
PROTRR: Principled yet Optimal In-DRAM
Target Row Refresh

Michele Marazzi, Patrick Jattke, Flavien Solt and Kaveh Razavi
Computer Security Group, ETH Zürich

Abstract—The DRAM substrate is becoming increasingly more
vulnerable to Rowhammer as we move to smaller technology
nodes. We introduce PROTRR, the first principled in-DRAM
Target Row Refresh mitigation with formal security guarantees
and low bounds on overhead. Unlike existing proposals that
require changes to the memory controllers, the in-DRAM nature
of PROTRR enables its seamless integration. However, this means
that PROTRR must respect the synchronous nature of the DRAM
protocol, which limits the number of DRAM rows that can be
protected at any given time. To overcome this challenge, PROTRR
proactively refreshes each row that is most likely to observe bit
flips in the future. While this strategy catches the rows that
are hammered the most, some others may still fly under the
radar. We use this observation to construct FEINTING, a new
Rowhammer attack that we formally prove to be optimal in
this setting. We then configure PROTRR to be secure against
FEINTING. To achieve this, PROTRR should keep track of accesses
to each row, which is prohibitively expensive to implement in
hardware. Instead, PROTRR uses a new frequent item counting
scheme that leverages FEINTING to provide a provably optimal yet
flexible trade-off between the tolerated DRAM vulnerability, the
number of counters, and the number of additional refreshes. Our
extensive evaluation using an ASIC implementation of PROTRR
and cycle-accurate simulation shows that PROTRR can provide
principled protection for current and future DRAM technologies
with a negligible performance, power, and area impact. PROTRR
is fully compatible with DDR4 and the new Refresh Management
(RFM) extension in DDR5.

I. INTRODUCTION

Despite numerous mitigation attempts under Target Row
Refresh (TRR), Rowhammer is still an unsolved problem in
practice [1]–[3], threatening systems security in many different
scenarios [4]–[14]. Existing proposals attempt to mitigate
Rowhammer in the memory controller [15]–[20], but CPU
vendors have little incentive to introduce expensive mitigations
for a problem in the products of DRAM vendors. The natural
place to fix Rowhammer is inside DRAM itself, but mitigations
with strong security guarantees are currently lacking.

We present PROTRR, the first principled in-DRAM Rowham-
mer mitigation that is secure against FEINTING, a novel
Rowhammer attack that we mathematically prove to be optimal.
PROTRR uses the bounds given by FEINTING in the design of a
new frequent item counting scheme, called PROMG (Proactive
Misra-Gries), with a provably optimal yet flexible trade-off
between the number of required counters and additional
refreshes. Our extensive evaluation of PROTRR using an
ASIC implementation and cycle-accurate simulation shows
the feasibility of principled in-DRAM Rowhammer protection
for current and future DRAM technologies.

Rowhammer. In their seminal work, Kim et al. [15] showed
that by repeatedly activating a DRAM row (i.e., aggressor),
it is possible to flip bits in its adjacent rows (i.e., victims)
before these rows have a chance to be refreshed as part of the
background DRAM refresh operation. This effect is present in
most DDR3 devices and has only worsened in DDR4 devices
deployed on more recent systems [1]–[3], [21]. In essence,
Rowhammer is compromising the isolation of data on DRAM.
A plethora of attacks followed, showing that it is possible
to abuse these bit flips to escalate privileges [8], [9], [14],
compromise browsers [4]–[7], break into co-located virtual
machines in the cloud [10], [11], and even attack servers over
the network [12], [13]. These attacks highlight the urgent need
for strong mitigations against Rowhammer.

Mitigations. Originally, two practical countermeasures were
believed to stop Rowhammer: doubling the DRAM’s refresh
rate and error-correcting code (ECC) DRAM. Unfortunately,
neither can fully protect systems [22], [23]. There are also pro-
posals to mitigate Rowhammer in software [9], [22], [24], [25],
but these solutions have security and performance issues [5],
[8], [26]. To mitigate Rowhammer in hardware, previous work
mostly proposes to modify the memory controller to detect
potential aggressors and refresh their victims [15], [16], [18]–
[20]. Unfortunately, due to their substantial cost, CPU vendors
are reluctant to deploy these mitigations given the promise of
Rowhammer-free devices by the DRAM vendors [27], [28].
However, without carefully analyzing the security implications
of performing TRRs inside DRAM, there will be gaps in the
protection, as evident in recent work [1]–[4], [19]. These gaps
will only worsen with the increasing Rowhammer vulnerability
in newer DRAM generations with smaller technology nodes.

FEINTING. In this paper, we advocate for a principled approach
for designing secure in-DRAM mitigations. In-DRAM mitiga-
tions allow for seamless system integration, but they need to
strictly adhere to the synchronous DRAM timing specifications
defined in the DDRx standard [29], [30]. For example, a DRAM
refresh command cannot suddenly take longer when the system
is under attack. This means that any in-DRAM mitigation can
only protect a handful of victim rows at any given point in
time. Consequently, even with an ideal in-DRAM TRR scheme
that always protects rows that are hammered the most, an
attacker can use decoy rows to slowly increase the number of
times a victim is hammered without it ever being subject to
the mitigation. We use this observation to construct FEINTING,
a novel Rowhammer attack that we mathematically prove to be

optimal against an ideal in-DRAM mitigation. FEINTING enables
us to calculate strict bounds on the degree of Rowhammer
vulnerability that can be tolerated on any compliant DDR4
device and future DDR5 devices that use Refresh Management
(RFM), a new extension that is primarily introduced in the
DDR5 standard to address Rowhammer [30]. To the best of
our knowledge, this is the first work to define and calculate
these crucial bounds.

PROTRR. Counting the activations of each row for an ideal in-
DRAM mitigation is too expensive to implement in hardware.
Existing frequent item counting schemes can reduce the
number of necessary counters when frequent items need to be
identified over an arbitrary sequence of row activations [19].
Unfortunately, these schemes are unsuitable for in-DRAM
TRR which needs to proactively protect target rows based
on the information that is available at short intervals. We
develop Principled yet Optimal Target Row Refresh (PROTRR),
a new in-DRAM Rowhammer mitigation that we prove is both
secure and optimal in this setting. PROTRR makes use of
a new frequent item counting scheme, called PROMG, that
adapts FEINTING to right-size Misra-Gries summaries [31]
for secure in-DRAM operation. Our calculations show that
the insights from FEINTING enable PROTRR to significantly
reduce the required number of counters with slight changes to
the Rowhammer tolerance. This property provides PROTRR
with an unprecedented flexibility: depending on the degree of
Rowhammer vulnerability, a DRAM vendor can decide how
to balance the number of counters and in-DRAM refreshes for
keeping its DRAM devices secure. Furthermore, we provide
a proof that PROTRR is optimal in terms of counters and the
required refreshes at any given configuration; fixing the number
of refreshes, any in-DRAM mitigation that uses fewer counters
than PROTRR will be vulnerable to Rowhammer. Similarly,
fixing the number of counters, any in-DRAM mitigation that
uses fewer refreshes will also be vulnerable.

