
Phantom: Exploiting Decoder-detectable Mispredictions
Johannes Wikner*

kwikner@ethz.ch
ETH Zürich

Zurich, Switzerland

Daniël Trujillo*

dtrujillo@ethz.ch
ETH Zürich

Zurich, Switzerland

Kaveh Razavi
kaveh@ethz.ch

ETH Zürich
Zurich, Switzerland

ABSTRACT
Violating the Von Neumann sequential processing principle at the
microarchitectural level is commonplace to reach high performing
CPU hardware — violations are safe as long as software executes
correctly at the architectural interface. Speculative execution attacks
exploit these violations and queue up secret-dependent memory ac-
cesses allowed by long speculation windows due to the late detection
of these violations in the pipeline. In this paper, we show that recent
AMD and Intel CPUs speculate very early in their pipeline, even
before they decode the current instruction. This mechanism enables
new sources of speculation to be triggered from almost any instruc-
tion, enabling a new class of attacks that we refer to as PHANTOM.
Unlike Spectre, PHANTOM speculation windows are short since the
violations are detected early. Nonetheless, PHANTOM allows for
transient fetch and transient decode on all recent x86-based microar-
chitectures, and transient execution on AMD Zen 1 and 2. We build
a number of exploits using these new PHANTOM primitives and
discuss why mitigating them is difficult in practice.

CCS CONCEPTS
• Security and privacy → Side-channel analysis and countermea-
sures; Hardware reverse engineering; Information flow control.

KEYWORDS
Side-channel attack, Speculative execution, Spectre, Branch target
injection

ACM Reference Format:
Johannes Wikner, Daniël Trujillo, and Kaveh Razavi. 2023. Phantom: Exploit-
ing Decoder-detectable Mispredictions. In 56th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO ’23), October 28-November
1, 2023, Toronto, ON, Canada. ACM, New York, NY, USA, § 13 pages.
https://doi.org/10.1145/3613424.3614275

1 INTRODUCTION
Security research at the intersection of software and hardware has
surfaced a concerning amount of information leaks [34, 37, 44,
8, 72, 61, 10, 20, 43, 11, 66, 57, 60, 65, 13, 56, 73]. Spectre in
particular forces the misprediction of branching instructions, leading

*Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0329-4/23/10. . . $15.00
https://doi.org/10.1145/3613424.3614275

to arbitrary information disclosure in many scenarios of interest [34,
37, 44, 8, 72, 61, 10, 20, 73]. While it is commonly assumed that
the CPU speculates only after it decodes the instruction to be a
branch, we show in this paper that all recent AMD and Intel CPUs
speculate at much earlier stages of their pipeline. Our investigation
into this speculation before instruction decode uncovers a new class
of attacks that we refer to as PHANTOM speculation. We show the
practical importance of PHANTOM speculation by building a number
of exploits for the AMD Zen microarchitectures.

Speculation before instruction decode. In the first stage of a
pipelined CPU architecture, the Instruction Fetch unit fetches blocks
of instructions from the instruction cache. Instruction prefetchers try
to predict future instruction cache lines and bring them into the cache
before execution reaches those cache lines [77]. These predictions
are made by learning the control flow of the instructions over time,
and are not based on the instructions themselves. Depending on the
control flow of the program, instructions that are prefetched may
never enter the pipeline. We show in this paper that modern AMD
and Intel CPUs do much more to improve performance: they predict
and fetch the next block of instructions from the instruction cache
into the pipeline immediately after the current fetch, before branch
sources are decoded, in line with designs previously discussed in the
microarchitecture community [14, 7].

The decision of whether the current instruction is a branch is made
by the CPU’s frontend before decoding the instruction by consulting
the Branch Target Buffer (BTB). On top of predicting whether the
current instruction is a branch, the BTB further provides the pre-
dicted branch target to the frontend. The branch target effectively
becomes the frontend’s next instruction fetch location.

Backend-issued resteers and Spectre. While speculation before
decode improves performance, it may also result in bad speculation.
This bad speculation can lead to information disclosure as shown by
many variants of Spectre. The bad speculation that is caused by these
Spectre variants is resolved in the CPU’s backend where µops are
executed. This is due to the fact that the instructions that cause specu-
lation, such as indirect branches [34, 8, 61, 10, 20, 46] or returns [37,
44, 72, 73], have dependencies that can only be resolved at the exe-
cute stage. Upon detection of bad speculation, the backend issues a
resteer to the frontend, so that it can restart instruction fetch from
a corrected program counter. The time between misprediction and
backend-issued resteer allows for speculative execution of several
memory loads, which Spectre exploits.

Frontend-issued resteers and PHANTOM. The backend is not the
only source of resteers. We find in this paper that in many cases of in-
terest, the CPU frontend also issues resteers when the misprediction
is detected by the decoder. We systematically explore the cases under
which an attacker can force mispredictions that are resolved by the
frontend. Frontend-issued resteers caused by bad speculation is the

https://orcid.org/0009-0006-3453-538X
https://orcid.org/0009-0005-1485-2110
https://orcid.org/0000-0002-8588-7100
https://doi.org/10.1145/3613424.3614275
https://doi.org/10.1145/3613424.3614275

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Wikner et al.

source of a new class of attacks that we call PHANTOM. Unlike Spec-
tre, PHANTOM speculation windows are short, and it is unclear how
far in the pipeline such speculations proceed. We build observation
channels that can identify pipeline stages for various PHANTOM

speculations on AMD and Intel CPUs. Insights from these obser-
vation channels provide attackers with exploitation primitives for
transient fetch and transient decode on all recent AMD CPUs, and
short transient execution on AMD Zen 1 and 2.

Exploitation with PHANTOM. Our analysis shows that PHANTOM

speculation enables fetch, decode and a short execution window
of the mispredicted target on AMD Zen 1 and 2, which is enough
to trigger memory operations. On AMD Zen 3 and 4, PHANTOM

speculation enables fetch and decode of the mispredicted target.
We show the conditions for these PHANTOM speculations happen
in real-world scenarios by building three exploits. First, we show
PHANTOM speculation breaks KASLR of the kernel image on all
AMD microarchitectures. Building this exploit required us to re-
verse engineer cross-privilege BTB functions on AMD Zen 3 and
4 for the first time. Second, on AMD Zen 1 and 2, we show that
PHANTOM speculation can further break physmap KASLR, signify-
ing full KASLR derandomization. Lastly, we show that PHANTOM

speculation can leak arbitrary kernel memory with MDS gadgets
on AMD Zen 1 and 2, which are not affected by MDS [66, 13, 60].
Our analysis shows that existing mitigations cannot stop PHANTOM

attacks.

Contributions. In summary our contributions are as follows.
• We systematically analyze sources of misprediction before in-

struction decode on recent AMD and Intel microarchitectures.
We further analyze how far in the pipeline target instructions
proceed.

• We present PHANTOM, a new class of attacks based on decoder-
detectable misprediction. PHANTOM speculation enables new
primitives such transient fetch and transient decode on all
recent AMD microarchitectures, and short transient execution
on AMD Zen 1 and 2.

• We build three attacks based on PHANTOM speculation, deran-
domizing KASLR of the kernel image and physmap, as well
as arbitrary kernel memory leak with an MDS gadget. The
attacks on AMD Zen 3 and 4 required us to reverse engineer
the cross-privilege BTB functions for the first time.

Disclosure efforts. We initially disclosed our findings to AMD in
June 2022. AMD issued CVE-2022-23825 and released an advi-
sory [4] in July 2022 that addresses both our findings and another
issue [73]. However, our analysis shows that the published advisory
only considers transient execution, but not transient fetch and de-
code. This means that existing mitigations are ineffective against
our attacks, which we subsequently reported to AMD in May 2023.
In response, AMD informed us that that they are not planning on
releasing a new CVE. We have reported the existence of PHANTOM

speculation to Intel in July 2023.

2 BACKGROUND
To understand the source of PHANTOM speculation and how to
potentially defend against it, in this section we give an introduction
to branch target prediction and how it interacts with the CPU pipeline.

BPU IF ID EX

BPU IF ID EX

Branch source:

Mispredicted target:

t0
 t1
 t2

time

t3
 t4

Figure 1: BPU mispredicts the next branch target already while the
branch source is in IF. How far the mispredicted target advances in
the pipeline depends on the branch source dependencies, including its
decoding stage. For example, at t2 the decoder may discover that the
branch source conflicts with the prediction at t1.

We then discuss how Spectre attacks use bad speculation to infer
secrets, and the current approaches for mitigating them.

2.1 Branch Target Prediction
The Branch Prediction Unit (BPU) provides the CPU pipeline with
predictions of the upcoming control flow. To provide accurate predic-
tions, branch predictors record control-flow history in registers and
table-like buffers. These data structures are read from and written
back to as instructions advance through the pipeline. We discuss
some of these data structures next.

BHB and BTB. Branch History Buffers (BHBs) contain footprints
of recently encountered control-flow edges, and are used to in-
dex Branch Target Buffers (BTBs) [34, 8]. BTB entries contain
branch targets predictions, which may serve indirect [34] or direct
branches [71], as well as returns [73]. BTB entries can serve multiple
targets depending on the size of each entry, which may depend on
the distance between the branch source and target [77]. The BPU
selects the target by matching a tag of the current BHB with the tag
from one of the targets [8].

RSB. Return Stack Buffer (RSB), sometimes referred to as Return
Address Stack (RAS), is another data structure that the CPU uses
for predicting the target of return instructions [44, 37]. The RSB
contains the N most recently encountered call sites so that return
speculation can proceed without memory look-ups from the volatile
stack pointer (N is usually 16 or 32).

2.2 Pipelining
Without pipelining, the slowest instruction determines the length of
a CPU’s clock cycle. With a long clock cycle, most components of
the CPU remain underutilized. To improve utilization and increase
instruction throughput, pipelining enables simultaneous processing
of instructions by splitting their execution into stages. Pipeline stages
include Instruction Fetch (IF), Instruction Decode (ID), and Out-
of-Order Execute (EX), after which instructions retire and effects
are committed to the architectural, visible state. While improving
utilization, pipelining introduces concurrency issues. For example,
if the location of the next IF depends on result of the currently exe-
cuting instructions, awaiting their retirement would stall the pipeline.
Therefore, the BPU provides IF a prediction of the next location. In
case of a misprediction, an incorrect control flow will consequently
be processed until a corrected fetch location is provided through a
resteer signal. The time range between misprediction and resteer is

Phantom: Exploiting Decoder-detectable Mispredictions MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

Frontend
Insn. Byte Queue

0x8b 0x37 0x48 0x8b 0x36 0x0f 0xae 0xe8
0x48 0xc7 0xc7 0xff 0x00 0x00 0x00 0x90

...

