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Abstract
Rowhammer attacks are pervasive in client systems when
launched natively. The biggest Rowhammer threat for such
systems, however, lies in the browser. Our large-scale evalu-
ation of browser-based Rowhammer attacks shows that they
can only trigger bit flips on a small fraction of DRAM devices.
Postponing refresh commands that trigger in-DRAM mitiga-
tions can boost the performance of Rowhammer attacks, but
it has never been demonstrated in practice.

We introduce POSTHAMMER, a new Rowhammer attack
in JavaScript that forces the CPU’s memory controller to
postpone refresh commands by creating long durations of in-
tense Rowhammer activity followed by sufficiently long delay
windows to allow the memory controller to batch refresh com-
mands. POSTHAMMER features a new abstraction called lane,
which enables a subset of addresses in a Rowhammer pat-
tern to be accessed more often. Lanes enable POSTHAMMER
to support effective refresh-postponed non-uniform patterns
in the browser for the first time. Our evaluation shows that
POSTHAMMER is 2.8× more effective than the state of the
art, triggering bit flips on 86 % of our 28 DDR4 test devices.

1 Introduction

Despite deployed in-DRAM mitigations, recent work shows
it is possible to trigger Rowhammer bit flips on all DDR4
devices in a PC [12]. Arguably, the most interesting Rowham-
mer threat model for such systems is a browser-based at-
tacker. While there has been some work on JavaScript-based
Rowhammer attacks, their evaluations have only considered
a few DDR4 devices [4, 10, 18]. Are browser-based Rowham-
mer attacks as pervasive as when launched natively?

Our evaluation using 28 DDR4 devices shows that state-of-
the-art attacks can only trigger bit flips on up to 29 % of these
devices. To enable pervasive browser-based Rowhammer at-
tacks, we introduce POSTHAMMER that relies on refresh-
postponed non-uniform patterns. POSTHAMMER generates
two particular patterns that trigger bit flips on 86 % of our test
devices, enabling Rowhammer exploitation in the wild.

Refresh postponement. Recent DDR standards allow the
memory controller to pull-in or postpone refresh commands
to improve performance [15,16]. While it has been suggested
that irregular refresh commands might weaken in-DRAM
mitigations [17], such attacks have not been demonstrated
in practice. The refresh commands are sent periodically by
the memory controller, and it is unclear whether an attacker
can sufficiently control when these refresh commands are
postponed. Through a series of experiments, we show that an
attacker can indirectly control the postponing of refresh com-
mands by triggering intense periods of memory activity and
forcing the memory controller to send postponed refresh in
batches at desired times by inserting sufficiently long delays in
the access patterns. We use this technique to build POSTHAM-
MER, which generates refresh-postponed many-sided patterns.
While this version of POSTHAMMER triggers bit flips on 43 %
of the devices, the question is whether the recent native non-
uniform patterns [12] could further enhance POSTHAMMER.

Eviction-based non-uniform patterns. A non-uniform pat-
tern hammers certain aggressors less often than others to
evade in-DRAM mitigations better. While a non-uniform pat-
tern is straightforward to implement natively, the same does
not apply to the browser environment. As the browser-based
attacker relies on eviction sets, simply accessing a particu-
lar aggressor twice will nudge the cache replacement policy
into keeping that aggressor always in the cache, breaking the
eviction chain constructed by the attacker. To address this
challenge, POSTHAMMER relies on a new abstraction, which
we call lane. A lane is a minimal eviction set made out of part
of a given Rowhammer access pattern. By combining different
lanes, some sharing certain aggressor addresses, POSTHAM-
MER accesses certain aggressors less often while performing
evictions correctly. Hence, lanes enable POSTHAMMER to
achieve refresh-postponed non-uniform patterns with cache
evictions for the first time. Such patterns enable POSTHAM-
MER to trigger bit flips on 86 % of our devices.

Practical JavaScript attacks. While POSTHAMMER is capa-
ble of finding effective patterns on many devices, finding these



patterns can take a significantly long time, making Rowham-
mer attacks impractical. Ideally, the attacker should only need
a small set of patterns that work well on a large number of
DIMMs. By visualizing the per-DIMM best patterns, we can
distill two types of generic patterns with high performance
across most DIMMs. These two types of patterns are all the at-
tacker needs to make their browser-based Rowhammer exploit
succeed 61 % of the time—without assuming any particular
target DIMM and therefore greatly amplifying the impact of
browser-based Rowhammer attacks.

Contributions. We make the following contributions:
• We present POSTHAMMER, the first demonstration of a

Rowhammer attack that leverages refresh postponement
to weaken in-DRAM mitigations.

• We describe a novel approach for generating eviction-
based non-uniform patterns using the lane abstraction.
POSTHAMMER leverages this approach to generate
refresh-postponed non-uniform patterns that enable per-
vasive Rowhammer attacks in the browser.

• We reveal two types of patterns that work on most
DIMMs and use them to obtain an arbitrary read-write
primitive in Firefox.

We will provide more information about POSTHAMMER at
https://comsec.ethz.ch/posthammer.

2 Background

We discuss DRAM (Section 2.1), Rowhammer (Section 2.2),
and refresh synchronization in recent attacks (Section 2.3).

2.1 DRAM
The Dynamic Random Access Memory (DRAM) is the most
common type of volatile memory in use today and can be
found in all modern computers, smartphones, and other elec-
tronic devices. DRAM is organized into banks, which are
further divided into rows and columns. Each row contains a
number of cells, each of which stores a single bit of data. To
access a cell, the row it belongs to must be activated, which
moves the row into the bank’s row buffer. Once in the row
buffer, the cell can be read or written. Importantly, only one
row can be in the row buffer at a time and if a row is already
in the buffer, it will not be activated again.

Refresh command. Because of its volatile nature, each
DRAM cell needs to be refreshed periodically. This process,
in which the memory enters a so-called refresh cycle, is de-
scribed by the DDR standard (e.g., DDR4 [15]) and varies
across generations [14,16]. In short, the standard dictates that
every tREFI (7.8 µs in DDR4), the memory controller ought
to send a refresh command over the memory bus. Upon recep-
tion, the device initiates a refresh cycle. During such a cycle
several rows are refreshed in parallel across banks. Which
row or rows is decided by logic internal to the DRAM chip.

Postponing refreshes. The standard also specifies that refresh
commands may be postponed or brought forward (pulled-in)
for “improved efficiency in scheduling and switching between
tasks” [15]. For example, by postponing a single refresh com-
mand, the timeline becomes as follows: (i) a REF, (ii) 15.6 µs
without a REF, and (iii) two REFs (one of which was post-
poned). Up to eight refresh commands may be postponed or
pulled-in, which would create a tREFI of nine times 7.8 µs.

2.2 Rowhammer

Whenever a row is accessed in rapid succession, its charge
may start interfering with that of neighboring rows. In some
cases, this interference is so severe that it causes bits to flip
in one of these neighbors, i.e., a zero becomes one or vice
versa. This effect is termed Rowhammer [20] with the row
that is accessed (or activated) often known as the aggressor
row, and the neighbors as the victim rows. In general, the
more activations made to the aggressor row per time unit, the
stronger the Rowhammer effect [19].

Cache line invalidation. To trigger and then exploit Rowham-
mer, the attacker tries to activate a set of rows as often as
possible. To this end, the attacker cannot simply access the
same address repeatedly: the data would be stored in the
CPU caches immediately, preventing the access from go-
ing to DRAM. To solve this problem, native attacks such
as [18, 21, 26, 28, 30] have relied on cache line flushing in-
structions, non-temporal loads/stores [26], DMA [22, 31] or
uncacheable memory [33, 34].

Double-sided Rowhammer. In addition to bypassing the
caches, the attacker needs to make sure that the access pattern
produces a series of activations to the hammered rows, which
will not happen as long as the row resides in the bank’s row
buffer. For this reason, to avoid a row buffer hit, the attacker
instead alternates between two rows because the row buffer
can only hold a single row. Accordingly, accessing two rows
in turns means they will be continuously replacing each other
in the row buffer and thus activated on every access.

To maximize the disturbance in a single victim row, the
attacker chooses two aggressor rows such that they neighbor
the victim row. This access pattern is called double-sided
Rowhammer and is by far the most commonly used by at-
tacks [2, 18, 21, 25, 28, 30, 32, 37].