Our extensive evaluation using an ASIC implementation
and cycle-accurate simulation shows that PROTRR provides
principled protection with a negligible performance, area, and
power impact. For example, PROTRR can protect a DDR5
device where bits flip after only 3,200 activations, with less
than 0.2% performance overhead, while increasing the area by
1.78% and energy consumption of DRAM by 2.35%.

Contributions. We make the following contributions:
1. The construction of FEINTING and a mathematical proof

of its optimality against an ideal in-DRAM TRR.
2. The design of PROTRR, a principled in-DRAM TRR that

is secure against FEINTING while providing a provably-
optimal yet flexible trade-off between the required counters
and refreshes.

3. A comprehensive evaluation of PROTRR using (i) an
ASIC implementation in a popular 12 nm technology
for measuring its area and power requirements in DDR4
and DDR5 devices, and (ii) cycle-accurate simulation
for measuring its performance overhead when using the
recently introduced RFM extension in DDR5.

a) b)

Rank 1 Bank 1

BankN

......

DRAM

e)
x+1

x-1

x

D
ecoder

A
ddress

c) Bank active d) Bank in precharge Bank active

Fig. 1: DRAM architecture and relevant DRAM operations. (a) the
rank/bank hierarchy in a DRAM device, (b) row addressing after rank/bank
selection, (c) activating a row X + 1 in a bank using ACT to bring its content
to the row buffer, (d) deactivating the row in the row buffer using PRE,
(e) activating another row X −1. Repeated activation of rows X +1 and X −1
can potentially trigger Rowhammer bit flips in row X .

II. BACKGROUND

We briefly discuss the architecture and operation of a DRAM
device (§II-A) before discussing the Rowhammer vulnerability
(§II-B). We then introduce the current proposals for mitigating
Rowhammer and discuss their limitations (§II-C). We kindly
refer the reader to Table IV (Appendix E) for a summary of
all symbols introduced in this and following sections.

A. DRAM architecture

The architecture of DRAM and its basic operation is depicted
in Figure 1. Like most memory devices, a principal abstraction
in DRAM is the association of data with its address. A DRAM
address traverses a hierarchy, starting with a channel and
continuing to a specific connected DRAM device. Once a
device is selected, the data address is further used to identify
a rank and then a specific bank within that rank (Figure 1-
a). Each bank is a matrix of cells that stores information
using a capacitor (Figure 1-b). When data has to be read
or written, its associated row has to be activated using the
DRAM ACTIVATE (ACT) command, which connects the row
to the row buffer (Figure 1-c), making the bank active. To
deactivate a bank, the DRAM PRECHARGE (PRE) command
is used. The memory controller can decide when to send the
PRE command based on a policy. With a closed-page policy,
the memory controller sends the PRE command right after or
with the DRAM access. In contrast, with an open-page policy,
the memory controller can delay the PRE command. Internally
and transparently to the outside world, banks can further be
divided into subarrays [32]. Each subarray has its own local row
buffer, which is connected to the bank’s row buffer. Subarrays
allow for parallelization of certain DRAM operations such
as the REFRESH (REF) command. Because of the physical
nature of capacitors, their charge constantly leaks. To preserve
their value, the CPU’s memory controller periodically sends
REF commands to DRAM, which triggers an internal refresh
mechanism. Each issued REF only covers a fraction of the
addresses. The JEDEC DRAM standard requires each row
to be refreshed at least once in a tREFW and the memory
controller to issue REFs at intervals defined by tREFI [29],
[30]. As an example, if tREFW equals 64ms and tREFI

equals 7.8125 µs, the memory controller needs to send a total
of 8192 REF commands in a tREFW.

B. Rowhammer

Thanks to continuous improvements in process technology,
we observe an increased DRAM chip density each year.
Unfortunately, this comes at a reliability cost [33]. As DRAM
rows get closer to each other, their electrical isolation gets
compromised. Rowhammer is an attack based on repeated row
activations [15] that causes cells in nearby rows to leak charge
and eventually change their stored values (i.e., bits flip). The
row with repeated activations is commonly referred to as the
aggressor row. The repeated activations of an aggressor row
affect its neighboring rows, which are commonly referred to
as victim rows. A variant of this attack where a victim row
is sandwiched between two aggressor rows, known as double-
sided Rowhammer, is depicted in Figure 1 (c-e). Recently, it
has been shown that an aggressor row can influence victims
that are two rows apart from the aggressor [34]. This means
that in certain DRAM devices, an aggressor can have a blast
diameter (B) of 4, affecting up to four victim rows.

Seaborn [14] showed for the first time that Rowhammer
bit flips could severely compromise security by building a
native privilege-escalation exploit. Plenty of other attacks
followed [35]–[42], where researchers showed that it is possible
to use these bit flips to compromise browsers [5]–[7], cloud
virtual machines [10], [11], mobile phones [8], [9] and even
remote machines over the network [12], [13].

C. Rowhammer mitigations

In response to these attacks, many solutions have attempted
to mitigate Rowhammer in software or hardware. The ones
implemented in software, usually inside the operating system’s
kernel, try to detect aggressor accesses and refresh their
victims [22], isolating sensitive data from bit flips [9], [24],
[25], or using certain pages to store sensitive information [43].
Unfortunately, these solutions require adoption by operating
systems, which has not happened to date. They are also often
vulnerable to more advanced attacks [8], [26], [44].

At the hardware level, Rowhammer can be mitigated either
at the CPU’s memory controller or inside the DRAM itself.
Over the years, there have been many proposals by academia to
modify the memory controller to detect aggressor rows either
deterministically [16], [17], [19], [20], [45] or probabilisti-
cally [15], [17] and to refresh their victims under the Target
Row Refresh (TRR) scheme. Except for a low-cost solution
that was briefly adopted by Intel [1], [15], [46], the remaining
ones require extensive modifications to the CPU’s memory
controller with non-trivial area or performance overhead. As a
result, they have not seen any adoption [1]. It is unlikely that
all CPU vendors will deploy an expensive mitigation to fix a
problem that is in the products of DRAM vendors. Perhaps, the
only enabled mitigation in the CPU is the memory controller-
based Error-Correction Code (ECC) in server systems. This
covers only a fraction of existing computer systems that use

DRAM, and even then, ECC does not provide an adequate
level of protection against Rowhammer attacks [23], [47].

Rowhammer is a DRAM vulnerability, and arguably the best
place to address it is inside the DRAM itself. In fact, this is
exactly what DRAM vendors have done [27], [28]. Unfortu-
nately, these in-DRAM TRR mitigations are undocumented
and lack formal security guarantees. Recent work shows that
there are indeed gaps in currently deployed mitigations and
slight changes to existing Rowhammer patterns result in bit
flips to resurface [1]–[3]. The only existing academic work
on in-DRAM TRR [48] similarly suffers from slightly more
advanced patterns [19]. Hence, we urgently need an in-DRAM
TRR mechanism with formal security guarantees. In this paper,
we show not only that this is possible, but it can be done in a
way that is optimal in terms of the number of required counters
and the introduced refresh overhead.