0xff 0x31 0xed 0x89 0xe8 0x48 0x83 0xc4
0x08 0x5b 0x41 0x5e 0x41 0x5f 0x5d 0xc3

ID IDIDID

DecoderInstruction Fetch
BPU

dispatch
for EX

STORE, ALU, NOP, NOP

μop cache hit. dispatch μops onto queue

μop cache I-cache

dipatch
for ID

Out-of-
Order

Execution
Engine

Frontend-issued resteer

μop cache
miss μop queue

ALU, LOAD, LOAD, LOAD

STORE, ALU, NOP, NOP

Figure 2: The different pipeline stages are decoupled, asynchronous modules that consume input queues and dispatch onto output queues. This example
shows a decoupled Instruction Fetch unit that dispatches raw instruction bytes onto an Instruction Byte Queue (IBQ), which are decoded and dispatched
onto a µop-queue. The Instruction Fetch unit continues to fetch instruction independently and push onto the IBQ.

known as the speculation window and can be several hundred clock
cycles wide.

Figure 1 shows an example of a mispredicted control flow. It
is important to consider that the control flow of the mispredicted
branch target may start advancing through the pipeline while its
branch source is still at an early stage — even before the branch
source has reached the ID stage. Figure 2 illustrates how this can
happen in finer detail. The IF and ID units are implemented as decou-
pled modules, communicating via the Instruction Byte Queue (IBQ).
Blocks of raw instruction bytes are dispatched by IF onto the IBQ
to be decoded by ID. These instructions bytes are then decoded
into µops and dispatched onto a µop-queue. Another pipeline unit
of the CPU backend can then process these µops for resource al-
location and scheduling in the Out-of-Order execution engine. We
imagine that the majority of the CPU pipeline components follow
this asynchronous, event-driven behavior.

A problem with this architecture is the limited transactional sup-
port. Once work has been dispatched, it is difficult to keep track
of the stages it reaches and what state needs to be rolled back on
a resteer. In Figure 2, the BPU provides a mispredicted Program
Counter (PC), from which instruction bytes will be fetched. At de-
code, the next PC can already be finalized, unless a branch source
that is execute-dependent was decoded (e.g., conditional, indirect, or
return branch). The decoder can therefore provide IF with this feed-
back, which could disagree with BPU-provided prediction. However,
for the execute-dependent branch sources, the next PC can only be
finalized during the execute stage. These execute-dependent cases
are exploited in Spectre attacks.

2.3 Spectre
Spectre [34] is a subclass of transient execution attacks that abuses
branch mispredictions. While the multitude of Spectre variants is
ever-increasing, their common goal is to make the mispredicted
control flow operate on architecturally inaccessible information,
such that it can be transmitted (i.e., leaked) via a covert channel,
commonly the CPU caches. We refer to the code snippets responsible
for the transmission of information as the disclosure gadgets. By
forcing a misprediction of an execute-dependent branch source,
the attacker can hijack the speculative control flow to execute a

disclosure gadget that loads secrets from memory and exfiltrates
them using a covert channel.

Conventional Spectre attacks rely on hijacking execute-dependent
branch sources that have speculation windows that are wide enough
to queue up several secret-dependent memory loads. Our work ex-
plores a new Spectre class that considers speculation windows that
can be resteered before the mispredicted instruction reaches the
execute stage. The exploits we present work thanks to speculation
before instruction decode, where not only the branch target but also
the branch source can be mispredicted.

2.4 Mitigating Spectre
Modern systems use software and hardware-based defenses to block
Spectre leaks, preventing transient access to secrets [75, 62, 58, 74],
patching the branch sources susceptible to misprediction [64, 4, 3,
29, 30], and restricting the use of predictions [31, 30]. Early branch
target prediction can impact the latter two, which we will briefly
discuss.

Patching the source of mispredicted control flow. The lfence x86
instruction limits the mispredicted control flow by stalling execution
until pending loads retire. Placing lfence where bad speculation
may occur is often a recommended mitigation as it minimizes the
speculation window [30]. Retpolines [3, 64] and jmp2ret [4] rewrite
potential sources of attacker-controllable misprediction to prevent
speculation altogether.

Restricted use of predictions. RSB stuffing [44], post-barrier RSB
stuffing[63], call-depth tracking [19], and untrain ret [4] are software
defenses that overwrite bad predictions with dummy targets. Hard-
ware solutions strive to restrict branch targets instead of removing
them. Indirect Branch Restricted Speculation (IBRS) [31] variants
(AutoIBRS, eIBRS, Legacy IBRS) restrict branch predictions based
on the privilege mode. Moreover, Single Thread Indirect Branch
Predictors (STIBP) [30] restrict sibling threads’ branch predictors
from influencing each other.

The two types defenses have practical challenges. When patching
the branch source, knowing which branch sources are vulnerable
is not trivial in face of branch target prediction before instruction
decode, as we show in this paper. Furthermore, for defenses that

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Wikner et al.

advertise restricted speculation, it is unclear whether they consider
all pipeline stages to which bad speculation can advance.

3 THREAT MODEL
We consider a realistic threat model with an attacker that can exe-
cute unprivileged code on top of a recent Linux kernel. We assume
a modern CPU that supports speculative and out-of-order execu-
tion. As we show in this paper, such CPUs may employ branch
prediction before instruction decode. We further assume a default
Ubuntu configuration including all state-of-the-art Spectre defenses,
both in software and hardware. These include AutoIBRS [53], ret-
polines [64] and untrain ret [4]. The goal of the attacker is to infer
secrets that are otherwise only available to privileged software by
exploiting decoder-detectable mispredictions.

4 OVERVIEW
Previous research on the topic of branch target prediction exploita-
tion almost exclusively focuses on cases where the training and
victim branch sources have the same type of instruction, specifically
indirect branches [34, 46, 8, 17]. Asymmetric combinations, where
the training and victim branch sources are of different instruction
types, are commonly not considered exploitable: instruction type
mismatches can be discovered already at decode. Consequentially,
mispredictions are detectable and can be resteered by the decoder
before reaching execute. However, recent work has shown that the
asymmetric case can also lead to long exploitable speculation win-
dows [73]. As discussed in § 2.4, these cases can potentially com-
promise existing mitigations. Hence, the first question we ask in this
paper is which asymmetric cases in modern CPUs can potentially
lead to exploitable scenarios:

Research Question RQ1.

Which asymmetric combinations of branch types can trigger
misprediction?

We hypothesize that the asymmetric combinations of branch types
will likely lead to short mispredictions that the CPU can detect dur-
ing decode due to mismatching instruction types. Consequently, our
analysis could benefit from observation channels that allow us to
infer how far in the pipeline a mispredicted control flow advances.
For example, if we observe transient memory operations from the
mispredicted target, we can infer that the mispredicted control flow
reached Execute (EX) and advanced through the preceding stages,
namely IF and ID. For when we cannot observe EX, we build the
tools to observe transient fetch and transient decode of the (mis-
predicted) branch target. We then use these observation channels
to detect branch target speculation for asymmetric combinations
of training and victim branch sources in Section 5. Because the
CPU frontend predicts a branch source instruction that may not
match reality, or not even exist, we refer to these cases as PHANTOM

speculation.
The established methods to observe branch misprediction rely

on transient execution effects (e.g., data cache and port contention).
However, because certain types of mispredictions may be invisible
on certain systems, it is difficult to tell whether it is because the mi-
croarchitecture exhibits a different prediction scheme or because the

 Fetch DecodeBranch
Predictors

OoO

Execute

Retire

Misprediction 1 3

I-Cache μop-Cache D-Cache

2

BTB RSB PHT

Figure 3: We can discover a misprediction at any of the stages preceding
retire. 1 We can observe fetch by querying the I-Cache, 2 decode by
querying the µop-Cache, and 3 using a load instruction in the mispre-
dicted path, we can observe execution by querying the D-Cache.

resteer was issued before the mispredicted branch target could reach
the EX stage and emit a signal. Being able to observe speculation
windows without relying on EX, our second question is:

Research Question RQ2.

What new exploitation primitives can we build using PHAN-
TOM speculation?

In Section 6, we investigate what exploitation primitives we can
build using PHANTOM speculation, even when predictions do not ad-
vance to the execute stage, that is execution-free speculation. Having
built practical exploitation primitives, we investigate the following
question:

Research Question RQ3.

What information can we leak with these exploitation primi-
tives?

Short speculation windows are often considered harmless [3, 4],
but this is unfortunately not always true [46]. In the same spirit, in
Section 7 we build efficient end-to-end KASLR derandomization at-
tacks on the latest generations of AMD CPUs using our exploitation
primitives, despite mitigations that should block speculation. To do
this, we reverse engineer BTB indexing schemes of the Zen 3 and
Zen 4 microarchitectures. Finally, we demonstrate that PHANTOM

speculation can be nested inside a conventional Spectre attack to in-
crease its known attack surface. This nesting allows us to repurpose
MDS-gadgets [32], known to be exploitable only on Intel CPUs, to
also be exploitable on AMD Zen 1 and Zen 2 CPUs.

5 PHANTOM SPECULATION
In this section, we study methods for observing branch mispredic-
tions, even if the branch target did not execute. We then use these
methods to study some unconventional sources of branch mispredic-
tions that we also discuss.

5.1 Observation Channels
Figure 3 provides an overview of the pipeline stages that we consider
and their respective observation channels. Although performance
counters can keep count of the number of mispredicted branches,
they do not indicate how far mispredictions advance in the pipeline.
Therefore, relying on performance counters that measure branch
mispredictions is insufficient for this purpose.