Mitigations. To mitigate Rowhammer attacks, since DDR4
DRAM contains additional circuitry that aim to detect and
then proactively refresh the victim row under attack. This
type of mitigation has been referred to as Target Row Re-
fresh (TRR). Due to its non-volatile nature, DRAM requires
each row to be refreshed periodically. With TRR, however,
additional refreshes to suspected victim rows makes sure to
minimize the sensitivity of the victim row to the interfer-
ence of neighboring aggressor rows. Unfortunately, TRR has
been shown ineffective [7, 12]: in short, an attacker can by-
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pass TRR by using a more complex access pattern, i.e., com-
pared to double-sided Rowhammer. For example, for some
DIMMs, cycling through 2-10 (instead of one) double-sided
pairs suffices [4, 7] while in other cases more complex access
patterns are necessary [11, 12]. Blacksmith [12] has shown
that all TRR implementations can be eluded by employing
non-uniform patterns that unlike double-sided patterns access
some aggressors more frequently than others.

2.3 Refresh synchronization

Effective Rowhammer patterns need to synchronize with re-
fresh commands (REFs), sent to DRAM every 7.8 µs [4, 12,
13]. For example, in DDR4, around 160 activations may occur
within one tREFI [15]. A Rowhammer pattern that repeats
every 160 activations would therefore be synchronized. More
generally, a pattern is synchronized if it perfectly fits inside
a tREFI. Patterns shorter than a tREFI may be synchronized
by repeating them until they fit. It is not necessary to spend
all 7.8 µs on activations, however: the attacker may insert pe-
riods of no memory activity to stretch a pattern of, say, 40
activations, until its length is 7.8 µs. Such periods have been
filled with NOPs [4].

Effectiveness. TRR implementations rely on the periodicity
of the refresh command to obtain a reliable sample of the
rows that are being activated [7, 11]. With synchronization,
however, sampling becomes ineffective, either because (i)
the sampler only observes some and thus always the same
activations within a tREFI—missing others—or because (ii)
the sampler does not sample at every tREFI, but for example,
every second tREFI, making it possible to consistently miss
certain activations. In case of the former, an attacker may
bypass the mitigation by activating decoy rows when the
mitigation is sampling within a tREFI, and in the case of
the latter, by only activating decoy rows during the tREFI in
which the sampler is active.

Refresh scheduling. This supposition, of why synchroniza-
tion helps the attacker, is supported by a JEDEC publication
on Rowhammer mitigations that states [17]:

Elimination of pulled-in and postponed Refresh com-
mands allows the DRAM the chance to consistently align
internal address sampling and perform Rowhammer miti-
gation at consistent intervals. Additionally, some random-
ization when issuing of Refresh commands within the
interval can also assist Rowhammer mitigation.

This not only confirms that Rowhammer mitigations rely on
the consistency of the refresh command for reliable samples,
but also that pulled-in and postponed refreshes weaken the
mitigation further. How the attacker can use refresh postpone-
ment to their advantage and to what extent this can weaken
the mitigation remains unclear, however.

3 Threat Model

We assume a threat model where the victim runs untrusted
JavaScript code in their browser, either by visiting a website
under the control of an attacker, or through a malicious ad-
vertisement. Moreover, and contrary to previous work [4, 18],
we do not assume a particular DDR4 DIMM, which would
have greatly simplified—and reduced the severity—of the at-
tack, as some DIMMs are much more vulnerable than others.
The aim of the attacker is to achieve an arbitrary read/write
primitive in the browser.

4 Motivation and Challenges

We aim to demonstrate the widespread exploitability of
Rowhammer on DDR4 devices. Without native code exe-
cution and not knowing anything further about the DIMM,
the attacker is forced to build self-evicting Rowhammer pat-
terns that work on any DIMM. These self-evicting patterns
have been used in two JavaScript-based Rowhammer attacks:
SMASH [4] and SledgeHammer [18].

SMASH. These patterns consist of double-sided aggressor
pairs that evict each other from the caches, which makes them
self-evicting. Given a typical LLC associativity of 16, this
would mean each pattern would have to consist of at least 17
aggressor pairs which for some DIMMs is too many to by-
pass the mitigation [7]. To overcome this limitation, SMASH
patterns pin some accesses to the caches, effectively reducing
the cache’s associativity. This enables patterns of fewer than
17 pairs at the price of a few cache hits only, see further [4].

SledgeHammer. Cached accesses in SMASH might as well
be replaced by aggressors that target different banks in
DRAM. By having the aggressors share their row but not their
bank, a SledgeHammer pattern takes advantage of bank-level
parallelism. This means that like SMASH’s cache hits, access-
ing the additional aggressors is fast, while unlike SMASH’s
hits, SledgeHammer’s extra aggressors may improve the pat-
tern’s chances of triggering a bit flip [18].

As a first step, we determine the general applicability of
both SMASH and SledgeHammer. We construct SMASH
and SledgeHammer patterns of different numbers of aggres-
sors and use them to hammer each of the 28 DIMMs listed in
Section C. We continuously randomize the aggressors—and
therefore the target or victim rows—as well as their number.

The results in Table 1 show that (i) SMASH patterns cover
4× more DIMMs than SledgeHammer patterns, but they still
manage (ii) to compromise only 29 % of DIMMs. More-
over, there is no overlap between the DIMMs vulnerable
to SMASH and SledgeHammer.1 Given these numbers, we
aim to increase the coverage of browser-based Rowhammer
attacks to increase their impact.

1More details can be found in Section 8.



Table 1: Coverage of the state of the art. The number of
DIMMs for which SMASH and SledgeHammer managed to
trigger at least one flip.

Pattern type
Effectiveness
(#DIMMs)

SMASH [4] 8/28 (29 %)
SledgeHammer [18] 2/28 (7 %)

4.1 Challenges

To make self-evicting patterns more effective, we investigate
if it is possible to weaken the mitigation by abusing the flexi-
bility given to the memory controller for scheduling refresh
commands. As explained in Section 2.1, the DDRx standard
allows refresh commands to be either postponed or pulled-
in to improve performance. Until now, however, it has not
been clear if it affects the effectiveness of in-DRAM TRR
mitigations and how attackers can use it to their advantage [1].

Challenge 1. Take advantage of refresh scheduling to
weaken in-DRAM mitigations.

Previous work shows that in-DRAM mitigations act at time-
of-refresh [7, 11]. This makes it is worthwhile to investigate
(i) whether the attacker is able to manipulate the scheduling
of refresh commands and (ii) what consequences this has
for in-DRAM mitigations. As we will show, by producing
intense memory activity in short durations, the attacker is
indeed able to make the memory controller postpone refresh
commands. Moreover, while for some DIMMs refresh post-
ponement “only” increases a pattern’s effectiveness, for others
it is a necessity, allowing us to trigger bit flips without clflush
for the first time. Our implementation of this technique in
a new Rowhammer attack, called POSTHAMMER, improves
our coverage from 29 % to 43 % (or 12/28) and is therefore
a good first step. However, before we may claim widespread
exploitability, we need to improve it further.

Previous work [12] shows that for some DIMMs, a non-
uniform pattern is essential in order to bypass the mitigation.
However, while it is relatively straightforward to construct
a non-uniform clflush-based pattern—simply by accessing
some aggressors more frequently than others—the same does
not apply to self-evicting patterns. More than for clflush-based
patterns, the access order is crucial for patterns that rely on
eviction sets [4]. For this reason, self-evicting patterns make
use of pointer chasing [4, 18], which prevents the CPU from
reordering the pattern. As we will show, however, it is chal-
lenging to construct a non-uniform pointer chase.

Challenge 2. Craft patterns that are both self-evicting
and non-uniform.

We generalize self-evicting patterns by introducing the

notion of a lane: a subset of a pattern’s addresses that form
a minimal eviction set. Using lanes, POSTHAMMER is able
to add a variable amount of non-uniformity to self-evicting
patterns without breaking the rather fragile eviction dynamics.

By adding non-uniformity, POSTHAMMER can find a pat-
tern for 86 % (or 23/28) of the DIMMs in our testbed. While
all of these patterns are clflush-free, they appear rather het-
erogeneous. This ultimately creates another challenge for the
attacker.

Challenge 3. Find a tractable set of patterns that works
well on a large number of DIMMs.

Since we assume the attacker does not know the victim’s
DIMM, POSTHAMMER must try a subset of patterns that has
high coverage but is small enough to be tested during the on-
line part of the attack. Through manual analysis, we find that
this set consists of only two types of patterns—the SB- and
LW -patterns. SB-patterns consist of a single eviction set and
between 12 and 36 aggressors. LW -patterns are more com-
plex and always require exactly two eviction sets. Each of
the two types comes with a small but manageable number of
parameters, as we will further explain in Section 7. We show
the effectiveness of these patterns by using POSTHAMMER
to build an end-to-end exploit in Firefox, achieving an arbi-
trary read-write primitive in its renderer process as discussed
in Section 9.