III. THREAT MODEL

We consider a DRAM device that is affected by the Rowham-
mer vulnerability. At the time of this writing, Rowhammer
is present in all recent DRAM technologies [3], [21]. We
assume that bits start to flip after Rthresh cumulative accesses
to aggressor rows and that each aggressor row can influence up
to B victim rows. We assume an adversary that is capable of
sending requests to the DRAM device either through local code
execution [8]–[11], [14], [44], [47], from the Web [4]–[7], or
even over the network [12], [13] through a CPU that deploys
a memory controller that is compliant with the respective
DRAM standard [29], [30]. The aim of the adversary is to
craft an access pattern that triggers Rowhammer bit flips to
compromise the system by ensuring that a victim is hammered
at least Rthresh times. Our mitigation should provide a formal
guarantee that no row can be hammered Rthresh times before
it is protected by TRR.

IV. REFRESH MANAGEMENT IN DDR5

Recent (LP)DDR4 devices internally perform TRRs on po-
tential victim rows, whenever they receive REF commands [1].
In theory, it is possible to perform TRRs during the execution of
other DRAM commands such as ACT or read/write. However,
as these commands are latency-critical, it would adversely
affect the performance. As such, the REF is shared between
regular refreshes and TRRs. Consequently, TRRs are scarcely
performed and can only refresh a limited number of rows each
time. Performing multiple TRRs overloads the REF command,
and moving to smaller technology nodes with increasing
Rowhammer vulnerability [21] only exacerbates this problem.
As a remedy, the DDR5 standard [30] introduces a new DRAM
command called Refresh Management (RFM) that provides
additional time for TRRs.
RFM mechanisms. An RFM command either targets the
same bank address in each bankgroup (RFMsb) or all banks
(RFMab). Each bank has a counter called Rolling Accumulated
ACT (RAA) that tracks the number of received ACTs. Once
RAA reaches a maximum value defined as RAA Maximum
Management Threshold (RAAMMT), no more ACTs are accepted

Time

RAAIMT

Bank is blocked
R

A
A

(b
an

k
1)

REF REF RFM

RAAMMT

Fig. 2: RFM example. Activations are sent to the same bank, increasing
RAA. At each REF, RAA is decremented by RAAIMT. Once the RAA reaches
RAAMMT, the bank does not accept any ACTs anymore. In this case, issuing
a RFM can reduce the counter by RAAIMT to unblock it before the next REF,
which will also reduce the RAA counter value.

by the bank until the RAA counter is decremented. There are
two possibilities to decrement this counter: RFM and REF
commands. Every time an RFM is received, the target banks’
RAA is reduced by the value set in the Initial Management
Threshold (RAAIMT). Instead, REF reduces RAA either by 0.5×
or 1× of the RAAIMT, depending on the value of the MR59
OP[7:6] DRAM register. Figure 2 summarizes these concepts
with an example. In the current DDR5 standard, valid values
for RAAIMT range from 32 to 80, in steps of 8. Since the
RFM command can be postponed by the memory controller,
in practice RAAIMT defines the average number of activations
received by a bank before an RFM is issued. Instead, RAAMMT
= m × RAAIMT defines the maximum number of activations
before an RFM or a REF must be issued, where m is an integer
between 3 and 6 set by the DRAM. This gives the memory
controller flexibility for scheduling RFM and REF commands
as long as a bank’s RAA count remains below RAAMMT.

V. FEINTING

As stated in § II, the design of a secure and working in-
DRAM TRR is still an open problem. The operations of such a
mitigation are fundamentally different from those implemented
inside the memory controller. In particular, (i) the points at
which TRRs can be performed in a tREFW are limited, and
(ii) only a small number of rows can be refreshed at each point.

In other words, performing in-DRAM TRR means occa-
sionally refreshing a bounded number of rows. Therefore, to
successfully protect against Rowhammer, the mitigation has to
use the available TRRs effectively. Given these conditions, the
only way to implement a secure mitigation is to proactively
refresh rows. To provide deterministic guarantees, a proactive
TRR scheme must keep track of row activations. This can be
achieved by storing a list of victims or aggressors. Additionally,
we define a Rowhammer mitigation to be proactive if (i) rows
are refreshed without using a fixed hammering threshold, and
(ii) the TRR mechanism is triggered periodically. In a proactive
mitigation, every time the mechanism is triggered (TRR event),
the most hammered V victim rows (TRR volume) are refreshed.
Because this happens periodically, we consider two consecutive
TRR events to be interleaved by T activations (interval).

In this section, we consider an ideal TRR scheme, TRRideal,
which has a hammer counter for each victim row. The victim
row’s counter increases every time one of its aggressor rows is
activated, TRRed or refreshed by the regular REF. The victim
row’s counter is reset to zero every time the victim row is
activated, TRRed, or refreshed by the regular REF. For clarity,

we define REFI as the refresh where a specific row is regularly
refreshed (i.e., not TRRed). In §VI, we show how we can relax
these requirements to build an in-DRAM TRR scheme that
is both counter- and TRR-optimal while providing the same
guarantees as TRRideal.

A. Security analysis of TRRideal

Any proactive TRR mitigation can protect up to a specific
degree of Rowhammer vulnerability (Rthresh). In an ideal
proactive mitigation with unlimited counters, this limit depends
on V , T and B. Selecting V and T (B is technology-
dependent), there exists a maximum count (Hammermax) that
a victim row can reach before getting refreshed either by REFI

or TRR.

Definition 1 (Victim hammering). A victim row x̃ is hammered
each time one of its aggressor rows r̃ is activated (i.e., x̃ is
one of the B/2 rows on each side of r̃). We denote by x(α)
the hammer count of row x̃ after the α-th ACT of the attack.
x(α) becomes zero every time x̃ is subject to REFI , TRR,
or an activation.

Definition 2 (Rowhammer attack). We define a Rowhammer
attack A on a victim x̃, as a finite sequence of Lattk activations
to a bank’s rows. A is successful against x̃ iff ∃α ≥ 1 ∣ x(α) ≥
Rthresh. We denote by A the set of all attacks, which is the
set of finite sequences over J1,NrowsK, with Nrows being the
number of rows in a bank.

Definition 3 (Optimal Rowhammer attack). For a
given (V,T,B,mitigation), we define Hammermax =
maxA max1≤x≤Nrows maxα≥1[x(α)]. An attack A ∈ A is
optimal against a victim x̃ iff A reaches Hammermax.

Following, we express the security requirement for TRRideal:

Requirement (Security of TRRideal). For a given DRAM
technology (B, Rthresh) and configuration (V , T), TRRideal

is secure if Hammermax < Rthresh.