The generic procedure is as follows. We have two snippets of code
A and B, where A ends with a training branch to C. In the example

Phantom: Exploiting Decoder-detectable Mispredictions MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

A B

C

training
insn.

victim
insn.
barrier
probe(C)

signal EX

BTB

h(A) h(B)

1 2
BTB

CC

C signal

Figure 4: In 1 , A creates a BTB entry to C, so that in 2 , the victim
instruction of B may reuse that BTB entry. The instructions in C emit a
transient execution signal. By fetching and decoding C, transient fetch
and transient decode signals are already emitted.

A Cjmp C

B 5x nop time(C') C'

1

2

jmp* CA

B nop;nop

jmp… pfcjmp

…jmp jmp1

2

jmp…jmp = fill μop cache set = barrier (mfence)

pfc = read perf. counter

A) IF: jmp + nops B) ID jmp* + nops

3 B() pfc

= victim insn. = training insn.

= misprediction

Figure 5: A) Training non branch using (direct) jmp, measuring IF: C′ is
at an address at the same relative offset from B as C from A. B) Training
non branch using (indirect) jmp*, measuring ID: In 3 , the jmp-series will
evict the jmp-series in C, resulting in µop-cache misses when executing B.

shown in Figure 4, C emits a signal to indicate transient execution,
but before that, it will also signal transient fetch and transient decode.
We want to observe that running B after A causes a misprediction to
C that emits one or more of these signals. Hence, A is the training
source and B is the victim source. To observe misprediction to C,
after 1 , we moreover prime the microarchitectural state that we use
as observation channel, for example flushing C from the instruction
cache (I-Cache). In 2 , after the victim instruction, a barrier instruc-
tion, such as lfence, ensures that older operations have completed
when we probe for a signal.

Previous work discusses how A and be B should be laid out in
memory and executed to trigger BTB index aliasing (i.e., where
h(A) = h(B)), resulting in branch target misprediction [34, 73, 8].
However, such BTB index aliasing has never previously been shown
between user- and kernel-mode branches for newer microarchitec-
tures such as AMD Zen 3 and Zen 4. To build a practical user-
to-kernel exploit, we need BTB aliasing across privilege modes.
Although user space BTB aliasing is sufficient for the purposes of
building our observational channels, we will discuss our reverse
engineering efforts to enable cross-privilege mode BTB aliasing on
newer AMD microarchitectures in Section 6. We now discuss the
construction of our observation channels.

Instruction Fetch (IF). Observing IF of a particular branch target
can be done by observing the I-cache state using a timing side chan-
nel. Hence, our method to observe IF involves timing the execution
time of C as shown in Figure 5 A. After 1 , we flush C from I-cache,
and in 2 , we probe C by timing access of an instruction that resides
in it.

Unfortunately, discerning IF from BPU-assisted I-cache prefetch-
ing [77] (e.g., due to spatial locality) is not possible using this
method. I-cache prefetching ensures that instruction bytes are avail-
able before IF. To get a stronger indication that the prefetched in-
structions enter the pipeline, we construct an observation channel
that lets us detect ID.

Instruction Decode (ID). Instructions decoded into µops
are cached in the µop-cache. To detect decoded instruc-
tions, we therefore build an observation channel of the µop-
cache using performance counters based on methods proposed
in previous work [59]. We sample the performance coun-
ters de_dis_uops_from_decoder.opcache_dispatched on Zen 2,
op_cache_hit_miss.op_cache_hit on Zen 3 and 4 and idq.dsb_cycles
on Intel. By observing these events we find that these caches always
have 64 8-way sets, selected by the lower 12 bits of the instruction’s
virtual address. Following the procedure illustrated in Figure 5 B,
after 1 , we have primed a particular µop-cache set by executing a
jmp-series of 7 direct forward branches separated by 4096 bytes. In
2 , we have allocated B so that it collides with the BTB entry created

for A to C. In 3 , we select a jmp-series that maps to a µop-cache set
that matches the set that C maps to. When we then execute B in 3 ,
if a misprediction to C happened, it results in eviction of one or more
ways of the set, which is observable using performance counters. We
can sample the counter before and after executing B, as the diagram
shows. Alternatively, we can observe µop-cache misses after B by
executing the purple-filled jmp-series again, sampling the counter
before and after it. Measuring, µop-cache misses is less reliable on
our Intel parts than on AMD. To accomplish reliable results, we use
complementary negative testing using a training branch that does
not alias with the victim branch. Only when we measure signifi-
cantly more µop-cache misses compared to the negative test do we
conclude that the mispredicted target advanced to ID.

Execute (EX). Previous work has presented several methods to ob-
serve transient execution, through caches [34] and port contention [2,
10]. While observing execution port contention is possible, the signal
is less reliable than observing memory access. Typically, Spectre
gadgets leak memory through transiently executing two memory
accesses, where the second access depends on the result of the first.
Hence, the mispredicted control flow not only reaches EX, but re-
mains in this stage over several clock cycles, allowing a speculation
window that is wide enough to execute a second load. With shorter
speculation windows, resteer typically happens before any memory
operation completes. However, dispatching a single memory opera-
tion consumes only a few clock cycles, and there is no mechanism
to abort a dispatched memory request since merely fetching a cache
line is considered harmless. We can hence rely on a data cache side
channel to detect if a misprediction reaches the EX stage by using a
memory access in the mispredicted path.

5.2 Triggering mispredictions
With the methods to observe short speculation windows, we want to
explore the possible combinations of training and victim instructions.
We consider the following instructions: indirect branch (jmp*), direct
branch (jmp), conditional branch (jcc), return (ret), and nop-sled
(non branch). The asymmetric combinations of these comprise 22

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Wikner et al.

Table 1: Various combination of training and victim instructions and
how far they reach in the pipeline. The asymmetric combinations here,
we refer to as PHANTOM speculation.

Victim instruction
jmp* jmp jcc ret non branch

Tr
ai

ni
ng

jmp* a
b

jmp

jcc

ret —

non branch c —

: IF : ID : EX : AMD Zen 1 : Zen 2 : Zen 3 : Zen 4

: Intel 9th gen. : 11th gen. : 12th gen. (P core) : 13th gen. (P core)
a Spectre-V2 [34] b Retbleed [73]. c Spectre-SLS [70, 6].

possible variants to evaluate on each microarchitecture. We consider
training jmp and jcc branches with different displacement than the
victim jmp or jcc as asymmetric as well. Some of these combinations
are new, and some have been explored in previous work which we
discuss next.

Training using non branch instructs the branch predictor that the
victim instruction is not a branch, and results in the CPU executing
the next instruction in sequence, even if the current instruction is ac-
tually a branch. This has been reported as Straight-Line-Speculation
on some AMD microarchitectures [6, 70].

Training using jmp has, to the best of our knowledge, only been
explored in previous work on Intel processors [77]. Concurrent work
has studied jmp also on AMD processors [46]. Since the speculation
may happen pre-decode, even though the PC-relative displacement
is available as part of the branch instruction, the target is served
from the BTB. Unlike indirect branch targets, the branch predictor
serves direct branch targets as PC-relative. This means that for this
combination, the signal does not become observable at C (based
on Figure 5 A). Instead we create a copy of C to C′, which we
allocate to an address that has the same relative distance from the
victim instruction as C has from the training instruction.

Training using jmp* has been explored in the original Spectre
work [34]. In this paper, we are interested in the jmp* instruction’s
impact on the other victim instructions (i.e., jmp, jcc, ret, and non
branch).

Training using ret instructs the branch predictor that the victim
instruction is a return, and the branch predictor will therefore predict
a return from B when we execute it. The return target will not be to
C, but to the most recent call site.

An important observation we made while designing these ex-
periments is that the training instruction always determines the
prediction semantics of the victim instruction. This could be because
the victim instruction may not have been decoded when providing
the prediction. In the next section, we will investigate how far in the
pipeline these combinations reach and what exploitation primitives
they enable.

0x000
0x100

0x200
0x300

0x400
0x500

0x600
0x700

0x800
0x900

0xa0
0
0xb00

0xc0
0
0xd00

0xe0
0
0xf0

0

page offset of C

0

20

40

op
 c

ac
he

 h
its

zen 2
zen 4

Figure 6: Detecting speculative decode. Mispredictions caused by train-
ing non branch using jmp* is observable in the µop-cache. Only when we
place C at the page offset that matches the jmp-series in B (here 0xac0),
we see µop-cache misses.

6 EXPLOITATION PRIMITIVES
Table 1 shows the results of our experiments. We draw a number
of interesting observations from these results. First, for all tested
combinations, fetch and decode of the predicted target happens.
This happens even in the absence of an architectural branch at that
location (e.g., when the victim instructions are nops, used for the
non branch case). We can thus conclude that the frontend fetches
branch targets before it has even determined whether a branch exists.
This leads to our first observation:

Observation O1.

On all tested CPUs, speculative branch targets are fetched
before the branch source is decoded.

Moreover, our results show that instructions at speculative branch
targets are decoded as well, even in the absence of any branch source.
As an example, Figure 6 shows the results of the ID observation
channel, when a non branch is confused with a jmp*. Thus, our
second observation is:

Observation O2.

On all tested CPUs, the speculative branch target fetches are
usually not only prefetched, but they enter the CPU pipeline.

We note that our results for some of our Intel parts do not indicate
ID, and sometimes not even IF, in certain scenarios where the victim
instruction is jmp*. While this suggests that indirect branches are not
subject to PHANTOM speculations, we cannot reject the hypothesis
that this victim branch type has unknown effects on the accuracy of
our measurements.

On AMD Zen 1 and Zen 2, instructions at the target even reach the
execute stage. On these microarchitectures, we measure a D-cache
hit on the address loaded from memory by the instructions at the
speculative target. Our third observation therefore is:

Observation O3.

On AMD Zen 1 and Zen 2, decoder-detectable speculations
yield windows long enough to execute code.

We occasionally observe transient execute after a taken condi-
tional branch (jcc). This occurs when training it as non branch. This
is likely due to the conditional branch sometimes being predicted

Phantom: Exploiting Decoder-detectable Mispredictions MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

non-taken, therefore unrelated to the training. All processor fron-
tends will fetch and decode instructions following the victim branch
in the current fetch block (typically 32 B) of instructions.

PHANTOM on Intel. Table 1 further shows the results of our experi-
ments on a number of recent Intel processors. Most scenarios allow
for transient fetch and decode. While these insights show similar-
ity in designs from different vendors, Intel processors have eIBRS
protection against cross-privilege attacks since the 9th generation.
Moreover, the Intel processors we tested do not re-use a user-injected
prediction in kernel mode, even while the mitigation is switched off.
This suggests that these processors may address the BTB differently
depending privilege mode, complicating exploitation. We therefore
limit our focus to the AMD parts for exploitation.

