provider that gener-
ates automatic billing for various partners in Europe [7], including SBB. This is
confirmed by the relevant EasyRide code being located in the com.fairtiq.sdk
package. By dynamically instrumenting the application, we record its behavior
during a normal trip and make the following four observations.

(O1) Tracking events. The application sends various events to the online
server. The events describe the beginning and end of a ticket’s validity, the device
location, and the identified user activity. The application page specifies that the
activity data is used to send a reminder to the user to perform a checkout [27].

(O2) Location provider. The application calls the fused location provider
for the user position. To understand the type of request sent (see Section 6.1),
we dynamically hook the necessary function call. We found that the location
is requested with the “accurate” level and has an update interval of 2 seconds.
With our mitigation (§ 8), we will describe how the update interval plays a major
role in ensuring application security.

(O3) Location processing. The raw data location is transmitted to the back-
end without any preprocessing. In particular, the information sent to the server
contains the latitude and longitude of the user position.

(O4) Messages batching. We found that data can be sent in batches and is
flushed every 30 seconds. That means even though the location data is sam-
pled frequently (O2), it can be sent with large delays. As we will discuss (§ 8),
reducing data delays plays an essential role in mitigating attacks.

Given our observations (O1-O4), we conclude that only the location data is con-
sidered for the fare calculation. Next, we proceed with the design and evaluation
of our FreeRide attacks.

6.3 Attacks Design and Evaluation

The attacker’s goal is to deceive the SBB application to pretend that they are
standing still or walking, while in reality, they are using public transport. Based
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on our observations, we hypothesize that the ticket billing only depends on the
GPS location. However, a limitation of the previous analysis is that we do not
know how the data is processed in the backend. To better understand this,
we exploit FreeRidelocal by testing three different movement models of the
spoofed location: (i) a fixed position (i.e., no movement), (ii) a simulated walk
that does not cross stations, and (iii) a simulated walk that crosses stations.

FreeRidelocal. In FreeRidelocal, the Android location service returns spoofed
values to an API call in a completely transparent way for the victim application.
To achieve this, we build an Android application that spoofs the user location and
reproduces the three different types of movement. The application is designed
as a mock location service, which is typically used to protect the user’s privacy
or to aid application development. The attack only requires changing the return
value of the isMock() API, which we perform using the Smali Patcher tool. For
our attack, we used a Pixel 5 running on Android 11, which we rooted using
Magisk.

FreeRideremote. Our second attack can bypass location integrity. As described
before, we use two devices: one is static (the decoy), and the other one is traveling
with the malicious user. Because there is currently no location integrity mecha-
nism deployed in TEEs, we simulate it by keeping the decoy location fixed. For
simplicity and without loss of generality, the decoy runs on an emulated Android.
We provide more details about device emulation in Section 6.4. We generate a
valid ticket on the decoy device, and we transmit it to the malicious user’s phone.
To perform the following attack evaluation, we use the latest unmodified version
of the application installed from the Google Play Store.

Evaluation. We verified that in all three categories of spoofed movement (i.e.,
standing still, not crossing any stations, and crossing stations) with FreeRidelocal,
as well as FreeRideremote, the application always generates a ticket. The case
in which the movement starts at a station and crosses a different one is the only
occasion that results in the user being billed. This indicates that the attacker has
complete control over the application by changing the location only. However,
even if the application correctly generates a valid ticket, it could be that once
a ticket controller checks it, some internal controls are applied to counteract
fraud. To evaluate this, we performed several trips with different free tickets and
were repeatedly checked by ticket controllers. To reduce our attack tests to the
minimum necessary, we performed them on a limited distance that only crossed
two zones and we always carried valid tickets as well. On all occasions, the free
ticket was always considered to be valid by the controllers and never followed
by any charges. Because the SBB application is used for all buses, trains, and
trams, the attack allows a malicious user to travel for free across Switzerland.

6.4 LSaaS: Location-Spoofing-as-a-Service

We now demonstrate that it is practical for a malicious user to develop a
Location-Spoofing-as-a-Service (LSaaS) platform, extending the attack to non-
technical users. To this end, we designed an LSaaS platform for FreeRide as
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Fig. 3: LSaaS architecture. Malicious
users connect to an online webpage and re-
ceive a valid and free ticket (QR code). In-
ternally, the LSaaS orchestrator initializes
the required copies of a virtualized Android
environment. Each copy has a shared base
system image that is prepared for the SBB
application.