Identifying Hammermax corresponds to finding the optimal
Rowhammer attack against the mitigation. In what follows, we
present and prove the best attack against TRRideal.
Assumptions. In our analysis, (i) we consider a memory
controller with a closed-page policy (i.e., no bank collisions are
required to induce a PRECHARGE); (ii) if during a TRR event,
more than V rows have the same highest count, we consider an
attacker that is able to influence which are refreshed; (iii) we
assume an attacker that knows when the rows are refreshed
by the REFI — including the victim x̃. These assumptions
constitute the worst possible conditions for the defender.

Without TRR, all the activations in a tREFW (LtREFW)
can be used against the victim. However, this approach would
quickly fail against a proactive mitigation: the mechanism
would refresh the victim at the first TRR event, as the victim
row would have the highest count. We will demonstrate that
by using a specific activation pattern, the TRR event will never
refresh the target victim before its REFI . Moreover, we will

show how this pattern can be used to build the best possible
attack against TRRideal, which we refer to as FEINTING1.
Decoy rows. Given a target victim row x̃, the attacker aims
at activating the aggressor rows while protecting the victim
from refreshes. During a TRR event, the only case where x̃ is
not refreshed is if there are at least V different victim rows
(decoys) with a greater or equal hammer count. When this
happens, we say that the victim “survives” the TRR event.

Definition 4 (Conditions for victim survival). A victim row
x̃ is not refreshed during a TRR event, after activation α, iff
there exist V distinct rows d̃1...d̃V , each different from x̃, such
that minj[dj(α)] ≥ x(α). We refer to the rows d̃1..d̃V as

“decoys”.

Every time a victim is hammered, its counter is incremented
by one. Given Definition 4, it follows that decoy rows must be
incremented concurrently. Unfortunately for the attacker, when
decoys are refreshed, their counters reset to zero and become
lower than the victim’s count. At the next event, different
decoys will have to be higher or equal to the victim count
for the victim to survives again. Generally, to survive n TRR
events, a victim needs a total of n × V decoys. Note that each
time an aggressor row is activated, it influences up to B victim
rows. That is, for a single aggressor row activation, B decoys
are hammered and their counters increase by one.
Problem formalization. This condition creates an optimization
problem: before a TRR event, part of the activations should
be used to hammer the victim and the remaining to hammer
the decoy rows. However, if too many activations target the
victim, the decoys cannot protect it from being refreshed. On
the opposite, if just a few activations hammer the victim, it
will reach a lower hammer count than possible since the extra
activations used for the decoys are “wasted” (i.e., not used
against the victim). Hence, the number of decoys and their
hammer count should be minimized. We formalize this problem
as follows: Considering all activations in an attack (Lattk),
then Lattk − k activations must be used to build and maintain
a set of decoys. The remaining k activations can be used for
hammering the victim row and thus should be maximized. We
solve this problem by answering the following questions:

1) What is the optimal hammer [optimal distribution]
ratio between the different rows?

2) How many times should the rows [optimal intensity]
be hammered in each step?

3) How many TRR events should [optimal duration]
the attack last?

Answering these questions will lead us to the FEINTING attack.
We start by obtaining FEINTING for DDR4 devices before
adapting it to handle RFM on DDR5. In § VI, we will
adapt FEINTING to securely design PROTRR, and we will
discuss how FEINTING can be further refined to handle protocol
optimizations such as REF and RFM postponing, and certain

1FEINTING refers to maneuvers that distract or mislead the opponent.

Activations are tracked with ProTRR
+ FEINTING-GHOST

Counters are refreshed periodically
+ FEINTING-SPLIT

Section V

Appendices

Section VI

RFMs are postponed
+ FEINTING-POSTPONING RFM

Refreshes are postponed
+ FEINTING-POSTPONING REFS

Subarrays parallelism
+ FEINTING-SUBARRAYS

• DDR4: FEINTING
Basic support

• DDR5: FEINTING-LITE/MEDIUM, FEINTING

Fe
in

tin
g

 r
efi

ne
m

en
ts

Fig. 3: Overview of FEINTING variations. The final attack is a combination
of the listed refinements, depending on the DDR technology.

DRAM architectural optimizations such as subarray parallelism
(Appendix A, Appendix B, and Appendix C). Figure 3 provides
a summary of these different FEINTING variations.

B. FEINTING on DDR4

We consider an attack that lasts n TRR events (intervals).
In the last TRR event, the victim can be refreshed (as the
attack ends), so no further decoy is needed. Thus the minimum
number of rows hammered in the attack is DT = (n−1)×V +1,
i.e. (n − 1) × V decoy rows plus the victim row. Generalizing,
the victim row can be seen as the last decoy that is refreshed.
We refer by D(α) to the number of decoy rows that have not
been refreshed yet before the activation α. We define d̃i as the
i-th decoy, and αi as the moment it is refreshed.

Theorem 1 (Optimal distribution and intensity). For a generic
TRR event i ∈ J1, nK happening after activation αi, with D(αi)
decoys (d̃1...d̃DT−(i−1)×V), an attack A can only be optimal if
all decoys’ hammer count (d1(αi)...dDT−(i−1)×V (αi)) is the
same.

▸ Intuition. To maximize k (the activations that hammer
the victim), we must minimize the total activations used to
hammer decoys during the attack. Decoys should not be
hammered more than the victim because this is unnecessary
for the victim to survive. Likewise, a decoy that is ham-
mered insufficient times is useless for the victim’s survival.
Practically, this translates to steps in which all the decoys
and the victim increase their hammer counts together and
in unison, as shown in Figure 4.

▸ Proof. First, we prove that no decoy should be refreshed
with a hammer count higher than the victim x̃. We consider
any TRR event i, after an activation αi, in which a decoy d̃i
is refreshed. We define ∆ as the difference of hammer counts
between decoy and victim: di(αi) = y+∆ for x(αi) = y. Given
Definition 4, the victim already survives if di(αi) = x(αi).
This means that ∆ hammerings are wasted by not spreading
them equally over all remaining D(αi) rows. In other words,
the victim can survive with a count of x(αi) = y + ∆

D(αi) ,
which creates a better attack.

Similarly, we now prove that it is not optimal to have decoys
hammered less than the one refreshed at the TRR event. We

1 nr_intervals = 8192
2 A_T = nr_intervals*166 // T=166
3 nr_decoys = nr_intervals*V
4 aggressors = GetDifferentRows(nr_decoys/B)
5 for ACT = 1 ; ACT ≤ A_T ; ACT++ do
6 ACTIVATE GetLeastActivated(aggressors)
7 if ACT%T is 0 then // TRR event

// remove the TRRed aggressors
8 RemoveHighest(aggressors, V/B)

Algorithm 1: The pseudocode for FEINTING on DDR4.

+1

+1
+1

+1
+1

+1

...

TRR
event
(V=2)

Activated aggressorDecoys Target victim

+1

+1
+1

+1

+1

...

R
ow

s
in
th
e
ba

nk

+1

+1

+1

+1

...

+1

+T

...