6.1 Attacker primitives
Our results reveal two channels that can be used for exploitation.
First, we can trigger speculation on arbitrary instructions that results
in fetching and decoding the target. Second, on certain AMD mi-
croarchitectures, we can trigger PHANTOM speculations that fit a
memory load, even on non-branch instruction.

We identify these channels to give rise to three adversarial ex-
ploitation primitives. This section describes these primitives in detail.
In Section 7, we discuss how we build exploits using these primi-
tives.

P1: Detecting mapped executable memory. An instruction fetch
only populates the instruction cache if the target of the fetch was
executable and backed by physical memory. Combining this insight
with PHANTOM, we can detect whether a virtual address T is mapped
and executable. The adversary would first 1 train the BTB with
branches to T , 2 execute the victim and 3 infer whether T was
fetched. For the last step, the adversary can use Prime+Probe [50]
on the instruction cache.

P2: Detecting mapped non-executable memory. If our target T
is mapped but not executable, the fetch fails and would leave the
state of the instruction cache unaffected. Using PHANTOM on Zen 1
and Zen 2, however, an adversary can trigger a data load of T . To
detect mapped non-executable memory, the victim’s address space
needs to contain a disclosure gadget G that loads T from memory.
Then, they would 1 train the BTB with branches to G, 2 execute
the victim with T in a register and 3 infer whether T was loaded
from memory. To infer the data load, Prime+Probe can be used on
the data cache. This primitive works on AMD Zen 1 and Zen 2 only.

P3: Leaking register values. Lastly, instead of detecting mapped
memory, an adversary can use the short speculation window to leak
the victim’s register values on AMD Zen 1 and Zen 2. G filters
out a single byte from the register and arranges it to reside in bits
[13:6] (i.e., cache-line aligned), which it uses as offset into a mapped
area in the victim’s address space, and issues a load of the resulting
address. An adversary would 1 train the BTB with a branch to G,
2 execute the victim and 3 infer which address was loaded in the

data cache using Prime+Probe.
Alternatively, if an adversary shares memory with the victim,

they can use Flush+Reload [76] instead. G needs to shift the value
to become a 64-byte aligned offset, which can be as big as the
memory area which now must be shared with the adversary (e.g.

physmap [33]). Thus, an adversary would 1 train the BTB with a
branch to G, 2 execute the victim so that victim register-dependent
memory ends up in the data cache, and 3 infer which address was
loaded in 2 using Flush+Reload.

6.2 Collision with kernel addresses
Wikner and Razavi showed that triggering a misprediction on a
kernel address can be achieved from user space by branching to a
kernel address and catching the resulting page fault [73]. In order to
collide with the desired kernel address, they reverse engineer BTB
indexing functions. However, they did not discover cross-privilege
functions on AMD Zen 3. Furthermore, more the recent AMD Zen
4 microarchitecture has not been studied on this topic in previous
work. To evaluate our primitives and build exploits using them, we
need to reverse engineer the cross-privilege BTB indexing functions
on these newer microarchitectures.

We start on Zen 3 by allocating a kernel address K, using a kernel
module which contains nops followed by a return instruction. By
changing the Page Table Entry (PTE) attributes of address K, we
make it accessible to user space.

Brute forcing. We first attempt to create collisions with K by brute
forcing a pattern such that, when applied to the kernel address K, it
yields a user space address that collides with K, as done in [73]. Us-
ing performance counters and timing results, we determine whether
a collision was successful, However, this approach does not yield
any results between user- and kernel addresses when flipping up to
6 bits. A possible reason of failing to find collisions could be that bit
47 is involved in multiple functions, requiring us to flip more bits.
Since brute forcing all combinations with more than 6 bits takes an
unreasonable amount of time, we consider an alternative approach.

SMT solver. Instead, we will generate random addresses to find
collisions between user- and kernel addresses, and then observe
patterns in the addresses that collide. For this, we use a Z3 SMT
solver, as done in previous work [41]. For each kernel address K,
we collect lists LK of user space addresses that collide with the
kernel address. To shrink the search space, we do not randomize
the lower twelve bits of our user space addresses. Instead, we set
them equal to K0−11. We wish to find functions of address bits, such
that they all yield the same value for K and all addresses in LK .
For this, we attempt to find coefficients for the equation system
(x0 ×A0)⊕ (x1 ×A1)⊕ ...⊕ (x46 ×A46)⊕ (1×A47) = y such that it
yields the same value y for all addresses that collide. At the same
time, we impose x0 x1 ... x46 x47 ≤ n, where n is the maximum
number of coefficients set to 1, which we gradually increase. This
is to prevent solutions that combine different solutions to obtain the
same output y.

Results. Our results are shown in Figure 7 and were found for n = 4.
Specifically, we find that whenever b13 is toggled in the random-
generated user space address with respect to K, b17 is toggled as
well. Likewise, whenever b12 is toggled, b16 is flipped as well, and
vice versa. In essence, that means that these bits are used in multiple,
partially overlapping functions. Therefore, we erroneously obtained
functions almost identical to the ones presented.

Comparing our results with those in [73], we see that all functions
additionally include bit 47. However, we did not find some of the

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Wikner et al.

f0 = b47 ⊕b35 ⊕b23 f1 = b47 ⊕b36 ⊕b24 ⊕b12
f2 = b47 ⊕b37 ⊕b25 ⊕b13 f3 = b47 ⊕b38 ⊕b26 ⊕b14
f4 = b47 ⊕b39 ⊕b26 ⊕b13 f5 = b47 ⊕b39 ⊕b27 ⊕b15
f6 = b47 ⊕b40 ⊕b28 ⊕b16 f7 = b47 ⊕b41 ⊕b29 ⊕b17
f8 = b47 ⊕b42 ⊕b30 ⊕b18 f9 = b47 ⊕b43 ⊕b31 ⊕b19
f10 = b47 ⊕b44 ⊕b32 ⊕b20 f11 = b47 ⊕b45 ⊕b33 ⊕b21

Figure 7: Functions for creating cross-privilege collisions in the BTB
found on Zen 3. Least significant 12 bits not considered.

functions, potentially because they do not involve bit 47. We also
find some functions that were previously not discovered.

Overlapping functions. While trying to create collisions with kernel
addresses by flipping multiple bits, we discovered that using other
lower bits shown in Figure 7 does not yield colliding addresses. We
suspect that this is due to overlapping functions, just as b12, b13,
b16 and b17 are used in multiple functions. These functions may not
involve bit 47, or use address bits we did not consider. One reason
for overlapping functions could be that some functions are used for
tag generation, while others are used for set selection. Therefore, to
create collisions, we use the higher bits (i.e., the first three bits of
each function). As an example, for a kernel address K, we can obtain
a user-colliding address by computing K ⊕ 0xffffbff800000000
or K ⊕0xffff8003ff800000. We confirm both of these patterns to
work on AMD Zen 4 as well.

6.3 SuppressBPOnNonBr and AutoIBRS
In response to our report, AMD disclosed a configuration of Zen 2
CPUs that should prevent speculation from non-branch instructions.
By setting bit in MSR 0xC00110E3 named SuppressBPOnNonBr,
PHANTOM speculations should be prevented. In addition, Zen 4
CPUs support AutoIBRS, which restrict speculation to be influenced
across privilege levels. In this section, we discuss the implication of
setting the SuppressBPOnNonBr bit and enabling AutoIBRS on our
results.

SuppressBPOnNonBr. We first measure the overhead of setting this
bit using UnixBench1. We run each benchmark 5 times and compute
the geometric mean across all tests. Our UnixBench results indicate
an overhead of 0.69% (single-core) and 0.42% (multi-core).

To understand the impact of setting this bit on our results, we
repeat the experiments as described in Section 5.1 with this bit
enabled. As expected, our results show that whenever the victim
instruction is of type non-branch, we do not observe execution at
the predicted target anymore. However, we find that this bit does not
prevent IF or ID when the victim instruction is not a branch.

Observation O4.

SuppressBPOnNonBr does not prevent IF or ID caused by
PhantomJMPs.

AutoIBRS. We repeat the experiments in Section 5.1 on Zen 4.
However, we train in user space while we try to trigger a speculative
branch in kernel space. Interestingly, our results show that the IF is
still triggered, despite AutoIBRS.

1https://github.com/kdlucas/byte-unixbench

Table 2: Accuracy and leakage rate of P1 (top) and P2 (bottom) when
leaking 4096 bits (median of 10 runs).

µarch Model Accuracy Rate

Zen AMD Ryzen 5 1600X 96.30% 204 bits/s
Zen 2 AMD EPYC 7252 93.04% 215 bits/s
Zen 3 Ryzen 5 5600G 100% 256 bits/s
Zen 4 Ryzen 7 7700X 90.67% 341 bits/s

Zen AMD Ryzen 5 1600X 100% 256 bits/s
Zen 2 AMD EPYC 7252 99.28% 292 bits/s

Observation O5.

AMD AutoIBRS does not prevent IF of cross privilege mode
branch targets.

Our previously described primitive P1 is thus unaffected on all
AMD Zen microarchitectures. Primitives P2 and P3, however, are
now restricted to speculation on branch instructions on AMD Zen 2,
thanks to the SuppressBPOnNonBr mitigation. However, given that
branches are common in software, the impact of this mitigation is
negligible. In addition, P2 and P3 still work unrestricted on Zen 1.

6.4 Covert Channel
Our primitives P1 and P2 enable an adversary to trigger a fetch
and, on some microarchitectures, even a data load (i.e., execute)
from a branch instruction, even if its in a higher privilege mode.
In this section, we investigate the accuracy and leakage rate of
these primitives. For this, we build a kernel module that performs a
number of direct branches. We aim to hijack one of these by injecting
a prediction from user mode, that triggers when executing kernel
module branches.