Table 1: Comparison of location-spoofing efforts. Of the practically-
evaluated attacks, FreeRide is the first that provides a malicious user a direct
financial benefit and is executed considering signed GPS data. It is also the first
attack that scales to non-technical users via LSaaS.

Direct Practically On-device GPS-signal FreeRideremote

Effort financial benefit evaluated spoofing spoofing attack LSaaS

FreeRide

GPS attacks [32]

Sybil attacks [5]

Hobbyist/gaming [20]

depicted in Fig. 3. We used Android Studio, which is bundled with a device em-
ulator based on QEMU. The emulator runs an entire device, including GPS and
networking, and the GPS location can be changed programmatically by using
adb. Upon starting their ride, a malicious client obtains a valid ticket from the
web server. First, the user provides account credentials for the SBB application.
Then, the internal orchestrator creates and starts an ad-hoc Android emulator
instance. The instance boots a preconfigured system with the SBB application,
logs the user in, starts a new journey, and returns the QR code of the valid ticket
to the user. The position remains fixed throughout the journey, resulting in no
charge to the malicious user. We confirmed that the SBB application cannot
detect that the source of the GPS location is fictitious, as the location service
reports false for the isMock() API.

Scaling emulated devices. The orchestrator (Fig. 3) clones emulated devices
on demand. To allow the LSaaS to scale to a large number of emulated devices,
(i) a common system image is shared across all devices and (ii) a resource-opti-
mized device configuration is used with a single core and a low-resolution screen.

In conclusion, by implementing a Location-Spoofing-as-a-Service, we showed
that it is simple to scale our attack to a larger number of non-expert users.
Table 1 provides a comparison of FreeRide with other known location-spoofing
attacks. FreeRide is the first attack that provides a direct financial benefit for
the attacker while bypassing location integrity. The results of FreeRidelocal,
FreeRideremote and LSaaS highlight the urgent need to develop and deploy a
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practical and secure mitigation against FreeRide and other attacks based on
bypassing location integrity.

7 Mitigation Requirements

We analyze proposed mitigations and evaluate their protection against the two
variants of FreeRide. While we present previous work, we derive requirements
that will guide us to the design of our mitigation PayRide (§ 8).

7.1 Existing Mitigations

In 2009, it was predicted that location would become a key aspect of mobile
applications [24]. Since then, many researchers have focused on ways to generate
proof of location for devices. However, the vast majority of these solutions are
not practical, and as we will show, the few practical ones do not protect against
FreeRideremote. There are three categories by which previous work can be
classified into: (i) mitigations requiring a new infrastructure, (ii) mitigations
involving peer interactions, and (iii) mitigations relying on signed GPS data.

Mitigations requiring a new infrastructure. These mitigations are based
on deploying new infrastructure and require an access point in each area to be
mapped [12, 15, 22]. An access point provides a marker for verifying that the
user is present at a particular location. However, there are multiple limitations
to this approach: (a) the deployment of such infrastructure does not scale with
the expansion of the world roads, (b) without relying on GPS, the location
accuracy may be strictly limited, and moreover, (c) applications would still be
vulnerable to FreeRideremote. For these reasons, we do not consider this type of
mitigation to be a viable solution. We argue that deploying a new infrastructure
is a significant obstacle to the real-world adaption of a mitigation. Hence, we
derive the following requirement for our mitigation:

Requirement (R1). PayRide should be based on already existing and de-
ployed infrastructure (i.e., GPS).

Mitigations involving peer interactions. This group of mitigations is based
on a paradigm named community-verified locations [19,33], in which the valida-
tion of a user’s position is delegated to peers in their proximity. The approach
(i) assumes that there are always multiple users at the same location, which
might become difficult at low-traffic locations and during off-peak hours, (ii) re-
quires that people are close enough to establish an ad-hoc network connection,
(iii) may interrupt the user’s connectivity as either Bluetooth or WiFi would
need to be disconnected temporarily, (iv) requires a mechanism to identify ma-
licious peers providing false location data, and (v) potentially compromises the
users’ privacy. Similar to the first class of mitigations, these proposals are im-
practical. As we consider the reliance on other users limiting and a potential
security risk, we define the following requirement:
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Requirement (R2). PayRide should provide application security without
relying on any other users.