5 Exploiting Refresh Scheduling

We show how the attacker may take advantage of refresh
scheduling to weaken TRR. Refresh scheduling, as briefly ex-
plained in Section 2.1, improves performance by providing the
memory controller with some flexibility w.r.t. scheduling re-
fresh commands. For example, postponing refresh commands
can avoid interrupting a dense series of reads and writes. Our
underlying idea behind the exploitation of refresh scheduling
is the following: if TRR implementations rely on the peri-
odicity of refresh commands for sampling, as suggested by
previous work [7, 11] and JEDEC [17], then by postponing
refresh commands sampling becomes less reliable. As a con-
sequence, the mitigation is weakened. The experiments in
this section indeed show that the attacker is able to induce
the postponing of refresh commands (Section 5.1) and that
for most DIMMs, but in particular those by Samsung, refresh-
postponing patterns are much more effective (Section 5.2).

5.1 Inducing refresh postponement

The first step towards exploiting refresh postponement is to
show that the attacker is able to induce it. To this end, we
need (i) a way to trigger it and (ii) a way to measure it.

Because flexible refresh scheduling is a performance opti-
mization, we conjecture that the memory controller will try
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Figure 1: Experiment for refresh postponement detection.
(a) The common case: DRAM receives a burst of memory
requests, but there is plenty of idle time for the memory con-
troller to regularly schedule a REF. (b) A longer burst of
memory accesses that pushes one REF to right after the burst.
The memory controller does not need to interrupt the second
burst as it is given sufficient time for both REFs. (c) In this
case, not enough time (i.e. NOPs) is given for the REFs. The
observer will measure a delay of the time it takes to complete
the burst. (d) Finally, a burst of more than nine tREFI, which
would cause more than eight REFs to be postponed and is
therefore always interrupted.

to avoid delaying read and write commands—until it has not
sent a refresh command for nine tREFI and by the specifica-
tion is forced to send all eight refreshes at once. Whenever
this happens, we expect the memory accesses right after the
batch of refreshes to experience an observable delay. This is
a reasonable expectation, as previous work suggests that it is
possible to even detect the delay of a single refresh [7].

In other words, to observe refresh postponement, we need
to create a series of memory accesses that takes more than
nine tREFI. It is important that this series is dense to hinder
the memory controller from scheduling the refresh commands
it has postponed so far. In that case, we will not be able to
observe a delay. Further, to later exploit refresh postponement,
we should avoid relying on clflush to create this dense series
of memory accesses, because ultimately, we would like to use
it to simplify clflush-free Rowhammer patterns.

Experiment. To observe whether we can trigger refresh post-
ponement, we perform the experiment illustrated in Figure 1.
For bursts of different lengths, we measure the time it takes
until all memory requests have been served. Each burst is a
self-evicting (double) pointer chase (similar to [4] where each
aggressor evicts the next), and therefore, free of clflush. After
each burst we execute a series of NOPs, giving the memory
controller time to schedule refresh commands.

The experiment is designed to distinguish between three
cases, depending on the burst length and size of the NOP gap:
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Figure 2: Results of the experiment in Figure 1. We can
clearly distinguish between the three cases explained in the
text. We use dashed lines for configurations with more than 9
tREFI and solid lines for all others.

1. Gap large enough. The burst is longer than a single
tREFI but smaller than nine. The NOP gap is large
enough to accommodate all postponed refreshes. See
Figure 1-(b).

2. Gap too small. As above, except that this time, the NOP
gap is too small to squeeze in the postponed refreshes.
A delay is expected. See Figure 1-(c).

3. Gap too late. The burst is longer than nine tREFI. In
this case, we expect a persistent delay as the memory
controller is forced to interrupt the burst every time, no
matter the size of the NOP gap. See Figure 1-(d).

We conduct all our experiments on Intel Core i7-8700K
(Coffee Lake) and Intel Core i7-7700K (Kaby Lake) machines.
For more details, see Section 8.

Results. The results are shown in Figure 2. We are able to
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Figure 3: Experiment to measure the effectiveness of re-
fresh postponement. Above (a), synchronization without
postponement, and below (b), synchronization with postpone-
ment by iterating over the eviction set more often (4× versus
8× in the example).

clearly distinguish between all three cases on both Coffee
Lake (Figure 2a) and Kaby Lake (Figure 2b). The annotations
inside the figure show exactly which case is responsible for
the observed (average) latency on the vertical axis. For exam-
ple, for a clflush-free burst of six tREFI in length in Figure 2a,
we find the average latency per access decreasing as more
NOPs are added in between successive bursts until the num-
ber of NOPs reaches 60k. From then on, the average latency
stabilizes. Our explanation is that the memory controller re-
quires the equivalent of 60k NOPs in time to schedule the five
refreshes postponed by the burst of six tREFI.

The plots in Figure 2 show a clear difference between bursts
of up to and including nine tREFI (solid lines) compared to
those of more than nine (dashed lines). We expect the latter
to introduce a persistent delay, as the memory controller will
always interrupt them. As our data shows, until around 80k
NOPs, the average latency for these longer bursts decreases,
until it stabilizes well above the equilibrium of the shorter
bursts, i.e., less than nine tREFI. We conclude from that:

Observation 1. The attacker is able to induce refresh
postponement by generating bursts of memory accesses
followed by NOPs.

5.2 The effectiveness of refresh postponement
We implement POSTHAMMER to evaluate the effectiveness of
refresh postponement by modifying self-evicting patterns [4]
to either induce or not induce refresh postponement. To make
a pattern refresh postponing, we synchronize it over more
than one tREFI, as opposed to a single tREFI.

Experiment. To evaluate the potential of refresh postpone-
ment for weakening TRR, we perform the experiment illus-
trated in Figure 3. POSTHAMMER creates self-evicting pat-
terns of different lengths where half of the patterns is made
to induce refresh postponement, while the other half is made
to avoid it. In other words, we either

(i) measure the time it takes to iterate through the eviction
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Figure 4: Results of the experiment in Figure 3. Refresh
postponement has the potential to make Rowhammer patterns
much more effective.

set (and thus hammer) once, calculate how many itera-
tions would fit in a tREFI, and fill up the remaining time
with NOPs. This gives us a pattern of a single tREFI, see
Figure 3-(a); or we

(ii) choose a random number x between 1 and 15, calculate
how many iterations would fit into x tREFI, and fill up
the remaining time with NOPs. See Figure 3-(b), where
x = 2.

We run this experiment on four different DIMMs (A02, A04,
A06, and B02; see Section C for details), which we found to
be vulnerable to TRRespass [12]. This experiment allows
us to only add a single parameter—whether the pattern uses
refresh postponement or not. The self-eviction part of the
pattern, however, depends on a few parameters: (i) the number
of double-sided aggressor pairs and (ii) the ratio between
cache misses and hits. We need these parameters to abstract
away the particularities of different DIMMs (e.g., different
sampler sizes). For this reason, we try random combinations
of all parameters and either make the pattern induce refresh
postponement or not (Figure 3). Patterns of the first type will
be referred to as in the postponing group while patterns that
do not induce refresh postponement are non-postponing.

Results. The results for Coffee Lake are shown in Figure 4
and answer the following questions:



(a) Patterns: Of all patterns that triggered a bit flip, how
many used refresh postponement and how many did not?

(b) Strength: How many bit flips does the best postpon-
ing pattern trigger compared to the best non-postponing
pattern? This says something about the effectiveness of
refresh postponement.

Best pattern. The best pattern is selected as follows: for
each pattern that triggers a bit flip, we hammer the pattern
again but with a different eviction set. This way, we avoid
falsely concluding that a pattern is strong or weak simply
because its victim rows—which are implicitly determined by
its aggressors and therefore the eviction set—happen to be
rather vulnerable or, conversely, resistant to Rowhammer. We
repeat this 100 times and make sure to never reuse the same
eviction set.2 Thereafter, we count the total number of bit
flips triggered during these 100 attempts and use it to rank the
patterns. We create one ranking per parameter value, i.e., we
rank the postponing and non-postponing groups individually.

This gives us two values: the number of bit flips triggered
by the best postponing and non-postponing patterns. We set
their sum to 100% and compute and plot their individual
contributions. For example, if these best patterns triggered
exactly the same number of bit flips, the figure would show
50% for both true and false.

For Coffee Lake, Figure 4-(a.i) shows that for all DIMMs,
except B02, the majority of flip-inducing patterns used re-
fresh postponement. This is a strong indication that—at least
for DIMMs of manufacturer A (Samsung)—refresh postpone-
ment helps to bypass the mitigation as we equally tested pat-
terns with and without refresh postponement. Moreover, in the
evaluation in Section 8, we will show that refresh postpone-
ment also helps the attacker for other manufacturers. Figure 4-
(a.ii) confirms the results in Figure 4-(a.i): for all DIMMs
except B02, the best refresh postponing pattern triggers more
bit flips than the best non-postponing pattern. The results for
Kaby Lake Figure 4-(b) are very similar: with refresh post-
ponement showing benefits in finding effective patterns on
the same DIMMs where we saw benefits on Coffee Lake. We
conclude with:

Observation 2. For some DIMMs, refresh postponement
helps to bypass the mitigation, and we find more and
stronger patterns that use refresh postponement compared
to patterns that do not.