Fetch. We randomly generate 4096 bits. In the kernel address space,
T1 is mapped in memory while T0 is not. For each random bit b, 1
we prime a chosen instruction cache set S, 2 inject a prediction
to Tb which maps to cache set S, 3 invoke the kernel module and
4 probe cache set S. If our probe step indicates a higher latency

after injecting a prediction to T1 than to T0, we deduce that b was 1,
otherwise 0. To improve accuracy, we inject the speculative branch
so such that it straddles a page boundary and furthermore stress the
sibling thread 2. The results can be seen in Table 2-top.

Execute. Again, we randomly generate 4096 bits. However, an addi-
tional address T is mapped executable in kernel mode, containing a
memory load of the address in register R. For each random bit b, 1
we prime a chosen data cache set S, 2 inject a prediction to target T ,
3 invoke the kernel module while R is assigned a pointer to Tb, and
4 probe data cache set S. If we observe a slowdown when probing

S, we deduce that b was 1, otherwise 0. Additional sibling thread
workloads were unnecessary for the tested parts. Table 2-bottom
shows our results.

2We use stess -c 10. Other workloads work too

https://github.com/kdlucas/byte-unixbench

Phantom: Exploiting Decoder-detectable Mispredictions MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

Table 3: Accuracy and median time needed to derandomize kernel image
location on AMD Zen microarchitectures using P1, over 100 runs.

µarch Model Accuracy Median time

Zen 2 AMD EPYC 7252 97% 4.09 s
Zen 3 Ryzen 5 5600G 100% 1.38 s
Zen 4 Ryzen 7 7700X 95% 1.23 s

7 EXPLOITATION
We build three exploits using the primitives we discussed in Section 6
to break kernel image KASLR, physmap KASLR and consequently
leak kernel data. Recent KASLR exploits on AMD microarchitec-
tures do not fully derandomize the address [41], do not consider the
newer Zen 3 and Zen 4 CPUs [41, 40], only work in the absence
of KPTI [40] or focus exclusively on kernel image KASLR [41].
KASLR is an important defense against memory corruption attacks
in the kernel, since it prevents the knowledge of specific gadget
addresses [12].

We use P1 to leak the kernel image location in Section 7.1, and P2
to leak kernel’s physmap location in Section 7.2. These two attacks
rely on Prime+Probe [50] which turns out to be noisy. We discuss
how we can overcome this in Section 7.3. Finally, in Section 7.4
we show how P3 extends the attack surface of Spectre with new
gadgets.

7.1 Breaking kernel image KASLR
We show how we can derandomize kernel image KASLR on AMD
microarchitectures with PHANTOM speculation. We run Linux kernel
5.19 with the latest patches.

Listing 1: We trigger speculation at the nop instruction in
__task_pid_nr_ns(). Found at kernel image offset 0xf6520.

1 nop DWORD PTR [rax+rax *1+0x0]

2 push rbp

3 mov rbp ,rsp

We can break kernel image KASLR with P1. KASLR places the
kernel image in one of 488 possible locations [38]. For each possible
location, we inject a jmp* prediction to a branch target that maps
to a specific instruction cache set that we choose. The getpid()
system call will execute the code shown in Listing 1, where we
inject a prediction at the nop instruction on Line 1. Hence, for each
possible location, 1 we prime the chosen cache set, 2 inject the
jmp* prediction, 3 issue getpid(), and 4 probe the cache set.
If the prediction was used and the branch target was mapped in
memory, we can observe a cache signal from the chosen cache set
through Prime+Probe. This happens when testing with the correct
kernel image location.

Results. We run our KASLR exploit 100 times on our AMD Zen ma-
chines, each time rebooting the machine to refresh KASLR. Table 3
presents the success rate and median time needed to derandomize
the kernel image location.

Table 4: Accuracy and median time needed to find physmap on a AMD
Zen 2 microarchitecture using P2, over 10 runs.

µarch Model Accuracy Median time

Zen AMD Ryzen 5 1600X 100% 101 s
Zen 2 AMD EPYC 7252 90% 106.5 s

Table 5: Accuracy and median time needed to find a physical address on
AMD Zen 1/2 microarchitectures, over 100 runs.

µarch Model Memory Accuracy Median time

Zen AMD Ryzen 5 1600X 8 GB 99% 1 s
Zen 2 AMD EPYC 7252 64 GB 100% 16 s

7.2 Breaking physmap KASLR
Now that we have found the kernel image location, we can further
derandomize physmap KASLR on AMD Zen 1 and Zen 2. Physmap
is the direct mapping of physical memory in the kernel address space,
and has, depending on configuration, 25 600 possible locations [38].
Randomizing its location helps preventing certain memory corrup-
tion attacks [33].

As mentioned in Section 6.1, we can only detect mapped mem-
ory using the speculative instruction fetch if the target is executable.
However, physmap is marked non-executable. To derandomize physmap,
we use P2, which detects mapped non-executable memory by de-
tecting a transient load in the PHANTOM speculation window using
Prime+Probe on the L2 data cache. For Prime+Probe on L2, we use
2 MiB physically contiguous transparent huge pages.

Listing 2: We trigger speculation at the call instruction, upon entering
__fdget_pos(). Found at kernel image offset 0x41db60.

1 nop DWORD PTR [rax+rax *1+0x0]

2 push rbp

3 mov esi ,0x4000

4 mov rbp ,rsp

5 sub rsp ,0x8

6 call 0x9341c7b0

Listing 3: Our disclosure gadget to leak the physmap location. Found at
kernel image offset 0x41da52.

1 mov r12 ,QWORD PTR [r12+0xbe0]

By using the tooling from previous work [73], we find that upon
executing the readv() system call, we control the value of R12
using the second argument of the system call (i.e., RSI) when
__fdget_pos() is called. We trigger speculation by confusing the
call instruction shown in Listing 2 with a jmp* prediction to the
disclosure gadget shown in Listing 3. The steps of the attack are
very similar to our kernel image KASLR derandomization exploit,
except that the EX step of P2 allows us to issue a load that we can
detect with Prime+Probe.

Results. We run our physmap derandomization exploit 10 times on
our vulnerable AMD machines, each time rebooting the system. Ta-
ble 4 shows the success rate and median time needed to derandomize
the physmap location.

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Wikner et al.

7.3 Overcoming Noise
Prime+Probe proves to be very noisy, especially on the L1 instruction
cache. This may be due to the cache replacement policy or because
the system call thrashes the chosen cache set before we can probe it.
Instruction prefetching may contribute to this as well.

To improve the results, we repeat our exploit for multiple cache
sets. For each set S, in addition to measuring the probing time when
the injected target maps to the given set (TS), we also measure the
time when it maps to some unrelated set. This gives us a baseline
time for the monitored set, BS. For the kernel image derandomization
exploit, we score each possible location by using a bounded relative
timing difference between speculatively branching to addresses map-
ping to the primed cache set and the baseline, accumulated for all
64 sets. That is, scoreguess =

S≤64
S=0 min(max(TS −BS,−10),10). To

amplify the difference, we trigger another speculative branch along
the execution path of the system call to an additional target mapped
to S.

7.4 Leaking kernel memory
We now discuss how P3 extends the attack surface of Spectre with
new gadgets. First, to leak kernel memory, we need to find the
location of a Flush+Reload buffer (reload buffer) in physmap.

Enabling Flush+Reload. We use the attacks in Section 7.1 and
Section 7.2 to leak the kernel image and physmap locations. To
enable Flush+Reload, we make a guess, Pg of the physical address
of a virtual address A in our user mode program. We use the same
setup as described in Section 7.2, meaning we trigger speculation
during the readv() system call. We pass physmap + Pg in RSI to
the system call. We can verify if Pg is correct using Flush+Reload on
address A. To reduce entropy, we allocate A as a 2 MiB transparent
huge page. Our results show that we can successfully determine the
physical address of a virtual address in our program.

We attempt to determine the physical address of A 100 times. To
re-randomize the physical address of A in each attempt, we allocate
a random number (0–99) of huge pages before allocating A. Table 5
presents the accuracy and median time observed.

Leaking memory with MDS gadgets. In this section, we discuss
how limited Spectre gadgets, referred to as MDS gadgets in previous
literature [32], can be combined with our P3 to leak arbitrary kernel
memory. A conventional Spectre gadget performs two loads: one
that fetches the secret from memory and one which encodes it in a
reload buffer with a secret-dependent offset. With P3, however, we
are able to trigger the secret-dependent load elsewhere. A gadget
that only performs one out-of-bound load would thus be enough to
enable arbitrary read capabilities.

Listing 4: A sample MDS gadget.

1 void read_data(uint64_t user_index) {

2 if (user_index < *array_length) {

3 uint8_t data = array[user_index]

4 parse_data(data);

5 }

6 }

To prove the feasibility of such an exploit, we build a kernel
module that contains an MDS gadget. Listing 4 shows what such a

gadget might look like. When the user provides an out-of-bounds
value to read_data(), the conditional branch may be incorrectly
predicted as taken, causing a user-controlled address to be fetched
from memory. A conventional Spectre attack would not succeed,
however, since there is no data-dependent load. Our goal is to induce
this secret-dependent load using P3.

We assume we know where our MDS gadget resides in the kernel
address space. We also assume we know the start of physmap, the
physical address of our reload buffer, and the kernel address of a
disclosure gadget that performs the secret-dependent load. All this
information can be leaked with our previous steps. We also assume
that the address of array (Line 3 of Listing 4) is known. The user
provides the kernel module with user_index and the location of
our reload buffer in the kernel’s virtual address space.

Relying on BTB aliasing, we train the conditional branch to pre-
dict taken. Additionally, we train the BTB with a branch to the disclo-
sure gadget at the location of the (direct) call to parse_data(). Our
disclosure gadget indexes into our reload buffer using the (shifted)
value of data.

Results. We run our proof-of-concept on an AMD Zen 2 EPYC
7252. Our results show that we can reliably leak 4096 bytes of
randomized data from the kernel using an MDS gadget. We repeat
our experiment 10 times, each time after a reboot. In 8 of these
attempts, we measure a median bandwidth of 84 bytes/s, achieving
a perfect accuracy of 100%. In the remaining 2 attempts, no signal
was observed. One possible explanation could be an undesired BTB
aliasing.

Finding MDS gadgets. This work focuses on the analysis of fron-
tend speculation and not the discovery of gadgets. Previous work
shows how one can find MDS-like gadgets in the kernel [32]. Fur-
thermore, new gadgets are continuously discovered and patched as
shown recently by Google [78].