Mitigations relying on signed GPS data. Lastly, some work proposed
signing the GPS location data using a TEE or any equivalent secure environ-
ment [9,14,25]. In these setups, device vendors embed a private key into the TEE
memory during manufacturing. This key never leaves the device and is used to
sign the GPS sensor values. After the online backend receives the signed user
location, it verifies the validity of the signature using the device vendor’s public
key. To protect against replay attacks, the backend generates and transmits a
random nonce to the device. This nonce must be included in the signed message
and is incremented in each new position update.

Such a scheme cannot be used to protect against FreeRideremote. First, the
physical signal of the GPS can still be spoofed. Second, even if the source of the
user location would be more secure than GPS, the TEE cannot validate the link
between the user and device, which forms the basis of FreeRideremote. Third,
there is no way to prevent a malicious user from starting tracking directly on
a different device. For the same reasons, the attack would also succeed if more
complex schemes are employed, such as TEEs including the user’s private key.

Mitigating FreeRideremote Attacks. Relying on FreeRideremote, a ma-
licious user appears to have a perfectly valid position outside or inside of the
public transport network. Their position is valid, as it can be signed with a
trusted key. This leads us to the third requirement for our mitigation:

Requirement (R3). PayRide should be able to match the physical location
of the user to the location reported by the smartphone. However, it should
assume the reported location to be untrusted.

7.2 The Ticket Controller

We now define the requirements for the ticket controller. There are multiple
aspects to consider: first, relying on the ticket controller to visually inspect a
reported user location creates a serious privacy concern caused by exposing the
user’s location history.

Second, differentiating between an honest and a malicious user might not be
straightforward for the ticket controller. A malicious activity might be difficult to
manually identify due to imprecise location data, network connection delays, or
substantial variations in the user’s movement speed. Lastly, the ticket validation
should not require complex interactions for the ticket controller. We conclude
with our last requirement:

Requirement (R4). PayRide should not rely on the ticket controller to
check if the user is spoofing its location.

Given these four requirements, we now design our new mitigation PayRide.
Table 2 summarizes the differences between the requirements in the design of
PayRide and existing mitigations.
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Table 2: Comparison of proposed mitigations. Proposals are either secure
(✓) or vulnerable (✗) depending on the class of attack considered. Depending on
their requirements, they can be practical (✓) or not (✗). No previous mitigation
protects against FreeRideremote attacks.

On-device GPS-signal FreeRideremote

Approach spoofing spoofing attacks Practical

PayRide ✓ ✓ ✓ ✓
New infrastructure [15] ✓ ✓ ✗ ✗
Peer interactions [8, 19,33] ✓ ✓ ✗ ✗
GPS signing [9] ✓ ✗ ✗ ✓
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periodically sends position updates to
the application server. These updates
must happen within a certain time
limit. If a controller verifies a ticket, the
user identifier is sent to the server. The
server verifies that the user’s location
is within an acceptable range from the
transport location.

8 PayRide

We now explain the principles of PayRide (§ 8.1), formalize its constraints (§ 8.2)
and discuss how to safely define them (§ 8.3). Finally, we describe its formal
verification model (§ 8.4) and conclude by describing the extension PayRideTEE.

8.1 Operating Principles

With PayRide, a user who spoofs their location in a way that would give them
financial benefit is equivalent to a user who does not possess a valid ticket. Both
users are fined when their ticket is checked at any point along their journey. In
the case of tracking ticket, the fine will be issued by the server backend. Following
the requirements R1-R2, we have designed PayRide to rely exclusively on the
reported GPS location. Instead of relying on location integrity, PayRide security
is based on regular position updates sent by the user. While PayRide does not
depend on trusting the sampled location (R3), TEE enables it to handle poor
internet connectivity, as discussed in § 8.5 with PayRideTEE.