+T
DN

Refreshed

Feinting progression
Fig. 4: FEINTING strategy. As the attack progresses, decoys get refreshed. In
the last round, only the target victim (DN) is left to be refreshed and all the
activations are used against that victim, hammering it T times.

consider any TRR event i (after activation αi) in which a decoy
d̃i is refreshed. In this case, ∆ is the difference of hammer
counts between a lower decoy (d̃l) and d̃i, with di(αi) = y+∆
for dl(αi) = y. Decoy d̃i is refreshed with an excess of hammer
counts: x̃ would have already survived with di(αi) = xi(αi) =
y +∆′, where ∆′ = ∆×(D(αi)−1)

D(αi) . The extra hammers (∆−∆′)
are wasted, as they could have been used to hammer decoy
dl, which has to be hammered to make the victim survive
in a future interval. Concluding, the optimal distribution and
intensity minimizes the difference between all decoys and the
victim by hammering them in steps and in each step, in unison.

Theorem 2 (Optimal duration). Given n TRR events happening
in a tREFW, an attack A is optimal if, given A, DT = (n −
1) × V + 1 and Lattk = LtREFW .

▸ Intuition. The last intervals of two attacks of different
lengths are equivalent. In the last interval, in both cases,
only one row survives (the victim), while in the previous
interval, there were V + 1 rows alive (the decoys and the
victim), and so on. In other words, the longer attack extends
the shorter attack by more intervals. An attacker can use
these extra intervals to hammer the victim and the necessary
decoys. As a result, using a fewer number of intervals only
leads to a lower Hammermax.

▸ Proof. Independently from the attack duration, the victim is
refreshed after the last interval. Thus, according to Theorem
1 attacks of lengths n1 and n2 (with n1 < n2) will share the
same pattern for the corresponding last interval. As such, they
will also share the previous intervals (i.e., n1 − 1 and n2 − 1)
and so on, until the first n2 − n1 intervals of the longer attack.
We now prove that having n2 − n1 ≥ 1 is beneficial for the
attack of length n2.

Consider an attack that requires D
(1)
T rows hammered and

lasts n intervals. Adding one interval at the beginning results in

1.4M 1.2M 1.0M 0.8M 0.6M 0.4M 0.2M 0
0

4k

8k

12k

16k

#
 D

ec
oy

s

0

0.4k

0.8k

1.2k

1.6k

H
am

m
er

s

Decoys alive 2
4
6
8

1k

1.2k

1.4k

1.6kT

AT

AT/2
AT/4

ACTs remaining
Fig. 5: Different durations of FEINTING. Example for DDR4, {V ;B} = 2.

2000 4000 6000 8000

2000
4000
6000
8000

10000
12000
14000

0

1

10

100

1000

zoom on
the last 34

intervals

Refresh interval

H
am

m
er

 c
ou

nt

D
ec

oy
 ID

8170 8180 8190
Refresh interval

Victim row

Refreshed rows

Not hammered
anymore

Fig. 6: Impact of FEINTING against TRRideal. Decoys’ hammer count over
time. After a decoy has been refreshed, it is never hammered again.

hammering each row by ∆ϵ = B×T
D
(1)
T
+V more and consequently

must have V more decoys. However, because B × T > V , it is
beneficial for the attack to have this extra interval. Generally,
for j intervals added, the victim row is increased by ∆ϵtot(j) =
∑ϕ=j−1

ϕ=0
B×T

DT−ϕ×V , where DT =D(1)T + j ×V . Thus, the optimal
duration of an attack is the maximum number of activations in a
tREFW (i.e., LtREFW), from which follows Lattk = LtREFW .
This covers all n TRR events in a tREFW, which means having
DT = (n − 1) × V + 1 decoys. Note that for simplicity, we
consider that the available B × T hammering in each interval
can be used flexibly for any victim without loss of generality. In
reality, when D(α) < B (last interval(s)), rows are hammered
at maximum T times per interval which is what consider for
all the plots, evaluation, and calculations.

FEINTING. To summarize, the optimal attack (FEINTING) is an
attack that starts immediately after the victim row has been
refreshed internally. The attack lasts a tREFW (for a total
of LtREFW activations), where D(α) rows are alternately
hammered once. As TRR events happen, D(α) decreases,
up to having only the victim row in the last interval. The
number of aggressors needed is DT

B
, each associated with

unique B decoys. Algorithm 1 presents the implementation
of FEINTING according to these three theorems, and Figure 5
shows how the increased duration of the attack allows for a
higher Hammermax. Figure 6 shows the hammer count of the
victim in FEINTING over one tREFW.

Number of TRR events. In DDR4, a REF is sent every tREFI
and may trigger a TRR event [1]. The distance d identifies
after how many REFs one triggers a TRR event. This means
that the total number of TRR events is 8192

d
regardless of the

number of activations used in a tREFW. In contrast, DDR5
introduces the new RFM command (§IV), which, depending on
the number of activations, allows for a higher number of TRR
events. Next, we look at the impact of RFM on FEINTING.

REF REF REFa) TRFM

REF REF REFb)

RFM RFM RFM
REF REF REFc)

RFM RFM
ACTs used

RFM RFMRFMRFM
Skipped ACTs

Fig. 7: Different FEINTING strategies on DDR5. a) FEINTING-Lite, b)
FEINTING-Medium, and c) FEINTING.

C. FEINTING on DDR5

We adapt the previous theorems to DDR5 devices. In
DDR5, TRR events happen for both REF and RFM. For this
reason, while keeping the previous definitions, we specify T as
follows. We define TREF as the number of activations between
two refreshes that perform TRR, and TRFM as RAAMMT
(=RAAIMT×m). We first consider a simple memory controller
that generates RFM commands every RAAIMT activations (i.e.,
m = 1). Later, in §V-D, we relax this assumption to consider
postponing RFMs (i.e., m > 1).
TRR events on DDR5. We calculate the minimum number
of possible TRR events generated on a DDR5 device during a
tREFW. This leads to the minimum number of decoys needed
to perform FEINTING. Per DDR5 standard [30], a register in
the device indicates whether every REF or every second REF,
a TRR happens (i.e., d = 1 or 2). For simplicity, we denote by
REFTRR the REFs that do TRRs. Depending on d there are
8192 or 4096 REFTRRs in a tREFW. These are the minimum
numbers of TRR events that happen in a tREFW, without
including RFMs. With FEINTING-Lite, we show how an attacker
can perform FEINTING without ever inducing an RFM.
FEINTING-Lite. In DDR5, tREFW is 32 ms by default, which
leads to TREF = 83 (d = 1). Instead, the maximum value of
TRFM is 80. For FEINTING-Lite and the other variants to be
introduced later, we always consider an optimized memory
controller that does not send an RFM if the next command is
a REFTRR. For this reason, TRFM activations can always
be sent between two REFTRR without causing an RFM: as
the RAA counter becomes RAAMMT, it is immediately set to
zero with a REFTRR. The FEINTING attack is reproducible
without variations by skipping TREF −TRFM activations every
REFTRR (Figure 7-a): we refer to such attack as FEINTING-
Lite. Because we have already proven FEINTING to be optimal,
this is the optimal attack if no RFM command is triggered.
FEINTING-Medium. If multiple blocks of TRFM activations
can fit between two REFTRR, it is straightforward to prove
that FEINTING-Lite can be improved by using the com-
plete TREF − (TREF mod TRFM) activations between two
REFTRR. TREF can be segmented into blocks of TRFM

activations as shown in Figure 7-b. These additional blocks
increase the number of intervals used for the attack in a tREFW.
In the case of FEINTING-Lite, exactly 8192 (or 4096) intervals
are used for the attack, each of TRFM activations. In FEINTING-
Medium, each additional block performs TRFM activations
and requires V (additional) decoys: exactly as if FEINTING-Lite