8 MITIGATION
We discuss the hardware- and software-based mitigation strategies
for the type the exploits that we built, including mitigations that
AMD proposed. The mitigations therefore mainly concern attacks
against the OS kernel by an unprivileged user, described in finer
detail in Section 3.

8.1 Hardware mitigations

SuppressBPOnNonBranch. AMD introduced an MSR bit Sup-
pressBPOnNonBranch that, when set, limits branch prediction to
control-flow edges [4]. This means that SuppressBPOnNonBranch
should not allow the nops column in Table 1 to proceed in the
pipeline. Our evaluation, however, paints to two problems: 1 Sup-
pressBPOnNonBranch is not supported on AMD Zen (+) and 2 on
AMD Zen 2, the SuppressBPOnNonBranch does not stop branch
prediction. As we showed in Section 6, the invalid branch target
still advances through IF and ID. However, we confirm that it stops
the transient execution. Only stopping transient execution at non-
branches means primitives P1 is unaffected, and P2 and P3 still
work if targeting a victim instruction that is a control-flow edge.

Phantom: Exploiting Decoder-detectable Mispredictions MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

AutoIBRS. Our evaluation suggests that AutoIBRS has the same
issue as the SuppressBPOnNonBranch mitigation in the sense that
the misprediction is only prevented after ID, which again means that
primitive P1 is unaffected. This would be necessary if AutoIBRS
follows the original IBRS specification, which, as the name suggests,
concerns only indirect branch speculation. A possible enhancement
for AutoIBRS could be that the branch predictor refuses to serve
any prediction where the current privilege mode mismatches the
privilege mode specified by the prediction.

An in-depth mitigation in this direction should stop predictions
until the decoding of the branch source has finished, thereby pre-
venting all branch type confusions. However, we presume that such
an approach would require fundamental design changes and perfor-
mance impact, rendering it unfeasible in practice.

8.2 Software mitigations

lfence. AMD has also continued to recommend using lfence at
sources of bad speculation, however as we discussed earlier in Sec-
tion 2.4, finding all possible sources of bad speculation is not trivial.
Because proactively placing speculation barriers behind every con-
ditional branch has an average performance impact of 5× [68],
determining the branches where speculation barriers are necessary is
in practice often a semi-manual process. Although automatic tools
have been proposed [23, 48, 32, 68, 78], most of them do not achieve
completeness. Furthermore, short speculation expands the set of
possible gadgets that future tools of this type should consider.

IBPB. Indirect Branch Prediction Barrier (IBPB) is a mechanism
supported by all recent x86 CPUs that is used to flush the BTB state
when switching between distrusting execution contexts. On some
microarchitectures, IBPB flushes more than just indirect branch
predictions. As such, if IBPB flushes all types of predictions, it is
possible to use it when switching from user mode to kernel mode
to ensure that user mode cannot cause PHANTOM speculation in
the kernel context. The problem with IBPB is its large performance
penalty. Assuming that IBPB can flush all types of predictions, it
mitigates all our exploitation primitives P1, P2, and P3.

9 RELATED WORK
We discuss related work on microarchitectural side channels and
transient execution attacks.

9.1 Microarchitectural info leaks
Kocher et al. [35] discuss that microarchitectural optimizations,
like branch prediction, caches, variable-time instructions (e.g., divi-
sion and multiplication) are workload dependent. Using timing side
channels on these components, secret bits of information about the
workload can be inferred. A recent study by Ramhöj et al. systemizes
various microarchitectural attacks over the past few decades [25].

Shared cache leaks. Caches are the most studied component of
microarchitectural side channels. Percival [52] showed how co-
located sibling threads could infer each other’s memory interactions.
Osvik et al. [50] introduced Prime+Probe and Evict+Time nam-
ing, but the similar techniques were in previous cache attacks as
well [9]. Prime+Probe was adapted to web browser settings by Oren
et al. [49] and Gras et al. [21] showed Evict+Time to leak pointers

from within the browser sandbox. Yarom et al. [76] introduced the
more noise-resistant Flush+Reload technique in shared memory sce-
narios. Cache attacks continue to advance along with modern CPU
caches [54, 16, 41, 22]. Advanced cache attacks also considers ring
and mesh interconnects [15, 51, 67].

Branch Predictor side channels. Aciiçmez et al. [1] showed leak-
ing secrets through Simple Branch Prediction Analysis to exfiltrate
cryptographic keys. Evtyushkin et al. [17, 18] showed branch pre-
diction can be abused to break KASLR and infer control flow inside
SGX. Lee et al. [39] used branch shadowing to infer control flow
inside SGX.

Beyond cache and branch predictor side channels, leakage through
variable instruction timing [5, 36, 61], port contention [2, 10], fre-
quency [69, 40], and power use [42] have been studied in the past.

9.2 Transient execution attacks
Spectre [34] and Meltdown [43] combined microarchitectural side-
channels with invalid speculative and Out-of-Order (OoO) execution,
creating the new class of transient execution attacks. Meltdown
triggers invalid OoO execution through a faulting memory load.
Other fault-based transient execution attacks include [11, 66, 65, 13,
56, 57].

Spectre enables info leaks through invalid speculative execution
triggered through the manipulation of branch target predictors [8, 73,
46, 34, 26], return target predictors [73, 72, 44, 37], branch condition
predictors [34, 26, 20, 47], and the memory disambiguator [27].

Wikner and Razavi [73] showed branch target misprediction of
return instructions by training them using indirect branches. Wiec-
zorkiewicz [71, 70] reverse engineered AMD branch predictors
showing branch condition and straight-line misprediction vulner-
abilities. We did a systematic analysis of branch mispredictions
due to early speculation and discovered new sources of information
leakage.

Milburn et al. [46] showed that particular SMT workloads can
extend the speculation window which bypassed the AMD’s original,
lfence-style retpoline [3]. Ren et al. [59] introduced techniques to
reverse engineer the µop-cache and potential methods to leak secrets
across lfence barrier.

Zhiyuan et al. [77] manipulates the BTBs to trigger instruction
prefetching on Intel CPUs. Unlike this concurrent work, the mis-
predictions we trigger cause the fetched instructions to enter the
pipeline with intent to execute as we showed using a µop-cache
observation channel.

9.3 Mitigations
Mitigation of potentially exploitable branch sources by inserting
speculation barriers has been explored in previous work [28, 45].
It is possible to leverage binary or source analysis for discovering
exploitable Spectre gadgets [73, 68, 32, 23, 48, 24, 55]. In particular,
Johannesmeyer et al. [32] explored dynamic analysis through fuzzing
combined with speculative emulation to automatically discover Spec-
tre and MDS leaks in the Linux kernel. In their work, conventional
Spectre V1-gadgets dereference an attacker-controllable pointer and
subsequently encode the result in the cache (e.g., two dependent
loads). As we showed in this paper, PHANTOM can leak arbitrary

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Wikner et al.

data using only a single load (similar to MDS-gadgets), by triggering
short speculation to a separate gadget that dispatches the second load.
Based on the results presented in Kasper [32], PHANTOM increases
possible Spectre gadgets by about 4 times (from 183 to 722).

10 CONCLUSION
We introduced PHANTOM, a new class of attacks that arise from early
speculation in recent AMD and Intel microarchitectures. PHANTOM

allows for triggering speculation on arbitrary instructions with spec-
ulation windows that are short, but still allowing for transient fetch
and transient decode on almost all tested microarchitectures, and
transient execution of a single memory operation on AMD Zen 1
and 2. We used these new PHANTOM primitives in the construction
of three attacks: leaking code and data KASLR on all AMD Zen
microarchitectures, as well as arbitrary kernel memory with MDS
gadgets on AMD Zen 1 and 2. The attacks on AMD Zen 3 and 4
required us to reverse engineer the cross-privilege BTB functions
for the first time. Our analysis of existing hardware and software
mitigations shows that mitigating PHANTOM is going to be difficult
in practice.

ACKNOWLEDGMENTS
We thank the anonymous MICRO reviewers, David Kaplan of AMD,
and Brad Spengler of Open Source Security Inc., for their feedback.
We furthermore thank the members of the Linux security response
group of Retbleed for insights. This work was supported in part by
the Swiss State Secretariat for Education, Research and Innovation-
nder contract number MB22.00057 (ERC-StG PROMISE).

REFERENCES
[1] Onur Aciiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. 2007. On the power of

simple branch prediction analysis. In Proceedings of the 2nd ACM symposium
on Information, computer and communications security, 312–320.

[2] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan, Cesar Pereida
García, and Nicola Tuveri. 2019. Port contention for fun and profit. In 2019
IEEE Symposium on Security and Privacy (SP). IEEE, 870–887.

[3] AMD. 2018. Indirect Branch Control Extension. Retrieved September 18, 2023
from https://www.amd.com/content/dam/amd/en/documents/processor-tech-d
ocs/white-papers/111006-architecture-guidelines-update-amd64-technology-
indirect-branch-control-extension.pdf.

[4] AMD. 2022. Technical guidance for mitigating branch type confusion. Accessed
on 1.8.2022. (2022). Retrieved September 18, 2023 from https://www.amd.com
/system/files/documents/technical-guidance-for-mitigating-branch-type-conf
usion_v7_20220712.pdf.

[5] Marc Andrysco, David Kohlbrenner, Keaton Mowery, Ranjit Jhala, Sorin Lerner,
and Hovav Shacham. 2015. On subnormal floating point and abnormal timing.
In 2015 IEEE Symposium on Security and Privacy. IEEE, 623–639.

[6] ARM. 2020. Straight-line speculation. (2020). Retrieved September 18, 2023
from https://developer.arm.com/-/media/Arm%20Developer%20Community
/PDF/Security%20Update%2008%20June%202020/Straight-line_Speculation
-v1.0.pdf.

[7] Truls Asheim, Boris Grot, and Rakesh Kumar. 2023. A storage-effective btb
organization for servers. In 2023 IEEE International Symposium on High-
Performance Computer Architecture (HPCA). IEEE, 1153–1167.

[8] Enrico Barberis, Pietro Frigo, Marius Muench, Herbert Bos, and Cristiano
Giuffrida. 2022. Branch history injection: on the effectiveness of hardware
mitigations against cross-privilege spectre-v2 attacks. In USENIX Security.