PayRide protocol and ticket validation. We summarize the PayRide
protocol in Fig. 4. The user periodically provides position updates to the server
backend. These positions can correspond to the real user locations (GPS sen-
sor) or carefully crafted pathways. If a maximum cumulative delay between
updates (TGPS) is not respected, the ticket is considered invalid. We relax this



PayRide 15

requirement in Section 8.5. As standard practice of the affected parties, the ticket
can be controlled one or multiple times at any given point in time during the
journey. The controller behavior remains the same, scanning the user’s ticket
and verifying that it was created before they entered the train (R4 and § 5).
With PayRide, the user’s identifier is sent to the application backend. In the
backend, PayRide validates the user’s location and considers that position for
the fare calculation.

The user is fined if their reported location is not inside a defined margin
of error from the transport location, considering the prior and next position, as
reported by the user. A user moving faster than the train is considered malicious
because users could misuse it to fake movements from the previous station to
their current position during ticket inspections. In what follows, we formally
describe the allowed error margin, the required timing for the location updates,
and how they relate to PayRide security.

8.2 Formalizing Restrictions

PayRide should prevent two cases: (i) a user traveling for free (i.e., not cross-
ing any stations) and (ii) a user paying less than they should (i.e., tracking
movements across fewer zones). We consider fraudulent behaviors that apply to
standard tickets (e.g., not having a ticket) to be out of scope.

Modeling the margins of error. To define a valid user position, we need to
consider (i) the GPS margin of error and (ii) the update delay. The GPS error
margin corresponds to the distance between the real physical location of the
user and the one determined by the GPS (Fig. 5- 1-3 ). We refer to the maximum
allowed error as lu for the user’s position and as lc for the transport position. The
update delay represents the cumulative time between two consecutive location
updates. This includes the time needed to calculate the GPS position and the
time required for a network packet to travel to the backend server. Without loss
of generality, we refer to the GPS update period (TGPS) as the maximum time
between position updates, measured at the time they arrive at the server (Fig. 5-
5 ). A longer delay results in an invalid ticket. We consider this maximum period
TGPS to be the same for user and transport location updates.

These margins need to be fixed for PayRide to correctly distinguish between
an honest and a dishonest user. To be noted, lc and TGPS are not independent: if
the allowed lc is very small, it is difficult for the reported train position to match
the user’s position, even if they are close. This effect is worsened by a slow update
rate (TGPS) on a moving vehicle. If the update is not frequent enough, and the
train is moving, the reported user’s position can differ substantially from the
train. However, PayRide needs to correctly identify an honest user, and hence,
it is essential to consider the relationship between the locations reported by
the user and the train. Note that lu limits the shortest trip that PayRide can
protect. For example, if lu is larger than a train ride, a malicious user can spoof
a static location throughout the entire trip, which would be correct upon ticket
control. We calculate in § 8.3 the minimum distances that PayRide can protect.
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Fig. 5: Maximum delay and GPS accuracies. The user and train have a re-
ported ( 1 ) and a real ( 2 ) position. The real position is within the radius lu and
lc from the reported position ( 3 ). The ticket is considered valid if there exists
an intersection between the allowed error margin of the train and of the user’s
position ( 4 ). The maximum accepted delay for a position update depends on
the transportation speed and the train GPS error margin lc ( 5 ). The minimum
segment length that can be secured ( 6 ) depends on the allowed margins of er-
ror. For it to be secure, the user must never be able to generate a free-but-valid
ticket, regardless of where they are controlled along the journey ( 7 , 8 ).

GPS update and lc. The user’s location needs to be updated frequently enough
for an honest user to be correctly recognized during the ticket control. Because
the train moves, the user’s location is likely stale when compared in the backend
with the train position. The distance between the user’s real position (repre-
sented by the train position) and the stale position becomes smaller with a
higher sampling rate. Given a certain TGPS , we now describe the lc boundaries
to ensure honest users are always correctly identified.

For our analysis, we assume the worst-case scenario where the train position
reaches the backend between two user location updates (Fig. 5- 5a ). In other
words, we consider that the user’s location is stale by TGPS

2 . This is the worst
condition, as PayRide considers the prior and next position reported by the
user. Given the train movement of speedtrain, the total distance is equal to
speedtrain × TGPS

2 . Therefore, given the maximum speed and that both the user
and train can report an inaccurate location, we require lc to be higher than the
following threshold to correctly identify an honest user:

lc >
TGPS

2
× speedtrain (1)

8.3 Attack Based on the Error Margins

A malicious user can exploit location errors to falsely appear static (i.e., per-
forming distance fraud). This allows them to travel for free if not controlled,
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while holding a valid ticket in case they are. We now analyze the link between
location errors (lc and lu) and the shortest journey that PayRide can secure.