Armed with refresh postponement, next we discuss how
we add support for non-uniform self-evicting patterns to
POSTHAMMER.

2Moreover, we build eviction sets such that they never overlap, i.e., map
to the same row.

6 Self-evicting Non-uniform Patterns

Previous work [12] has shown that for some DIMMs, a non-
uniform pattern is necessary to bypass TRR. In a non-uniform
pattern, the aggressors are not hammered uniformly, i.e., some
are activated more frequently than others. This way, the at-
tacker may fool mitigations that rely on counting per-row acti-
vations and only refresh the neighbors of the most frequently
activated aggressor(s). As a consequence, less frequently acti-
vated aggressors may be unnoticed by the mitigation. When
activated sufficiently often, such aggressors will be able to
trigger bit flips. In this section, we tackle the problem of
constructing self-evicting patterns that are also non-uniform.

6.1 Introducing lanes
We add non-uniformity to self-evicting patterns using lanes.

Definition. A lane is a minimal eviction set of aggressors.

This means the number of aggressors in a lane equals the
associativity of the LLC. Lanes arise from the observation
that all self-evicting patterns consist of a series of lanes that
continuously replace each other in the caches.

Example. Consider two lanes of aggressors, LA and LB. As
each lane forms a minimal eviction set, we have

LA
maps to−−−−→ cA (1)

which denotes that all aggressors in LA map to some cache
set cA in the LLC. Similarly, LB → cB. To build a pattern, we
thus need cA = cB, or equivalently,

LA → c and LB → c for a cache set c. (2)

This means, not only should the addresses in each lane map
to the same set, but addresses from all lanes should map to
the same cache set and slice. Without this condition, they
will not be able to replace each other to cause eviction. With
Equation (2), however, we get replacement by alternation:

Replacement by alternation. By first accessing all addresses
in LA, followed by all addresses in LB, then LA again, etc. we
will continuously replace addresses in c. For example, if sets
in the LLC have 16 ways—which means both LA and LB con-
tain 16 addresses as they are minimal eviction sets—accessing
LA will cause 16 cache misses, followed by 16 misses for LB,
followed again by 16 misses for LA, and so on. This means
alternating between lanes, as in

· · · LA, LB, LA, LB · · · (3)

gives us complete replacement of c. The problem with re-
placement by alternation is that naively, all aggressors will be
accessed equally. In other words, LA, LB, LA, LB · · · produces
a uniform pattern in which the aggressors of LA are accessed
as often as those of LB.



Non-uniformity by introducing extra lanes. To solve this
problem, we introduce (at least) one more lane LC that like
LA and LB maps to the same cache set c. This allows us to
create non-uniform sequences such as:

· · · LA, LB, LA, LC · · · (4)

where the aggressors in LA are accessed twice as often as
those in LB and LC. Please note that introducing a third (or
fourth, fifth, etc.) lane is strictly necessary. It is not possi-
ble to create non-uniformity using only two lanes: either the
lanes alternate and the pattern is uniform, see again Equa-
tion (3), or we repeat a lane (e.g., LA, LB, LB), but then we
lose eviction by replacement as the second time we access LB,
the lane is already cached. While using extra lanes gives us
non-uniformity, we may not always want to have the entire
lane of aggressors go to DRAM. As an example, assuming
an LLC with associativity of 16, iterating over a three-lane
pattern once involves activating three times 16 aggressors
for a total of 48 aggressor pairs which is too many for most
DIMMs. Instead, we want the number of aggressors to be a
parameter that is (mostly) independent of the pattern’s non-
uniformity. The solution is to introduce cache hits, as also
done in previous work [4], and explained next.

6.2 Pattern construction
We will now explain the details of constructing a non-uniform
pattern using lanes. First, because we need several lanes—at
least three—that all map to the same cache set and slice, we
start from a large eviction set E in which all addresses map to
set c. For example, assuming an associativity (and thus lane
size) of 16 and three lanes, the size of this large set would be
3 ·16 = 48. We then split the set E into three groups LA, LB,
and LC that form our lanes: E = {LA,LB,LC}.

Double-sided aggressor pairs. Our goal is to create a pat-
tern composed of double-sided aggressor pairs, inspired by
SMASH [4]. To this end, we fork the eviction set E above—
creating another one, E∗—as follows: for each address, in
every lane, we add or subtract two to its row address (to get
the double side). On Kaby and Coffee Lake microarchitec-
tures, this means we will change the address’ bank as well.
That is a problem: double-sided aggressor pairs are one row
apart but also map to the same bank. To solve it, we toggle
another (non-overlapping) bank bit and thereby restore the
address’ bank [4]. As a consequence, however, the address’
cache set index changes from c to c∗. Fortunately, this applies
to all addresses in our forked eviction set E∗ equally, i.e., all
addresses will now map to c∗, and thus, our forked set is an
eviction set as well.

Eviction blocks. At this point, we have two eviction sets of 48
addresses each, E and E∗, of which the cross-set pairs form
double-sided aggressor pairs. Moreover, being eviction sets,
all addresses in E map to some cache set c while all addresses

1. Double-sided pairs

DRAM LLC

2. Eviction sets

Eviction block

Addresses that form...

Figure 5: An eviction block is made of two sets of addresses
(left), of which the cross-set pairs form double-sided (aggres-
sor) pairs in DRAM (middle), and where the addresses in
each set map to the same cache set (right).

Eviction block

1. Take an eviction bl. 2. Split it into lanes

One lane: size of a cache set (e.g 5)

5 6 7 8 90 1 2 3 4

3. Order lanes

5 6 7 8 9

0 1 2 3 4a.

b.

5 1 2 8 4

0 1 2 3 4a.

b.

4. Choose hits (gray) 5. Install pointer chase (2x)

0 1 2a 3 4a

5 1 2b 8 4b

6. Hammer:
double chase

Figure 6: From eviction block to double pointer chase. We
start with an eviction block, as in Figure 5. Second, we split
it into so-called lanes whose size equals the associativity of
the LLC. Third, we order the lanes. Fourth, we decide on the
number of recurring addresses (or cache hits, in gray) and
their lane-relative positions. Fifth, for each set of congruent
addresses, we connect lanes (a) and (b) through a pointer
chase. Sixth, we hammer by traversing the pointer chases in
an alternating manner.

in E∗ map to another set c∗. Together, E and E∗ form a unit,
the building block of every self-evicting pattern. We will refer
to such a pair of eviction sets as an eviction block. Figure 5
illustrates the concept.

Conversion to pointer chase. Although all patterns consist
of eviction blocks, an eviction block is not a pattern yet. To
prepare an eviction block for hammering, it needs to be con-
verted into a pointer chase. The pointer chase is essential: it
ensures the aggressors, within each lane and between lanes,
are accessed in the intended order. We found that without a
pointer chase, eviction is not reliable since the expected num-
ber of cache misses caused by hammering the pattern would
not match the number reported by the CPU’s performance
counters. To convert an eviction block into a pointer chase, we
proceed as shown in Figure 6 and described in the following:

1. We start with an eviction block comprised of two large
eviction sets E and E∗.

2. We split the block into lanes, i.e., we split both evic-
tion sets. For example, E = {LA,LB,LC} and E∗ =
{LA∗,LB∗,LC∗}.

3. We decide on a lane sequence, such as

· · · LA, LB, LA, LC · · ·



3. Create non-uniformity  (examples)
Eviction block

1. Take an eviction block 2. Split it into three lanes
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

A
Ratio (A/B/C) (%)

50/50/00
50/25/25
50/33/17
50/38/12

B C

i.* (uniform)
ii.
iii.
iv.

Figure 7: Creating non-uniformity by having three or
more lanes. Using a third lane, we are able to create non-
uniform patterns as per the ratios shown in the bottom right
of the figure. For example, in variant (iii), the aggressors of
lane (a) receive 50 % of the activations, those in lane (b) 33 %,
while the remaining 17 % go to the aggressors in lane (c). The
figure is not exhaustive: further variants with both three lanes
and more than three lanes exist.

Note that the lane sequence should be the same for both
E and E∗; otherwise, the aggressors will no longer form
double-sided pairs.

4. Choose hits. In this step, the attacker decides on the
number of aggressors. Even though lanes give us re-
placement by alternation, fully replacing the cache set
every time may not be desired, as it directly determines
the number of aggressors that go to DRAM. For this rea-
son, the attacker can also opt for partially replacing the
cache set, which is achieved by creating overlap between
lanes. This pins some addresses to the caches—they are
accessed as part of every lane—and introduces cache
hits for a faster pattern execution with fewer aggressors.
In Figure 6, the hits are illustrated in gray, while the
aggressors are white.