[9] Daniel J. Bernstein. 2005. Cache-timing attacks on AES. Tech. rep. The Univer-
sity of Illinois at Chicago.

[10] Atri Bhattacharyya, Alexandra Sandulescu, Matthias Neugschwandtner, Alessan-
dro Sorniotti, Babak Falsafi, Mathias Payer, and Anil Kurmus. 2019. Smother-
spectre: exploiting speculative execution through port contention. In Proceed-
ings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security (CCS). https://doi.org/10.1145/3319535.3363194. Association for
Computing Machinery.

[11] Jo Van Bulck et al. 2018. Foreshadow: Extracting the Keys to the Intel SGX
Kingdom with Transient Out-of-Order Execution. In SEC.

[12] Claudio Canella, Michael Schwarz, Martin Haubenwallner, Martin Schwarzl,
and Daniel Gruss. 2020. KASLR: Break it, fix it, repeat. In Proceedings of
the 15th ACM Asia Conference on Computer and Communications Security,
481–493.

[13] Claudio Canella et al. 2019. Fallout: leaking data on meltdown-resistant cpus. In
Proceedings of the ACM SIGSAC Conference on Computer and Communications
Security (CCS). ACM.

[14] Yen-Jen Chang. 2006. Lazy btb: reduce btb energy consumption using dynamic
profiling. In Proceedings of the 2006 Asia and South Pacific Design Automation
Conference, 917–922.

[15] Miles Dai, Riccardo Paccagnella, Miguel Gomez-Garcia, John McCalpin, and
Mengjia Yan. 2022. Don’t mesh around:{side-channel} attacks and mitigations
on mesh interconnects. In 31st USENIX Security Symposium (USENIX Security
22), 2857–2874.

[16] Craig Disselkoen, David Kohlbrenner, Leo Porter, and Dean Tullsen. 2017.
Prime+abort: a timer-free high-precision l3 cache attack using intel {tsx}. In
26th USENIX Security Symposium (USENIX Security 17), 51–67.

[17] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. 2016. Jump
over ASLR: Attacking branch predictors to bypass ASLR. In Microarchitecture
(MICRO), 2016 49th Annual IEEE/ACM International Symposium on. IEEE,
1–13.

[18] Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-Ghazaleh, Dmitry Ponomarev,
et al. 2018. BranchScope: A New Side-Channel Attack on Directional Branch
Predictor. In Proceedings of the Twenty-Third International Conference on
Architectural Support for Programming Languages and Operating Systems.
ACM, 693–707.

[19] Thomas Gleixner. 2022. LKML: [patch 00/38] x86/retbleed: Call depth tracking
mitigation. (2022). https://lore.kernel.org/lkml/f9fd86acac4f49bc8f90b403978e
9df3@AcuMS.aculab.com/t/.

[20] Enes Göktas, Kaveh Razavi, Georgios Portokalidis, Herbert Bos, and Cris-
tiano Giuffrida. 2020. Speculative probing: hacking blind in the spectre era. In
Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communi-
cations Security, 1871–1885.

[21] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Cristiano Giuffrida.
2017. Aslr on the line: practical cache attacks on the mmu. In NDSS. Vol. 17,
26.

[22] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard. 2016.
Flush+flush: a fast and stealthy cache attack. In International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment. Springer,
279–299.

[23] Marco Guarnieri, Boris Köpf, José F Morales, Jan Reineke, and Andrés Sánchez.
2020. Spectector: principled detection of speculative information flows. In 2020
IEEE Symposium on Security and Privacy (SP). IEEE, 1–19.

[24] Shengjian Guo, Yueqi Chen, Peng Li, Yueqiang Cheng, Huibo Wang, Meng Wu,
and Zhiqiang Zuo. 2020. Specusym: speculative symbolic execution for cache
timing leak detection. In Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering, 1235–1247.

[25] Nadja Ramhöj Holtryd, Madhavan Manivannan, and Per Stenström. 2023. Sok:
analysis of root causes and defense strategies for attacks on microarchitectural
optimizations, 631–650.

[26] Jan Horn. 2018. Reading privileged memory with a side-channel. https://googlep
rojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html.
(2018). Retrieved September 18, 2023 from.

[27] Jann Horn. 2018. Issue 1528: speculative execution, variant 4: speculative store
bypass. (2018). Retrieved September 18, 2023 from https://bugs.chromium.org
/p/project-zero/issues/detail?id=1528.

[28] Open Source Security Inc. 2018. Respectre: the state of the art in spectre
defenses. (2018). Retrieved September 18, 2023 from https://grsecurity.net/resp
ectre_announce.

[29] Intel Corp. 2022. Retpoline: a branch target injection mitigation. Retrieved
September 18, 2023 from https://www.intel.com/content/www/us/en/developer
/articles/technical/software-security-guidance/technical-documentation/retpol
ine-branch-target-injection-mitigation.html.

[30] Intel Corp. 2018. Speculative Execution Side Channel Mitigations. Retrieved
September 18, 2023 from https://www.intel.com/content/www/us/en/developer
/articles/technical/software-security-guidance/technical-documentation/specu
lative-execution-side-channel-mitigations.html.

[31] Intel Corp. 2018. Indirect Branch Restricted Speculation. Retrieved September
18, 2023 from https://www.intel.com/content/www/us/en/developer/articles/tec
hnical/software-security-guidance/technical-documentation/indirect-branch-r
estricted-speculation.html.

[32] Brian Johannesmeyer, Jakob Koschel, Kaveh Razavi, Herbert Bos, and Cristiano
Giuffrida. 2022. Kasper: Scanning for Generalized Transient Execution Gadgets
in the Linux Kernel. In NDSS. (Feb. 2022).

https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/white-papers/111006-architecture-guidelines-update-amd64-technology-indirect-branch-control-extension.pdf
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/white-papers/111006-architecture-guidelines-update-amd64-technology-indirect-branch-control-extension.pdf
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/white-papers/111006-architecture-guidelines-update-amd64-technology-indirect-branch-control-extension.pdf
https://www.amd.com/system/files/documents/technical-guidance-for-mitigating-branch-type-confusion_v7_20220712.pdf
https://www.amd.com/system/files/documents/technical-guidance-for-mitigating-branch-type-confusion_v7_20220712.pdf
https://www.amd.com/system/files/documents/technical-guidance-for-mitigating-branch-type-confusion_v7_20220712.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Security%20Update%2008%20June%202020/Straight-line_Speculation-v1.0.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Security%20Update%2008%20June%202020/Straight-line_Speculation-v1.0.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Security%20Update%2008%20June%202020/Straight-line_Speculation-v1.0.pdf
https://doi.org/10.1145/3319535.3363194
https://lore.kernel.org/lkml/f9fd86acac4f49bc8f90b403978e9df3@AcuMS.aculab.com/t/
https://lore.kernel.org/lkml/f9fd86acac4f49bc8f90b403978e9df3@AcuMS.aculab.com/t/
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://grsecurity.net/respectre_announce
https://grsecurity.net/respectre_announce
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/retpoline-branch-target-injection-mitigation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/retpoline-branch-target-injection-mitigation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/retpoline-branch-target-injection-mitigation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/speculative-execution-side-channel-mitigations.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/speculative-execution-side-channel-mitigations.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/speculative-execution-side-channel-mitigations.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-restricted-speculation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-restricted-speculation.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-restricted-speculation.html

Phantom: Exploiting Decoder-detectable Mispredictions MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

[33] Vasileios P Kemerlis, Michalis Polychronakis, and Angelos D Keromytis. 2014.
Ret2dir: rethinking kernel isolation. In 23rd USENIX Security Symposium
(USENIX Security 14), 957–972.

[34] Paul Kocher et al. 2019. Spectre attacks: exploiting speculative execution. In
40th IEEE Symposium on Security and Privacy (S&P’19).

[35] Paul C Kocher. 1996. Timing attacks on implementations of diffie-hellman,
rsa, dss, and other systems. In Annual International Cryptology Conference.
Springer, 104–113.

[36] David Kohlbrenner and Hovav Shacham. 2017. On the effectiveness of mitiga-
tions against floating-point timing channels. In USENIX Security Symposium,
69–81.

[37] Esmaeil Mohammadian Koruyeh, Khaled N. Khasawneh, Chengyu Song, and
Nael Abu-Ghazaleh. 2018. Spectre returns! speculation attacks using the return
stack buffer. In 12th USENIX Workshop on Offensive Technologies (WOOT 18).
USENIX Association.

[38] Jakob Koschel, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. 2020.
TagBleed: Breaking KASLR on the Isolated Kernel Address Space using Tagged
TLBs. In 2020 IEEE European Symposium on Security and Privacy (EuroS&P).
IEEE, 309–321.

[39] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and
Marcus Peinado. 2017. Inferring fine-grained control flow inside sgx enclaves
with branch shadowing. In USENIX Security Symposium. Vol. 19, 16–18.

[40] Moritz Lipp, Daniel Gruss, and Michael Schwarz. 2022. AMD Prefetch At-
tacks through Power and Time. In 31st USENIX Security Symposium (USENIX
Security 22), 643–660.

[41] Moritz Lipp, Vedad Hadžić, Michael Schwarz, Arthur Perais, Clémentine Mau-
rice, and Daniel Gruss. 2020. Take a way: exploring the security implications of
amd’s cache way predictors. In Proceedings of the 15th ACM Asia Conference
on Computer and Communications Security, 813–825.

[42] Moritz Lipp, Andreas Kogler, David Oswald, Michael Schwarz, Catherine
Easdon, Claudio Canella, and Daniel Gruss. 2021. Platypus: software-based
power side-channel attacks on x86. In 2021 IEEE Symposium on Security and
Privacy (SP). IEEE, 355–371.

[43] Moritz Lipp et al. 2018. Meltdown: reading kernel memory from user space. In
27th USENIX Security Symposium (USENIX Security 18).

[44] Giorgi Maisuradze and Christian Rossow. 2018. Ret2spec: speculative execution
using return stack buffers. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security (CCS).

[45] Microsoft. 2018. Spectre mitigations in MSVC. (2018). Retrieved September
18, 2023 from https://devblogs.microsoft.com/cppblog/spectre-mitigations-in-
msvc/.