Definitions. For a malicious user to possess a valid ticket, their reported posi-
tion must always match the train reported position within the defined margins.
This has to hold for the entire trip, as otherwise, there would exist a position
along the route where the malicious user would be fined if checked. This is shown
in the example in Fig. 5- 6 , where a controller is checking tickets at the begin-
ning of the trip ( 7 ) or at the end ( 8 ) on a train moving from station A to
station B (length AB). We remind the reader that a user who moves faster than
a defined walking speed (speedw) is billed as traveling.

Shortest secured journey. We now describe the attack that a malicious user
can perform by exploiting lc and lu. After that, we derive the shortest journey
of length AB such that malicious users cannot obtain a free but valid ticket.

As discussed, the malicious user aims to spoof their location such that (i) any
ticket control along the journey AB is valid and (ii) their movement is never
faster than walking speed, as otherwise, it would result in a fare. Intuitively, as
shown in Fig. 5, the user can spoof their location to be in between A and B. This
ensures that the error margin, 2× lu, covers as much as possible of their journey,
increasing their chances of a matching position with the train. If the journey AB
is shorter than 2 × lu, a ticket where the user is standing still is always valid.
We now extend the calculation by also considering the train location margin.

The first position where the user can be checked is at the beginning of the
journey ( 7 ). The real position of the train is A, but the reported position can be,
in the worst case for the mitigation, distant by lc ( 9 ). This distance enhances
the possible matching area of a malicious user. The last position where the user
can be checked is at the end of the journey ( 8 ) with the same possible error
of lc. Because the segment is contiguous, it follows that if the user has a valid
position where both of these two extremes report a valid match, any position
along the journey will be considered valid. Any non-linear connection between A
and B can be reduced to a straight connection, which represents the worst-case
for the mitigation. Therefore, the train margin of error adds 2 × lc matching
coverage on the part of the segment before the user and adds 2 × lc matching
coverage on the part of the segment after the user, for a total of 4× lc.

As a last step, we must consider that the user can generate a spoofed location
that moves. The malicious user can further increase the covered length that
matches with the train by slowly moving their position. The maximum coverage
is obtained if they move at the maximum speed (speedw) for the entire duration

of the trip ( AB
speedtrain

). Summing all the contributions, we obtain the following

maximum segment length that allows a malicious user to travel for free (ABfree):

ABfree = speedw × ABfree

speedtrain
+ 2× lu + 4× lc ≈ 2× lu + 4× lc (2)

It follows that the condition on the segment length to achieve security is:

AB > 2× lu + 4× lc (3)
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Fig. 6: Location update period. Rela-
tionship between (AB), the train speed,
and valid values for TGPS (Equations (1)
and (3)). The faster the train, the more fre-
quent location updates are required.

Example of margins of error. We now provide example values for a train
ride. We assume a high-speed transportation of up to 250 km/h with a minimum
distance between stations of 5 km and a maximum walking speed of 5 km/h. As
an example, we consider location accuracies of lu = lc = 500m which satisfy
Equation (2). Given Equation (1), this results in a TGPS of roughly 14 seconds.
Fig. 6 shows TGPS for an AB in the range between 500m and 10 km, and for a
maximum train speed between 50 km/h and 300 km/h.

8.4 Tamarin Verification

We use Tamarin [17] to formally verify the correctness and security of PayRide.
Tamarin is a symbolic formal verification tool widely used for protocol verifica-
tion [1]. To this end, we define a formal Tamarin model of PayRide, based on
the PayRide protocol and the described margins of error. In the model, two
positions that are considered the same represent two locations that fall inside
the allowed margins of error, which we defined before. We model the slowest
possible (i.e., worst) GPS update period TGPS . The user can behave in a mali-
cious way (dishonest) by sending a fake location or behave correctly (honest) by
sending correct location updates. The controller might check the user’s ticket at
any time. There is no restriction imposed on the user’s behavior, meaning that
we allow users to send a mix of honest and dishonest position updates. Lastly, we
assume that the communication between the controller’s device and the server
is secure and that the train position is trusted.