5. At this point, the attacker has two complete sequences of
aggressors, one for each eviction set, that form double-
sided aggressor pairs. Each sequence is connected
through a pointer chase: to connect a to b, the attacker
stores the address of b at the location of a. In pseudocode
*a = b; where both a and b are pointers.

6. Finally, the attacker hammers the pattern by chasing
both chases in alternating fashion. We found that for all
DIMMs, alternating is much more effective compared to
first iterating over one chase once before iterating over
the other.

This algorithm allows the attacker to create patterns that are
both self-evicting and non-uniform. Moreover, by varying the
number of lanes and their access order, the attacker can tune
the pattern’s non-uniformity. Figure 7 gives some examples
of what the attacker can do with three lanes.

Multi-block patterns. In addition to the multi-lane strategy,
we can add non-uniformity to our patterns by using more than
one eviction block while distributing the activations unequally

1. Take two or more eviction blocks 2. Pointer chase conversion

Three eviction blocks

3. Distribute the hammer time unequally among them (examples)

ii.
iii.

Time

Each bar is a
double pointer
chase, one per
eviction block.

Loop

i.* (uniform)

Figure 8: Non-uniformity by creating multi-block patterns.
The three-block pattern in the figure gives us three pointer
chases (using the steps in Figure 6). By repeating some chases
more often than others, we distribute the per-aggressor activa-
tions unequally over the pattern.

among them, see Figure 8. This adds non-uniformity to the
pattern at a much coarser granularity than before. While this
is not necessarily a problem—and may even be desirable
depending on the mitigation—what could make this strategy
less effective is the larger number of aggressors required and,
consequently, the lower per-aggressor activation rate.

The multi-lane and -block strategies for adding non-
uniformity are easily combined. The former is a block prop-
erty and the latter a property of the pattern as a whole. Accord-
ingly, while exploring the non-uniform search space below,
we test all possible variants: single- and multi-block patterns,
and for each for their blocks, single- and multi-lane blocks.

6.3 Effectiveness of non-uniformity
We evaluate the effectiveness of non-uniform patterns con-
structed as outlined above on four different DIMMs for which
TRRespass did not manage to trigger a bit flip.3 We try all
possible combinations of: first, the uniform and three non-
uniform chases in Figure 7-(3), and second, the multi-block
patterns in Figure 8, for patterns of 1 up to and including 8
blocks.

Results. The results in Figure 9 are unambiguous for both
microarchitectures: non-uniform patterns are more effective.
In fact, for most DIMMs, not a single uniform pattern was
found. The exception is DIMM B01, for which a fraction of
the effective patterns was uniform, though only on the Cof-
fee Lake machine. This is somewhat surprising, as it means
TRRespass should in theory be able to trigger bit flips on this
DIMM as well. At the same time, Figure 9-(a.ii) shows that
B01’s best non-uniform pattern is much stronger compared to
its best uniform pattern and accounts for roughly 95% of the
bit flips, which makes the latter rather weak and probably not
useful. We therefore conclude that at least for these DIMMs,
and for both microarchitectures, eviction-based non-uniform
patterns are more effective.

Conclusion. We have introduced the concept of a lane to

3The complete results, for all 28 DIMMs, can be found in Section 8.
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Figure 9: Effectiveness of the best uniform vs. best non-
uniform pattern. A pattern is non-uniform if it (i) consists
of more than one eviction block or (ii) contains at least one
three-lane pointer chase.

generalize self-evicting patterns and make them non-uniform.
Additionally, by employing more than one eviction block,
we can create multi-block patterns of many aggressors and
further increase their non-uniformity. Finally, we have shown
that non-uniform self-evicting patterns that rely on multiple
lanes and/or blocks effectively bypass the more “advanced”
in-DRAM mitigations that defend against many-sided but
uniform patterns.

7 POSTHAMMER in JavaScript

The attacker’s ultimate goal is to trigger a bit flip from in-
side the browser’s JavaScript sandbox. This is more chal-
lenging than triggering a clflush-free bit flip natively. For
example, inside the renderer process, there is (i) no accurate
timer available, which would greatly simplify building evic-
tion sets as well as pattern synchronization, (ii) continuous
and complex just-in-time compilation, which reduces the re-
liability of pointer chases, and (iii) no information available
on the physical memory assigned to the process, which com-
plicates pattern construction. While these challenges have
already been tackled in previous work [4, 18], this time the at-
tacker faces two additional ones. First, building more complex

Lane A B A B C SB-pattern
   = aggressor pair

Loop1 eviction block, 3 lanes, 3 pairs/lane, 9 pairs in total

Figure 10: The SB-pattern. A single eviction block. The
colors denote different lanes.

B C 
...

Long: 1-2 pairs, uniform, many repetitions

Wide: 3+ pairs, non-uniform, few reps.Lane A B

LW-pattern
    = aggressor pair

A

Loop

Figure 11: The long-wide (LW) pattern. Two eviction
blocks, of which one is long (few aggressors, many repe-
titions), while the other is wide (many aggressors, few repeti-
tions). The colors denote different lanes.

patterns—non-uniform self-evicting patterns require larger
eviction blocks and synchronizing them is more involved—
and second, deciding which patterns to build.

Our evaluation in Section 8 shows that using our non-
uniform and refresh postponing patterns, we are able to trigger
a bit flip on 86 % of the 28 DIMMs in our testbed. However,
due the large number of possible patterns, it took several
weeks of fuzzing to achieve this result. This also means the
attacker cannot simply replicate the “native search space” in
JavaScript as it would make the attack too slow and therefore
unrealistic. Instead, the attacker needs a “JavaScript search
space” that is small enough, yet covers most DIMMs. To this
end, we manually analyze the per-DIMM top five patterns
in the hopes of being able to detect similarities and discover
what such a search space looks like.

Experiment. As mentioned in Section 5.2 (see “Best pat-
tern”), the quality of a pattern is determined by the total num-
ber of bit flips it is able to produce while replacing the pat-
tern’s eviction blocks 100 times. By doing this, we make the
pattern target different rows in possibly different banks. We
ensure to avoid overlapping eviction blocks and patterns that
consist of multiple blocks have all of them replaced every
1/100 time. For each DIMM, we use this method to iden-
tify its five most effective patterns. We then visualize all
22 ·5 = 110 best patterns and manually look for similarities.

Results. Among all 110 patterns, we identified two types of
patterns, the SB- and LW-patterns (Figures 10 and 11), of
which at least one is in the top five of 20/22 DIMMs (91 %)
with native bit flips. The two excluded DIMMs are C02 (for
which we only found one hard-to-reproduce pattern in total)
and A02 (for which we found the SB-pattern to be the sixth-
best pattern).

The single block or SB-pattern. The SB-pattern is illustrated



in Figure 10. It is rather simple: it consists of a single eviction
block that may be non-uniform (by taking advantage of one of
the three-lane compositions shown in Figure 7). Similarly, an
SB-pattern may take advantage of refresh postponement. This
means SB-patterns are sometimes uniform and not postponing.
What characterizes the SB-pattern, however, is the number of
double-sided pairs per lane ranging from 3–6 for a minimum
of 12 and a maximum of 36 aggressors.

The long-wide- or LW-pattern. The other pattern that we
identified as prevalent among the top patterns consists of two
eviction blocks and is shown in Figure 11. Characteristic of
this long-wide pattern is that one eviction block’s pointer
chase is long, i.e., it consists of relatively few double-sided
pairs (2 in the figure) that are repeated often, while the second
chase is wide, i.e., it consists of many different double-sided
pairs (12 in the example), is typically non-uniform, but its
aggressors are not accessed as often. For all LW-patterns, we
found the ratio between the long and wide patterns to be in
the range 2–5. That is, on the vertical axis, which means, for
example, that the long chase might be 5× longer than the
wide chase. As for the widths, the number of double-sided
pairs per lane for the long block ranges from 1–3 (rather low)
while those of the wide block range from 3–6. Furthermore,
LW-patterns always use refresh postponement, but due to their
relatively large size are made to fit inside at least 9 tREFIs.
Finally, while the wide block is almost always non-uniform,
the long block does not have to be, as also shown in the
example. We hypothesize that in LW-patterns, the wide block
acts as a distractor of the long block.

Together, the SB- and LW-patterns form only a small parame-
ter space—small enough for the attacker to explore during the
online part of the attack. Moreover, and as we will show in the
next section, using only these patterns we are able to trigger
bit flips in JavaScript on the majority (61 %) of DIMMs in
our test pool.