[46] Alyssa Milburn, Ke Sun, and Henrique Kawakami. 2022. You cannot always
win the race: analyzing the lfence/jmp mitigation for branch target injection.
arXiv preprint arXiv:2203.04277. eprint: 2203.04277.

[47] Oleksii Oleksenko, Marco Guarnieri, Boris Köpf, and Mark Silberstein. 2023.
Hide and Seek with Spectres: Efficient discovery of speculative information
leaks with random testing. arXiv preprint arXiv:2301.07642. arXiv: 2301.07642.

[48] Oleksii Oleksenko, Bohdan Trach, Mark Silberstein, and Christof Fetzer. 2020.
Specfuzz: bringing spectre-type vulnerabilities to the surface. In 29th USENIX
Security Symposium (USENIX Security 20), 1481–1498.

[49] Yossef Oren, Vasileios P Kemerlis, Simha Sethumadhavan, and Angelos D
Keromytis. 2015. The Spy in the Sandbox: Practical Cache Attacks in JavaScript
and their Implications. In Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security. ACM, 1406–1418.

[50] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache attacks and coun-
termeasures: the case of aes. In Cryptographers’ track at the RSA conference,
1–20.

[51] Riccardo Paccagnella, Licheng Luo, and Christopher W Fletcher. 2021. Lord
of the ring (s): side channel attacks on the cpu on-chip ring interconnect are
practical. In USENIX Security Symposium, 645–662.

[52] Colin Percival. 2005. Cache missing for fun and profit. (2005).
[53] Kim Phillips. 2022. LKML: [PATCH 0/3] x86/speculation: Support Automatic

IBRS. (2022). Retrieved September 18, 2023 from https://lkml.org/lkml/2022/1
1/4/1199.

[54] Antoon Purnal, Furkan Turan, and Ingrid Verbauwhede. 2021. Prime+scope:
overcoming the observer effect for high-precision cache contention attacks. In
Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communi-
cations Security, 2906–2920.

[55] Zhenxiao Qi, Qian Feng, Yueqiang Cheng, Mengjia Yan, Peng Li, Heng Yin,
and Tao Wei. 2021. Spectaint: speculative taint analysis for discovering spectre
gadgets. In Annu. Network and Distributed System Security Symp.(NDSS).

[56] Hany Ragab, Enrico Barberis, Herbert Bos, and Cristiano Giuffrida. 2021.
Rage against the machine clear: a systematic analysis of machine clears and
their implications for transient execution attacks. In 30th USENIX Security
Symposium (USENIX Security 21), 1451–1468.

[57] Hany Ragab, Alyssa Milburn, Kaveh Razavi, Herbert Bos, and Cristiano Giuf-
frida. 2021. CrossTalk: Speculative Data Leaks Across Cores Are Real. In
S&P.

[58] Charles Reis, Alexander Moshchuk, and Nasko Oskov. 2019. Site isolation:
process separation for web sites within the browser. In 28th USENIX Security
Symposium (USENIX Security 19), 1661–1678.

[59] Xida Ren, Logan Moody, Mohammadkazem Taram, Matthew Jordan, Dean M
Tullsen, and Ashish Venkat. 2021. I see dead µops: leaking secrets via intel/amd
micro-op caches. In 2021 ACM/IEEE 48th Annual International Symposium on
Computer Architecture (ISCA). IEEE, 361–374.

[60] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian Steck-
lina, Thomas Prescher, and Daniel Gruss. 2019. ZombieLoad: cross-privilege-
boundary data sampling. In CCS.

[61] Michael Schwarz, Martin Schwarzl, Moritz Lipp, Jon Masters, and Daniel Gruss.
2019. Netspectre: read arbitrary memory over network. In European Symposium
on Research in Computer Security. Springer, 279–299.

[62] Junaid Shahid and Ofir Weisse. 2022. Https://lwn.net/articles/909469/. accessed
on 02.02.2023. (2022). https://lwn.net/ml/linux-kernel/20220223052223.12021
52-1-junaids@google.com/.

[63] Daniel Sneddon. 2022. [PATCH 5.4 14/15] x86/speculation: Add RSB VM Exit
protections. (2022). Retrieved September 18, 2023 from https://lkml.org/lkml/2
022/8/9/728.

[64] Paul Turner. 2018. Retpoline: a software construct for preventing branch-target-
injection. Retrieved September 18, 2023 from https://support.google.com/faqs/a
nswer/7625886.

[65] Jo Van Bulck et al. 2020. Lvi: hijacking transient execution through microarchi-
tectural load value injection. In 41th IEEE Symposium on Security and Privacy
(S&P’20), 1399–1417.

[66] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro Frigo, Giorgi
Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2019. RIDL:
rogue in-flight data load. In S&P. (May 2019).

[67] Junpeng Wan, Yanxiang Bi, Zhe Zhou, and Zhou Li. 2022. Meshup: stateless
cache side-channel attack on cpu mesh. In 2022 IEEE Symposium on Security
and Privacy (SP). IEEE, 1506–1524.

[68] Guanhua Wang, Sudipta Chattopadhyay, Ivan Gotovchits, Tulika Mitra, and
Abhik Roychoudhury. 2019. Oo7: low-overhead defense against spectre attacks
via program analysis. IEEE Transactions on Software Engineering.

[69] Yingchen Wang, Riccardo Paccagnella, Elizabeth Tang He, Hovav Shacham,
Christopher W Fletcher, and David Kohlbrenner. 2022. Hertzbleed: turning
power {side-channel} attacks into remote timing attacks on x86. In 31st USENIX
Security Symposium (USENIX Security 22), 679–697.

[70] Pawel Wieczorkiewicz. 2022. The amd branch (mis)predictor part 2: where no
cpu has gone before (cve-2021-26341). (2022). Retrieved September 18, 2023
from https://grsecurity.net/amd_branch_mispredictor_part_2_where_no_cpu
_has_gone_before.

[71] Pawel Wieczorkiewicz. 2022. The amd branch (mis)predictor: just set it and
forget it! (2022). Retrieved September 18, 2023 from https://grsecurity.net/amd
_branch_mispredictor_just_set_it_and_forget_it.

[72] Johannes Wikner, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. 2022.
Spring: Spectre Returning in the Browser with Speculative Load Queuing and
Deep Stacks. In 16th IEEE Workshop on Offensive Technologies (WOOT’22).
IEEE, (May 2022).

[73] Johannes Wikner and Kaveh Razavi. 2022. Retbleed: Arbitrary Speculative
Code Execution with Return Instructions. In 31st USENIX Security Symposium
(USENIX Security 22), 3825–3842.

[74] Dan Williams. 2018. LKML: [PATCH v6 02/13] array_index_nospec: sanitize
speculative array de-references. https://lore.kernel.org/lkml/151727414808
.33451.1873237130672785331.stgit@dwillia2- desk3.amr.corp.intel.com/.
Retrieved September 18, 2023 from.

[75] Hongyan Xia, David Zhang, Wei Liu, Istvan Haller, Bruce Sherwin, and David
Chisnall. 2022. A secret-free hypervisor: Rethinking isolation in the age of
speculative vulnerabilities. In IEEE S&P ’22. IEEE, 370–385.

[76] Yuval Yarom and Katrina Falkner. 2014. FLUSH+RELOAD: A High Resolution,
Low Noise, L3 Cache Side-Channel Attack. In USENIX Security Symposium,
719–732.

[77] Zhiyuan Zhang, Mingtian Tao, Sioli O’Connell, Chitchanok Chuengsatiansup,
Daniel Genkin, and Yuval Yarom. 2023. Bunnyhop: exploiting the instruction
prefetcher.

[78] Jordy Zomer and Alexandra Sandulescu. 2023. Linux kernel: spectre-v1 gadgets.
(2023). Retrieved September 18, 2023 from https://github.com/google/security-
research/security/advisories/GHSA-m7j5-797w-vmrh.

Received 28 April 2023; accepted 24 July 2023

https://devblogs.microsoft.com/cppblog/spectre-mitigations-in-msvc/
https://devblogs.microsoft.com/cppblog/spectre-mitigations-in-msvc/
2203.04277
https://arxiv.org/abs/2301.07642
https://lkml.org/lkml/2022/11/4/1199
https://lkml.org/lkml/2022/11/4/1199
https://lwn.net/ml/linux-kernel/20220223052223.1202152-1-junaids@google.com/
https://lwn.net/ml/linux-kernel/20220223052223.1202152-1-junaids@google.com/
https://lkml.org/lkml/2022/8/9/728
https://lkml.org/lkml/2022/8/9/728
https://support.google.com/faqs/answer/7625886
https://support.google.com/faqs/answer/7625886
https://grsecurity.net/amd_branch_mispredictor_part_2_where_no_cpu_has_gone_before
https://grsecurity.net/amd_branch_mispredictor_part_2_where_no_cpu_has_gone_before
https://grsecurity.net/amd_branch_mispredictor_just_set_it_and_forget_it
https://grsecurity.net/amd_branch_mispredictor_just_set_it_and_forget_it
https://lore.kernel.org/lkml/151727414808.33451.1873237130672785331.stgit@dwillia2-desk3.amr.corp.intel.com/
https://lore.kernel.org/lkml/151727414808.33451.1873237130672785331.stgit@dwillia2-desk3.amr.corp.intel.com/
https://github.com/google/security-research/security/advisories/GHSA-m7j5-797w-vmrh
https://github.com/google/security-research/security/advisories/GHSA-m7j5-797w-vmrh

	Abstract
	1 Introduction
	2 Background
	2.1 Branch Target Prediction
	2.2 Pipelining
	2.3 Spectre
	2.4 Mitigating Spectre

	3 Threat model
	4 Overview
	5 phantom speculation
	5.1 Observation Channels
	5.2 Triggering mispredictions

	6 Exploitation Primitives
	6.1 Attacker primitives
	6.2 Collision with kernel addresses
	6.3 SuppressBPOnNonBr and AutoIBRS
	6.4 Covert Channel

	7 Exploitation
	7.1 Breaking kernel image KASLR
	7.2 Breaking physmap KASLR
	7.3 Overcoming Noise
	7.4 Leaking kernel memory

	8 Mitigation
	8.1 Hardware mitigations
	8.2 Software mitigations

	9 Related Work
	9.1 Microarchitectural info leaks
	9.2 Transient execution attacks
	9.3 Mitigations

	10 Conclusion
	Acknowledgments