Given the model, we prove that if the user is checked during a ride (i) a
malicious user is always fined (i.e., no false negatives) while (ii) an honest user
is never fined (i.e., no false positives). The formal model is simple (170 lines of
code) and does not require implementing new cryptographic primitives on top
of an already secured communication channel. The tool takes less than a minute
to formally verify the model properties.

8.5 Handling Unreliable Internet Connections

So far, PayRide requires Internet connectivity to secure applications. A user
with a loss of connectivity for more than TGPS will incur a fine. This is an
emerging condition due to Equation (1). Yet, it might be difficult to meet this
in practice in areas with frequent loss of Internet connectivity. We now discuss
how PayRide can be extended to use TEEs to remove this requirement.
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We assume a TEE to be present, as they are available on most modern
computing devices. As described earlier (§ 7.1), TEEs cannot be used to sign the
integrity of the GPS signal to provide security. However, we consider the TEE
by itself to be secure. For this reason, we use TEE not to protect integrity but to
protect the order and sampling period of the positions that the client must
send to the backend. We refer to our novel design as PayRideTEE.

TEE to enforce timing. Previous work [9, 14, 25] employ TEEs to achieve
integrity and preserve order of the sampled data. However, we make the obser-
vation that ordering alone does not entail timing. If a specific period for the
location updates is not enforced, the application backend can receive a valid but
outdated user location. For example, a transport e-ticketing application could
receive trusted location updates from a walking user while the user is currently
on a train.

PayRideTEE. All the described principles of PayRide and our formalizations
remain the same. However, when using a TEE, TGPS represents the location
sampling period. By using a secure interrupt, the TEE samples the location
respecting TGPS and signs it while including a counter to preserve the order.
In the communication with the backend, a nonce is included to prevent replay
attacks. In case of Internet connectivity loss, the signed updates are stored, and
once the connectivity is restored, sent to the backend. To avoid attacks based on
stopping location updates, the check-out operation is performed after the TEE
has sent all position updates to the backend. In case the smartphone is powered
off while the user is still checked in, the user is considered traveling without a
valid ticket.

9 Related Work

We summarize research that focuses on (i) spoofing the GPS signal, (ii) poisoning
participatory sensing applications, and (iii) spoofing the user’s location.

Spoofing GPS signals. For many years, efforts have been made to demonstrate
that GPS is not secure [13,23,31]. In these attacks, differently from FreeRide,
the device owners are the victims of GPS spoofing. Typical attacks include jam-
ming the GPS signal [28] or hijacking guided directions [32]. The main targets
of GPS spoofing attacks have been unmanned aerial vehicles (UAVs), but they
could also target people using driving assistants on the streets or the open sea.

Poisoning participatory sensing applications. Recently, researchers showed
that participatory sensing applications are vulnerable to poisoning attacks [5],
which is in line with previous work [11,25]. Authors were able to artificially create
areas detected as car traffic jams in Google Maps, making the application believe
that a street is busy. Sybil attacks are a well-known threat for participatory
applications and peer-to-peer systems [4, 18], in which malicious users influence
the system functioning by using multiple identities.

Spoofing user locations. User-location spoofing has been used by hobbyists to
unlock applications or features that are based on certain locations. For example,
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games like Pokémon GO rely on the user’s location to provide events to players
and were subject to location spoofing attacks in the past.

10 Conclusions

We show that the assumption that the location of the smartphone matches that
of the user has fundamental security implications for transport e-ticketing. We
show-case this using a real-world attack, called FreeRide, that enables a mali-
cious user to travel with a valid free ticket across Switzerland. Our analysis of
existing mitigations shows that they are insufficient to protect against attacks
such as FreeRide. To fill this gap, we designed PayRide, the first secure mitiga-
tion for transport e-ticketing applications. To make PayRide practical, we had
to overcome a number of challenges, including relying on untrusted smartphone
locations, GPS inaccuracies, and sporadic connectivity. We formally verified the
PayRide protocol and evaluated its boundary conditions based on the smart-
phone location accuracy.
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