0.1M0.2M0.3M0.4M0.5M0.6M

#
 D

ec
oy

s

H
am

m
er

s

Decoys left
Feinting Feinting-medium Feinting-lite

1
3
5
7

270

310

350

ACTs remaining

300

200

100

40k

30k

20k

10k

00

Decoys left: medium Decoys left: lite

T

Fig. 8: Different FEINTING strategies for DDR5. Example for {V ;B} = 2.

lasted longer. Because of Theorem 2, this strategy improves
the attack. In FEINTING-Medium, between two REFTRR, the
remaining (TREF mod TRFM) extra activations are skipped.
FEINTING-Medium is the optimal attack if the remaining extra
activations are not used. In the last step, we analyze if it can
ever be beneficial for the attacker to use these extra activations.
FEINTING. Starting from FEINTING-Medium, we evaluate if the
attack can be improved by causing some extra RFMs using
the remaining extra activations (TREF mod TRFM) between
two REFTRR. There is a cost attached when using these extra
activations: every extra RFM triggered increases the number of
decoys needed by V . The attacker needs to use activations to
hammer these additional decoys. Unfortunately, these additional
decoys are less impactful than the others since they add fewer
activations to the attack. This leads to the following question:

Considering ”FEINTING-Medium”, when is it optimal for an
attacker to use the extra activations that cause RFM?

Theorem 3 (Optimal number of extra RFMs). If using extra
activations ceases to be beneficial for an attacker, then it can
never become beneficial again in the same attack.

Corollary. If using extra activations at the beginning of the
attack is not useful, then it will never be.

▸ Intuition. Extra activations will trigger more TRR events,
requiring more decoys to be hammered during the attack. As
time passes, these decoys must be hammered (Theorem 1)
until they are finally refreshed by the extra RFM. This can
be seen as an expense for the attacker. From an attacker’s
point of view, it is less expensive to trigger the extra RFM
earlier, so that the accumulated cost of hammering these
decoys is lower.

▸ Proof. For simplicity, let us assume that only one full TRFM

fits between two REFTRR. We consider two cases that are
identical up to REFTRR interval i − 1 with victim count
x(αi−1) = y. Case (1): the attacker uses ϵ = TREF − TRFM

extra activations in the interval i. Case (2): the attacker skips
interval i as using extra activations is not useful, and then,
in the next interval i + 1, these ϵ activations become useful
and are used for the attack. We now prove that case (2) is
impossible. We start by evaluating the victim hammer count
in the two cases, summing the different contributions:

x(1)(αi+1) = y + TRFM×B
D(αi)+V +

ϵ×B
D(αi) +

TRFM×B
D(αi)−V

x(2)(αi+1) = y + TRFM×B
D(αi)+V +

TRFM×B
D(αi) +

ϵ×B
D(αi)−V

We can evaluate when x(1)(αi+1) > x(2)(αi+1). This results
in TRFM > ϵ which is always true. Therefore, case (2) can
never be more optimal than case (1). This means that is not
possible that using the extra activations ceases to be useful
in one interval and becomes useful again in a later interval.
Likewise, if case (1) was not useful, case (2) would also not be
useful. By induction, it cannot become useful in the future: if i
is not useful and i+1 is not useful, i+2 will also not be useful,
and so on. Concluding, the attacker can calculate when to
stop inducing extra RFMs, deriving the best possible FEINTING.
Figure 8 shows the effectiveness of different FEINTING strategies
on DDR5. These results show that while FEINTING-Medium
improves the attack compared to FEINTING-Lite, in the case of
{V ;B} = 2 the improvement of the last optimization does not
result in a higher Hammermax.

D. FEINTING on DDR5 with RFM postponing

More sophisticated memory controllers may issue RFM com-
mands irregularly, i.e., not always precisely after RAAIMT acti-
vations. However, it must never be after TRFM =m×RAAIMT
(i.e., RAAMMT) activations. In case that TRFM > TREF ,
FEINTING can be improved if we assume that the attacker can
influence the scheduling of RFM commands. The idea is to
leverage extra activations gained by postponing RFMs to build
blocks of RAAIMT activations. This causes the RAA counter to
increase quickly, and at some point, the memory controller will
have to issue multiple, previously postponed RFM commands.
It is optimal for the attacker if the LtREFW activations are
equally distributed over intervals of size RAAIMT, similarly
as for FEINTING-Medium. In the last few intervals, postponed
RFMs can be sent after the tREFW, as such, allowing the
attacker to further increase the count of the decoys (needed
for REFs) and victim in these intervals without causing RFMs.
Furthermore, in this setting, the attacker requires fewer decoys
since fewer RFMs are issued during the attack. We refer to
Appendix B for more details.

VI. PROTRR

An ideal TRR mechanism (TRRideal) requires a large
amount of storage. For example, a single-rank module with
16 banks/rank and 16 bit row addresses needs in total 14MiB
(Rthresh = 5 K). Mitigations deployed in the memory controller
can use known optimized data structures to detect when a
potential victim row reaches a specific threshold. Once this
happens, these mitigations can delay the execution of normal
DRAM operations to refresh this victim row [16], [19], [20],
[45]. As already explained (§V), it is not possible for in-DRAM
mitigations to delay DRAM requests due to the synchronous
nature of the DRAM protocol.

Park et al. [19] use Misra-Gries summaries [31] that provide
deterministic guarantees of finding the most frequently activated
(aggressor) rows [49]. Misra-Gries summaries are proven to be
optimal in the number of counters they need for detecting
frequent items. Unfortunately, these summaries cannot be

2 Victims generator

Summary update3

calculated
using FEINTING

Victim not presentVictim not present

Aggressor not presentAggressor present

Spillover

... ...

C

Addr. H.C.
0x0001

0x0005

x

1

1

1

0

01a

Spillover

... ...

Addr. H.C.
0x0001

0x0005

0x0009

1

1

1

0

1b

Victim present

Spillover

... ...

Addr. H.C.
0x0001

0x0005

x+1

1

1

0

3a
1 2

Low spillover

Spillover

... ...

Addr. H.C.
0x0001

0x0005

0x0003

0x1203

1

1

1

1

3b

0 1

High spillover

Spillover

... ...