8 Evaluation

In this section, we examine the search space of non-uniform,
refresh-postponing, and self-evicting patterns more closely. In
particular, we search for effective patterns on the 28 DIMMs
listed in Section C. The result: for 86 % (24/28) of the de-
vices, we are able to trigger bit flips without clflush. However,
for 6 of them we were unable to make their best LW- and SB-
patterns trigger bit flips in JavaScript as well. This means that
we arrive at 61 % (17/28) of devices for which we managed
to trigger bit flips in JavaScript using the LW- or SB-patterns
discussed in the previous section. The complete results are
shown in Table 2 and will now be further explained.

Benchmarking platforms. All native experiments, includ-
ing those in this section, were performed on ordinary desk-
top machines equipped with either an Intel Core i7-7700K
(Kaby Lake) or Intel Core i7-8700K (Coffee Lake) CPU. The

JavaScript experiments, however, were only conducted on
the Kaby Lake microarchitecture due to the complexity of
the Coffee Lake slice addressing functions. Although these
functions have been reverse engineered [5,8], we were unable
to build eviction sets using the results reported in [5]. The
systems’ BIOSes were set to their default configurations, in-
cluding the refresh rates. Our selection of 28 DDR4 DIMMs
includes DIMMs from all three major DRAM vendors (Sam-
sung, Micron, and SK Hynix) and of varying sizes and clock
frequencies. Section C provides further details on the DIMMs.

Research question. We consider the following question: for
how many DIMMs are we able to find an effective clflush-free
pattern? We will divide this question into three parts:

(a) For which DIMMs are we able to find a self-evicting
pattern natively?

(b) For which DIMMs are we able to find a self-evicting pat-
tern in JavaScript? That is, using an SB- or LW-pattern.

(c) To what extent do refresh postponement and non-
uniformity contribute to the results?

Experiment 6. To answer the first question, we configure
POSTHAMMER to test self-evicting patterns with different lev-
els of non-uniformity and refresh postponement. We further
vary the number of aggressors by employing cache hits as
discussed in Section 6.2.

On our Coffee Lake cluster, we fuzz each DIMM until
either (i) we have found 30 patterns, or (ii) tested 50000. Since
we have significantly fewer Kaby Lake machines available,
on these machines, we stopped the experiment after either 10
patterns were found or 5000 were tested.

The results are given in Table 2. We also show for which
DIMMs we were able to trigger a bit flip using SMASH [4]
and SledgeHammer [18] (both natively) and using POSTHAM-
MER in JavaScript while relying exclusively on the SB- and
LW-patterns presented in Section 7.

Results 6a: coverage. First and foremost, the results show
that we are able to find a self-evicting pattern for the majority
of devices (24/28), though there are large differences between
vendors. In particular, while for manufacturer A we have been
able to find a pattern for every device, for manufacturer C we
could only find a pattern on about half of the devices. This
suggests that either (i) these DIMMs have more advanced
in-DRAM mitigations or (ii) are simply less susceptible to
the Rowhammer effect.

Second, while Table 2 shows a difference between the Kaby
and Coffee Lake microarchitectures (e.g. C00 was found vul-
nerable on Coffee Lake but not on Kaby Lake, while the
opposite applies to C01), in general, the rates at which the
fuzzer was able to find patterns are comparable. For this rea-
son, and because our earlier experiments (Figure 2, Figure 4,
and Figure 9) did not show a noteworthy difference between
the microarchitectures, we assume the difference displayed



Table 2: Fuzzing results. We report if a pattern was found
with SMASH (SM), SledgeHammer (SH) (✔), or POSTHAM-
MER (✔). The KL and CL columns show the average number
of effective patterns found every six hours on our Kaby Lake
and Coffee Lake machines, respectively. The second last col-
umn shows if we also triggered bit flips in JavaScript (✔) and
the final column (p1) using which pattern.

clflush-free (native) JavaScript

DIMM SM SH Posth. KL/6h CL/6h Posth. p1

A00 – – ✔ 0.96 1.7 ✔ LW
A01 ✔ – ✔ 69.0 56.0 ✔ LW
A02 ✔ – ✔ 1.0 0.49 ✔ SB
A03 – – ✔ 0.42 1.4 ✔ LW
A04 – ✔ ✔ 1.9 1.6 ✔ LW
A05 ✔ – ✔ 1.6 1.5 ✔ LW
A06 – ✔ ✔ 2.2 2.0 ✔ LW
A07 – – ✔ 0.7 2.3 ✔ LW
A08 – – ✔ 0.45 1.9 ✔ LW
A09 – – ✔ 1.0 2.7 ✔ LW
A10 ✔ – ✔ 56.0 46.0 ✔ LW
A11 – – ✔ 0.28 0.97 ✔ LW
A12 – – ✔ 0.98 2.1 ✔ LW

B00 – – ✔ – 0.0044 – –
B01 ✔ – ✔ 0.17 0.21 ✔ SB
B02 ✔ – ✔ 0.47 0.17 ✔ SB
B03 – – – – – – –
B04 – – ✔ – 0.041 – –
B05 ✔ – ✔ 0.13 0.12 ✔ SB
B06 – – ✔ – 0.032 – –
B07 – – – – – – –
B08 ✔ – ✔ – 0.15 – –

C00 – – ✔ – 0.94 ✔ LW
C01 – – ✔ 0.037 – – –
C02 – – ✔ – 0.0044 – –
C03 – – – – – – –
C04 – – ✔ – 0.028 – –
C05 – – – – – – –

Total 29% 7% 86% 61% 82% 61%

in the table is exclusively due to (i) the fuzzer randomly se-
lecting a pattern in a vast search space and (ii) the roughly
10× smaller data set gathered on the Kaby Lake machines, as
mentioned above.

Third, for modules of the same vendor, we sometimes
find a difference of two orders of magnitude in the rate at
which POSTHAMMER was able to find effective patterns.
For example, while for DIMMs A01 and A10 we would find
more than 40 different patterns every 6 h (Coffee Lake), for
other DIMMs by A this number is rather low and in the
range 1–2. This shows not only that the same manufacturer
may implement different mitigations, but also that—at least
since DDR4—a Rowhammer attack demonstrated on a single

Table 3: Pattern categories. The four categories (“Both”,
“Postponing only”, etc.) of Figure 12.

Refresh postponing Non-postponing

Non-uniform Both Non-uniform only

Uniform Postponing only Neither1

1 SMASH [4] and SledgeHammer [18] belong to this category.

DIMM [18] cannot be assumed to work on other devices as
well.

Results 6b: JavaScript. The second last column of the ta-
ble shows that for 17/28 (61 %) of devices we managed to
reproduce the clflush-free bit flips in JavaScript on a Kaby
Lake machine. The experiment consists of fuzzing a rather
small search space that consists of LW- or SB-patterns only, as
explained in Section 7. We also report which type of pattern—
LW or SB—triggered a bit flip first in the p1 column.

The results in the JavaScript columns show that (i) the
DIMMs for which we did not manage to trigger a bit flip in
JavaScript are also relatively hard to break natively, which is
not surprising, and (ii) that DIMMs of manufacturer A seem
more vulnerable to LW-patterns (though we also found some
SB-patterns to be effective) while SB-patterns work well on
DIMMs of manufacturer B. The latter suggests that adding
non-uniformity by means of multiple eviction blocks (see
Section 6.2) does not work well for manufacturer B. Moreover,
it would explain why the (native) fuzzer, which randomly
chooses a number of blocks in the range 1–3, required much
more time to find patterns for manufacturer B compared to
A, as shown in Table 2. We will report on the time it takes to
find exploitable bit flips in Section 9.

Results 6c: contribution. To determine the contribution of
both refresh postponement and non-uniformity to the results
in Table 2 we analyze each of the patterns found more closely
in Figure 12. Specifically, we focus on the native Coffee Lake
results (sixth column in Table 2) because it is our largest data
set. Each effective pattern is assigned to one of the categories
shown in Table 3.

Based on Figure 12-(a), we make the following observation:

Observation 3. About half (11/23) of the DIMMs is vul-
nerable to a pattern that does not use refresh postponement
or non-uniformity, i.e. is in the “Neither” category. How-
ever, all (23/23) DIMMs are vulnerable to a pattern that
uses either or both.

In other words, without non-uniformity or refresh postpone-
ment, the attacker’s impact is limited. Furthermore, Figure 12-
(b) shows that:

Observation 4. The strongest patterns use both refresh
postponement and non-uniformity.
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Figure 12: Contribution of refresh postponement and non-uniformity. The quantity (top figure) and quality (bottom) of
patterns that rely on refresh postponement and/or non-uniformity compared to patterns that do not. For the meaning of the colors,
see also Table 3.

This observation is based on the fact that for 9/23 (29 %)
of the DIMMs, the best refresh postponing and non-uniform
pattern (i.e. “Both”) triggers at least 50 % of the bit flips trig-
gered by that DIMM’s four best patterns combined—one of
each category. Conversely, in only 2/23 cases (A06 and B02),
the “Neither” category’s pattern is the strongest and triggers
at least half of the bit flips. In all other cases, either exclusively
non-uniform (A01, A04, and B01) or refresh postponing (C02)
patterns win, or there is no clear winner.

Conclusion. First, the results affirm the need for non-
uniformity and support our earlier findings that hinted at the
positive effect (from the attacker’s perspective) of postponing
refreshes. They further suggest that non-uniformity is essen-
tial in order to bypass in-DRAM mitigations while refresh
postponement rather boosts the effectiveness of a pattern than
that it serves as a means to circumvent the mitigation indepen-
dently. Second, with 61 % of the devices vulnerable to a bit
flip in JavaScript, we have established the pervasiveness of
Rowhammer-based browser attacks on DDR4-based systems.

9 Browser Exploitation

We demonstrate how our non-uniform and refresh-postponing
patterns can be leveraged to build a practical JavaScript-based
Rowhammer attack in a modern browser. We build on pre-
vious work [4, 6, 18] that demonstrates how to do a type-
flipping attack in JavaScript. This attack exploits NaN-boxing
in JavaScript Arrays, which allows storing heterogeneous data
types (e.g., pointers and floating-point numbers) in the same
array. By triggering bit flips in an Array that is vulnerable to
Rowhammer, it is possible to modify type information and
thereby convert pointers into floating-point numbers (1 ) 0
bit flip) and vice versa (0 )1 bit flip). We refer the interested
reader to previous work [4, 6, 18] and our implementation

for details. We use the latest stable version of 64-bit Firefox
(130.0) running on a Kaby Lake system.

Contiguous memory. As shown before [4, 18], we exploit
the buddy allocator in Linux to obtain contiguous memory,
but unlike previous work we do not assume the availability
of transparent huge pages (THPs). In order to be able to free
the victim row and have it reallocated later, we need to work
with small arrays. Otherwise, if our buffers are larger than 32
pages of 4 kB (depending on the size of the DIMM), the victim
and aggressor rows will be part of the same array, making it
impossible to release the victim without also releasing the
aggressors and thus breaking the pattern.

Looking at allocation patterns, we find that Firefox creates
virtual memory areas of 252 pages (just below a megabyte)
to store buffers up to and including that size. We refer to
these regions as slabs. For example, an array of 14 times
4 kB reside inside a slab, while a larger 1 MB array (256
pages) ends up in its own 1 MB virtual memory area instead
of a slab. Furthermore, we find that it is possible to obtain
physically contiguous slabs simply by first exhausting all
fragmented memory. This makes slabs a suitable building
block for constructing patterns: first, they can be made to
be physically contiguous, and second, because they combine
several smaller buffers, we are able to selectively free parts of
them as part of memory massaging [28]. To give an example,
assuming a DIMM of 8 GB, we allocate 50% of the system’s
memory (i.e., 4 GB) through 1 GB ArrayBuffer allocations
to exhaust all lower-order (buddy allocator) pages, before
allocating around 37.5% of the system’s remaining memory
(i.e., 2.95 GB) as slabs of 252 times 4 kB, where each slab
consists of 18 ArrayBuffers of 14 pages each. We then use a
cache side channel to color these slabs, using the same method
used to color THPs in [4, 6].

Memory alignment. Coloring a slab means finding the page



(one out of 252) that is physically aligned to a megabyte.
Once this page is found, we are able to calculate which offsets
map to which slice, set, bank, and row, enabling us to build
the patterns described in Section 6.2. To find this megabyte-
aligned page, we simply guess that if this page is megabyte-
aligned, then certain offsets within the slab are congruent.
Two addresses are congruent if they map to the same set and
slice. This strategy, combined with amplified cache eviction,
allows us to color a slab within a few seconds.

Templating. For every bit flip that we find, we assess its
exploitability by comparing the bit flip’s direction (i.e., 0 )1
vs. 1 )0) and location (i.e., byte offset). Our attack needs both
a 0 )1 and a 1 )0 bit flip. Further, we need the bit flips to be
in the tag bits of the Array elements, which limits us to 15
out of 64 exploitable bits [4]. We continue with the next step
once we found two patterns producing the required bit flips.

Memory massaging. We need to massage the memory lay-
out to place an Array in the physically vulnerable location.
For this, we release the pages containing our victim rows
and spray 10360000 Array objects. We experimentally deter-
mined that this amount of memory results in the allocation of
an Array at the vulnerable location. To release the memory,
we use the same technique as reported earlier [4] and pass all
references to a web worker that we terminate.

Crafting an arbitrary read/write primitive. These steps
are described in detail in previous work [4, 6]. In summary,
we retrieve the ArrayBuffer’s virtual address (1 )0 bit flip),
read out the ArrayBuffer’s header (0 )1 bit flip), and craft
an arbitrary read/write primitive (0 )1 bit flip) by creating a
nested fake ArrayBuffer that the attacker controls from within
the outer ArrayBuffer.

Results. We conclude with a detailed evaluation of the exploit.
It takes a median of 11 seconds to build the first eviction set
and 12 seconds to color 8 slabs (enough to build another
eviction set), respectively. On DIMMs A01 and A10, it took
us 11.4 and 7.0 minutes on average, respectively, to find a
pattern that could trigger exploitable 0 )1 and 1 )0 bit flips in
the slabs. Once we find the exploitable bit flips, the massaging
stage takes around 8 seconds, and it is successful in 79.9% of
the trials on average. The attacker can retry with another slab
in case massaging is unsuccessful.

10 Discussion

We discuss the relevance of refresh postponement for mitiga-
tions and DDR5 devices.

Impact on deployed mitigations. We discussed why re-
fresh postponement can benefit an attacker in Section 2.3. To
make this more concrete, assume a device from vendor A, as
analyzed in Section V-C of TRRespass [7] and Section III-B
of Blacksmith [12], that samples α activations after receiving

a refresh command. Assume N is the number of activations in
a tREFI and P is the number of postponed refresh commands.
Without refresh postponement, α

N activations are subject to
sampling, while with refresh postponement, α

N×P are subject
to sampling. This shows the impact of refresh postponement
on reducing the effectiveness of sampling in devices of vendor
A, as we also empirically showed in Figure 4.

Impact on state-of-the-art mitigations. ProTRR [23] ana-
lyzed the impact of refresh and refresh management (RFM)
postponement on deterministic in-DRAM mitigations with
calculated bounds for secure operations. MINT [27] uses a
queue to handle the impact of refresh and RFM postpone-
ment in its probabilistic tracker. We are not aware of other
academic mitigations that consider refresh postponement in
their design which will likely reduce their effectiveness. This
impact can be derived analytically or using POSTHAMMER
inside a simulator that implements the target mitigations. This
is an interesting direction for future work.

DDR5 devices. The DDR5 standard [16] supports refresh
postponement, but we currently lack effective patterns that
bypass mitigations on newer DDR5 devices which is an or-
thogonal research direction to POSTHAMMER. It will be in-
teresting to evaluate POSTHAMMER on DDR5 once effective
patterns for such devices have been discovered.

11 Related work

Browser-based microarchitectural and Rowhammer attacks
face three challenges not faced by the native attacker: first,
accurate timers are unavailable. Second, clflush is not avail-
able either. Third, due to the lack of pointers and the fact that
the attacker’s script runs in a JavaScript engine, the physical
memory layout of the attacker-controlled process is unknown.

Previous work shows how to bypass timer mitigations [9,
29, 36]. Major obstacles for Rowhammer-based browser at-
tacks are the lack of clflush and the unknown memory layout.
The former prevents DRAM access and therefore hammering.
Microarchitectural attacks in the browser use CPU caches
to build a timing side channel [3, 24, 35] but do not pursue
DRAM accesses. Both classes of attacks use eviction sets to
achieve their objectives, however.

While before DDR4 devices with mitigations, Rowhammer-
based browser attacks could rely on double- or even single-
sided patterns [2, 6, 10], recent patterns have become more
complex [4] which incentives optimizing the access patterns
to improve activation rates [18] and increases the need for
knowledge of the physical memory layout [4, 18]. Accord-
ingly, previous work [4, 6, 18] used allocator exhaustion to
“force” the memory allocator to hand out contiguous mem-
ory, to form double-sided aggressor pairs. In comparison to
POSTHAMMER, all these attacks create uniform Rowhammer



Table 4: Chronological overview of Rowhammer-based browser attacks.