Addr. H.C.
0x0001

0x0005

0x0003

x+10x112

2

2

2

1

3c

21

x+1 x-1

ACT of aggressor “x” 1

Fig. 9: Victim counting in PROTRR. Once a row is activated (1), if its
address is contained in the summary it is pruned (1a). Then, the aggressor
blast diameter is considered (2 , for e.g. B = 2) identifying the victim rows.
The victim rows are compared with the summary’s content, which is updated
accordingly (3a , 3b , 3c).

directly applied to the in-DRAM setting. First, Misra-Gries
provides guarantees of finding frequent items occurring more
than a fixed threshold in a stream with a specific length.
However, an in-DRAM mitigation must protect V rows with
the highest count at any TRR event without a fixed threshold.
It is unclear how many counters are necessary to provide
similar guarantees in PROTRR. Secondly, in a proactive in-
DRAM setting, the counters of refreshed rows must reset while
processing the stream, which is not considered in Misra-Gries.

Our proposed in-DRAM Rowhammer mitigation, PROTRR,
uses a new frequent item counting scheme for in-DRAM
operation, called PROMG (Proactive Misra-Gries). PROMG
operates similarly to the Misra-Gries scheme, but is designed
to function in the in-DRAM scenario. In the followings, we
show how PROMG is similarly optimal in the number of
required counters by leveraging the bounds given by FEINTING.
Furthermore, we show how PROMG enables PROTRR to
provide an optimal trade-off between the number of required
counters and additional refreshes – given a DRAM device with
a specific Rthresh.

A. Design of PROTRR

PROMG is a proactive version of Misra-Gries summaries
with two crucial differences. First, PROMG needs a different
number of counters than the original Misra-Gries since it needs
to make proactive decisions. We later show how FEINTING
can be used to right-size PROMG summaries. Second, PROMG
supports pruning entries from its summaries.

Similar to Misra-Gries, a PROMG summary is a table of
< ID, count > pairs and a spillover counter. Conceptually, the
spillover counter represents the upper bound of counts for all
rows that are currently not in the summary. For every input,

its ID is compared with all existing table entries; if there is
a match, the associated counter is increased. Otherwise, the
spillover value is compared with the lowest counter, and if
the former is equal to or higher than the latter, the new input
replaces that entry and its counter is increased. If every entry
has a higher count than the spillover, the spillover is increased.
Unlike Misra-Gries, in PROMG, a row that is either activated
or refreshed is pruned from the summary, and its victim rows
are treated as summary inputs.

Figure 9 shows how PROTRR makes use of PROMG. On
each activation, PROTRR updates its summary accordingly by
incrementing counters that are associated with victim rows of
the activated row. At each TRR event, PROTRR refreshes the
V rows with the highest counters in the summary.
Right-sizing the PROMG summary in PROTRR. In the
original Misra-Gries scheme, given C counters and an input
stream of size L, any entry occurring more than L

C+1 times
will be included in the summary [19]. In contrast, PROTRR
uses PROMG to make proactive decisions without reaching a
threshold. To do this securely, we need to find the right number
of PROMG counters for PROTRR to be secure against FEINTING.
Furthermore, every row will be refreshed in a tREFW which
we also leverage in PROTRR to ensure that the counters do
not grow unbounded. To do this securely, however, we have to
adjust the bounds given by FEINTING. We now prove theorems
that shows how PROTRR right-sizes PROMG considering these
observations.

Theorem 4 (FEINTING optimality against PROTRR). If the
amount of TRR events in an attack is n, given PROTRR with
C = (n − 1) × V + 1 counters in the summary (excluding the
spillover), FEINTING is the optimal attack against PROTRR.

Corollary. Given Hammermax obtained with FEINTING for
fixed (V , B and n TRR events) and considering PROTRR with
C = (n−1)×V +1 counters (excluding the spillover), PROTRR
protects any device less vulnerable than Hammermax, i.e.,
where the Rowhammer threshold Rthresh >Hammermax.

▸ Proof. Given that C = (n − 1) × V + 1, PROTRR behaves
exactly like an ideal counter against FEINTING. Therefore, an
attacker is able to reach Hammermax as described earlier. We
now prove that an attacker forcing the replacement of rows
in the summary due to the limited number of counters does
not increase Hammermax. A replacement happens if a row d̃s
that is not in the summary is hammered, and the spillover is
equal or higher than the minimum count of the summary (row
d̃t). The replacement increases the counter that now refers to
d̃s. The effect on the attack is equivalent as if d̃t had been
hammered, since for the victim to survive, it does not matter
which decoy is TRRed. Note that the replacement can only
happen if more than C decoys have already been hammered;
otherwise, d̃s is added to the summary. Moreover, because
C =DT , all the decoys necessary for the attack have already
been hammered. Therefore, these replacements cannot improve
the attack.
Resetting. Over time, the counters can grow unbounded, thus

requiring unlimited storage to avoid overflows. This does not
reflect reality where every row is refreshed at least once in a
tREFW. To handle this, PROTRR resets the entire summary
once every tREFW. The refresh of a given row, however, is
not necessarily synchronized with the summary reset. This loss
of information about the past tREFW allows an attacker to
perform FEINTING across a reset, thus changing the supported
Rthresh. We address this in Theorem 5.

Theorem 5 (Non-linearity of FEINTING). In the presence of
a summary reset, two independent and shorter back-to-back
FEINTING result in a higher Hammermax than a longer one.

▸ Intuition. FEINTING starts after the victim row has been
regularly refreshed (REFI) to maximize the activations
available for the attack (LtREFW). However, during the
attack, the summary could reset, leading to an information
loss that can be exploited to increase Hammermax. For
example, two attacks of (each) 4096 intervals require half
of the decoys than one attack lasting 8192 intervals but
using the same number of activations, allowing the victim
to be hammered more.

▸ Proof. We define the baseline as case (1): FEINTING lasting
n intervals, never crossing a summary reset. The number
of times the victim will be hammered by the end of these
intervals is denoted by x(1)(αn). In case (2), we consider
a summary reset happening σ intervals after FEINTING has
started (with σ < n − 1). Once the summary resets, it becomes
empty, and a new FEINTING can be initialized, lasting the
remaining i = n−σ intervals. The cumulative number of times
the victim is hammered, after n intervals is x(2)(αn). We
compare these two cases. In case (2), the number of hammers
to the victim is obtained by two different contributions,
the first attack (σ intervals) and the second attack (n − σ
intervals): x(2)(αn) = ∑σ

ϕ=1
B×T

ϕ×V +1 + ∑
i−1
ϕ=0

B×T
1+ϕ×V . Instead,

case (1) consists of only one attack: x(1)(αn) = ∑n−1
ϕ=0

B×T
1+ϕ×V .

The second part of case (2) overlaps with the start of case (1),
i.e., their contributions are equal — a direct consequence of
Theorem 2. The first part of case (2) is larger than the sum of
the σ last terms in case (1), which proves the non-linearity.