Attack Consequence Novelty Memory layout Tested DIMMs

Rowhammer.js [10] PTE exploit of [30] Rowhammer without clflush Huge pages 3x DDR3, 1x DDR4
Dedup Est Machina [2] Arbitrary read/write Leak data via deduplication No assumptions 1x DDR3
GLitch [6] Arbitrary read/write Rowhammer through WebGL Allocator exhaustion 1x LP-DDR3
SMASH [4] Variant of [6] Refresh synchronization Huge pages 2x DDR4
SledgeHammer [18] Variant of [6] Multi-bank hammering Allocator exhaustion 1x DDR4

POSTHAMMER Variant of [6] Refresh postponement Allocator exhaustion 17x DDR4

access patterns that do not allow for pervasive Rowhammer
attacks in the browser. Table 4 summarizes the contributions
of related work and POSTHAMMER.

12 Conclusion

We built POSTHAMMER, a pervasive browser-based Rowham-
mer attack on DDR4 systems. POSTHAMMER leverages re-
fresh postponement to weaken in-DRAM mitigations and a
new abstraction called lane to add non-uniformity to self-
evicting patterns. The refresh-postponed non-uniform pat-
terns generated by POSTHAMMER can trigger bit flips on
86 % of our 28 DDR4 test devices. We found that these pat-
terns share significant similarities and used this insight to
reduce the pattern search space in JavaScript for practical end-
to-end browser exploitation, which we also demonstrated.
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Appendices

A Ethics considerations

This work presents an attack on real systems. However:
first, Rowhammer (on DDR4) is a known problem. Previous
work [4, 12, 18] has already made DRAM vendors as well as
browser developers aware of the practicality of Rowhammer-
based browser attacks. By establishing the pervasiveness of
this problem, we indirectly remind all parties involved of the
need for a solution. Second, while using our attack we are
able to escape (partially) from the browser’s sandbox, thereby
breaking through a security boundary, as such it does not al-
low the attacker to leak confidential information or otherwise
harm end-users. This means we do not foresee any poten-
tial negative outcomes associated with the publication of this
work.

B Open science

The native fuzzer, JavaScript fuzzer, and exploit are available
at https://doi.org/10.5281/zenodo.14738153 and
will also appear at https://github.com/comsec-group
/posthammer.

C DDR4 DIMMs

In Table 5, we provide a detailed overview of the 28 DIMMs
in our test pool.
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A Artifact Appendix

A.1 Abstract
Posthammer shows that browser-based Rowhammer attacks
are pervasive. In particular, we show that the majority of
DDR4 devices are vulnerable to clflush-free Rowhammer pat-
terns that the attacker can launch from client-side JavaScript.

Posthammer includes the following artifacts: first, an ex-
periment for inducing and measuring refresh postponement.
Second, a fuzzer for triggering Rowhammer bit flips natively
using clflush-free and refresh-postponing patterns in a large
search space. Third, a JavaScript version of the fuzzer that
searches for effective patterns in a reduced search space.
Fourth, an exploit that obtains an arbitrary read-write primi-
tive in the address space of the JavaScript process.

A.2 Description & Requirements
To reproduce our results, the evaluator needs:

1. The hard- and software dependencies listed under A.2.3
and A.2.4.

2. The artifacts themselves, which are available at
https://doi.org/10.5281/zenodo.14738152 and
https://github.com/comsec-group/posthammer
(preferred).

After unpacking the artifacts, execute the following com-
mands:

1. For the first two artifacts, the experiment and native
fuzzer, in ./native-fuzzer, execute ./main.sh |&
tee dump. Simply run it again if you get an error about
mem.o missing. The refresh postponement experiment
requires the SPLIT_DETECT macro to be defined.

2. For the JavaScript fuzzer, in ./js-dbg-hugepages, exe-
cute make clean && make; make. We run make twice
to force execution despite the transpiler warnings.

3. For the exploit, in ./js-exploit, also execute make
clean && make; make.

The exploit may fail either due to a segfault or an assertion
failing (e.g. because it cannot find an eviction set). In these
cases, please try again. Similarly, the native fuzzer may fail
to find its first eviction set, but should otherwise not crash.

The exploit will run until it has (intentionally) segfaulted
at 0x1337 while the native fuzzer will fuzz indefinitely while
writing its results to ./pattern/flip.csv. Human-friendly
output can be found in dump (if captured as suggested above).
Search for -> to view the bit flips that have been triggered.

A.2.1 Security, privacy, and ethical concerns

The artifacts are safe. As mentioned above, upon successful
execution, the exploit causes a harmless segmentation fault
at address 0x1337. This segmentation fault will be reported
in the kernel log, see dmesg. Unsuccessful runs will trigger
arbitrary but equally benign segmentation faults in the address
space of the script.

A.2.2 How to access

The latest version of the artifacts is available at https:
//github.com/comsec-group/posthammer. The direc-
tory structure suggests where which artifact can be
found: the exploit is contained in js-exploit, the na-
tive fuzzer in native-fuzzer, and the JavaScript fuzzer in
js-dbg-hugepages.

A.2.3 Hardware dependencies

1. A desktop machine with an Intel Core i7-7700K (Kaby
Lake) processor. This is a strict requirement for the ex-
ploit. The native fuzzer also works on Intel Core i7-
8700K (Coffee Lake) CPUs.

2. A (single) vulnerable DDR4 DIMM. The specifics of
the DIMMs used in the paper are given in the paper’s
appendix. For testing, we recommend a Samsung (A)
DIMM, as they are most vulnerable to Posthammer.

https://doi.org/10.5281/zenodo.14738152
https://github.com/comsec-group/posthammer
https://github.com/comsec-group/posthammer
https://github.com/comsec-group/posthammer


A.2.4 Software dependencies

1. A Debian-based operating system. We have used Ubuntu
18.04.6 under Linux 5.4.0-150-generic. Although we rec-
ommend to use exactly these versions, newer ones might
also work. For example, the native fuzzer also works on
Ubuntu 22.04.5 under Linux 5.15.0-130-generic.

2. Certain software packages. The details are given in the
README. The installation should be straightforward.

A.2.5 Benchmarks

None.

A.3 Set-up
A.3.1 Installation

We refer the evaluator to the README for the installation
instructions.

A.3.2 Basic Test

The following tests can be used to verify the environment.

1. The availability and version of the TypeScript transpiler:

$ tsc --version
Version 2.7.2

2. The availability and version of the JavaScript shell:

$ ./jsshell-130/js --version
JavaScript-C130.0

A.4 Evaluation workflow
A.4.1 Major Claims

C0: Rowhammer patterns crafted as specified in the paper
(Sections 5 and 6) induce refresh postponement. This is
proven by Figure 2 of the paper, which can be reproduced
using E0, see below.

C1: On the majority of DDR4 devices, these non-uniform
and/or refresh postponing clflush-free Rowhammer pat-
terns trigger bit flips while the self-evicting patterns used
in previous work do not. This is proven by Experiment
6 (Table 2) in the paper.

C2: It is possible to trigger these bit flips from JavaScript
with a reduced search space. See also Experiment 6 and
Table 2.

C3: The bit flips triggered by these patterns can be used to
obtain an arbitrary read-write primitive in the JavaScript
runtime.

A.4.2 Experiments

The experiments below map linearly to the claims in A.4.1.

E0: Refresh postponement: produces Figure 2 of the paper
and therefore shows that our patterns induce refresh post-
ponement.

1. Navigate to ./native-fuzzer/pattern/pattern.c.
Open the file and enable the SPLIT_DETECT macro.

2. Execute ./native-fuzzer/main.sh. This
should take around 30 minutes. Plot the data it has
written to ./native-fuzzer/split.csv.

E1: Native fuzzer: explores the clflush-free, non-uniform, and
refresh-postponing pattern space. Triggers bit flips on
most DDR4 devices, see again Table 2.

1. Make sure the SPLIT_DETECT macro is undefined
(default).

2. Execute ./native-fuzzer/main.sh |& tee
dump. Depending on the vulnerability of the
DIMM, it may take several hours until the first bit
flip. As Table 2 shows, however, for most DIMMs,
6 hours should suffice.

As mentioned A.2, we recommend piping the output to
a file and grepping it for the arrow symbol -> to check
for bit flips.

E2: JavaScript fuzzer: shows that the native patterns translate
to JavaScript. Relies on huge pages for convenience.

1. Navigate to ./js-dbg-hugepages and execute
make clean && make; make.

The Makefile should automatically enable transparent
huge pages (THPs).

E3: Exploit: the exploit. Does not rely on huge pages. Uses
two bit flips to obtain an arbitrary read-write primitive
in the JavaScript runtime. To showcase the primitive, we
write to virtual address 0x1337 and segfault.

1. Navigate to ./js-exploit and execute make
clean && make; make.

The exploit may take up to an hour to complete. More-
over, it may segfault before completion due to un-
wanted bit flips. It will print About to segfault at
0x1337... just before segfaulting as planned, which
may be verified by inspecting dmesg.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20231005. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2025/.

https://secartifacts.github.io/usenixsec2025/
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