Corollary (FEINTING-Split). Given a summary reset every
tREFW, two balanced (σ = n−1

2
), independent back-to-back

FEINTING attacks are optimal.

We proved that if σ < n − 1, it is always better for the
attacker to have two distinct and independent FEINTING. Now
we prove that the optimal condition for the attacker is when
there are two equally long attacks. We start by showing the
effect of moving an interval from the attack’s second part (i.e.,
last n − σ intervals) to the first part (i.e., first σ intervals).
The reader will remember that the sum of the two intervals
is fixed by n. Moving an interval from the second to the first
part is beneficial for the attacker when B×T

σ×V +1 ≥
B×T

1+(i−1)×V
leading to (i − 1) ≥ σ. Given that i = n − σ, it follows that
the best case for the attacker is when σ = n−1

2
. Because

2K1K512256128S
up

po
rt

ed
 R

T
H

R
E

S
H

Counters

d=1 d=3 d=5 d=7 d=10 d=15
40K
30K
20K
10K
0

Fig. 10: Flexibility in PROTRR. Example for DDR4 (B=2, V=2, tREFW
=64ms). For a fixed storage, TRR distance (d) can be used as trade off.

PROTRR implements summary refresh, we have to consider
this adaptation of FEINTING, which we refer to as FEINTING-
Split, when right-sizing the PROMG summary. Before finalizing
FEINTING-PROTRR, we add flexibility to PROTRR.

B. Optimality and Flexibility

Depending on the DRAM technology, a vendor may afford
a maximum number of TRR events (N) to be performed
in a tREFW and a certain number of counters (C) to keep
track of victim rows. We design PROTRR to be flexible: given
any pair of (N , C), the maximum vulnerability protected
can be obtained using FEINTING. A DRAM vendor, knowing
the Rthresh for its own devices, can decide to change N
or C as needed. Furthermore, we show that for any given
(N , C, Rthresh), PROTRR is optimal: there exists no other
deterministic in-DRAM TRR that is secure against FEINTING
with a smaller number of TRR events than N . Similarly, for
a given Rthresh and N , the number of counters C is optimal.
We first show how PROTRR achieves flexibility and optimality
for N , and then we discuss the same for C.
Flexible and optimal TRR events. The bounds given by
FEINTING enable vendors to calculate the required TRR
events (N) in a tREFW for a device-specific Rthresh. The
following theorem shows that N is optimal for a given Rthresh.

Theorem 6 (TRR events optimality). For a supported Rthresh,
PROTRR is optimal in the number of TRR events needed.

To defend Rthresh = Hammermax+1 against FEINTING, the
device requires at least DT−1

V
+ 1 TRR events in a tREFW.

If a smaller number of TRRs are employed, then the decoys
for FEINTING will be fewer, and Hammermax will exceed
Rthresh. Hence, the number of TRR events is optimal. This
feature of PROTRR provides it with flexibility on the number
of TRR events. We can reduce the number of TRR events if a
device has a high Rthresh. In practice, a manufacturer can tune
the number of TRR events using the distance d (§V-B). This
enables configurability of PROTRR according to the DRAM
vendors’ needs. Figure 10 shows how PROTRR can support
devices with different Rthresh by appropriately choosing d.
We now show how PROTRR provides further flexibility in the
number of required counters.
Flexible and optimal number of counters. For a given
Rthresh, FEINTING gives us the optimal number of TRR events.
It follows that DT counters are needed. Given that Misra-Gries
summaries are space-optimal [49], using DT counters will be
optimal against FEINTING. For more flexibility, we show how
PROTRR can reduce this number of counters with a slight
increase of Rthresh.

FEINTING-Ghost. We adapt FEINTING to handle cases where
PROTRR has a limited storage, providing a trade-off between
the supported Rthresh and the number of counters in the
summary. With reduced storage, an attacker engaged in
FEINTING can create ghost decoys by first saturating the number
of counters. Theorem 7 proves the optimal number of decoys
for this modified attack.

Theorem 7 (FEINTING-Ghost optimality). For PROTRR with
C < (n − 1) × V + 1 counters, where n is the number of TRR
events in a tREFW, FEINTING-Ghost with C + 1 decoys is
optimal.

▸ Proof. We assume C < DT and prove that C + 1 is the
maximum number of decoys needed. After C decoys are
hammered, the summary is full, and the next (new) hammered
decoy turns the spillover counter to one. Now, the rows that
are not in the summary are considered already hammered once
(i.e., ghost decoys) – thus reducing the number of hammers
for maintaining them. Likewise, after the next C + 1 hammers,
each row will be considered hammered twice, and so on. This
condition persists until the number of decoys is C. From this
point on, all hammers target rows present in the summary, and
the attack is the same as the original FEINTING.

Theorem 8 (Counters optimality). For a supported Rthresh,
given a number of TRR events, PROTRR is counter-optimal.

▸ Proof. If we remove one counter (i.e., C − 1), there would
be a ghost decoy for which an attacker does not need to waste
activations until there are only C − 1 alive decoys left. These
extra activations could be used to further increase the victim
(and decoys) to exceed Rthresh. Hence, the number of counters
needed in PROTRR is optimal. Figure 10 shows how this allows
PROTRR to massively reduce the number of counters needed,
marginally increasing Rthresh in most settings.
FEINTING-PROTRR. Summarizing, the optimal attack against
PROTRR is the adaptation of FEINTING given two new condi-
tions: summary reset and limited number of counters. We define
this attack as FEINTING-PROTRR, which is the implementation
of FEINTING-Split, where each part is performing FEINTING-
Ghost. We consider Hammermax achieved by FEINTING-
PROTRR in different settings in our evaluation in §VII.

C. Implementation of PROTRR

We implemented PROTRR in a popular 12 nm ASIC tech-
nology, to confirm its feasibility. In our evaluation (§VII), we
assessed the supported vulnerability for the number of counters
implemented in current mitigations. Our design, depicted in
Figure 11, uses a decoder logic (1) to distribute simple
micro-operations over several clock cycles. The entries update
logic (2) performs the summary update and, depending on the
given micro-operation (3): removes a row after it has been
refreshed (REF request), increases the counters of a victim
(Blast request), or resets the summary (Clear request). Within
the same cycle, two parallel combinational circuits (min/max
reduction, 4a and 4b) determine the rows with the lowest and
highest counts for the next summary update (5a and 5b). We

Command Row
address

Row
address

(max)

REF
request

Blast
request

Clear
request

Decoder

A
dd

re
ss

M
ax

 re
du

ct
io

n

M
in

 re
du

ct
io

n

Entries update logic

Row address Count

1

2

5a 5b

3

16

16

...

Row
address 16

log
(S
)

S

4a 4b

log(S)

Fig. 11: PROTRR’s ASIC design. Schematic of PROTRR’s mechanisms.

implemented the summary as a standard cell memory to get
simultaneous access to all its elements for the reductions.
Integration and placement. PROTRR can replace existing
counter-based, in-DRAM TRR schemes [2], [50], [51]. Typ-
ically, control logic (excluding array decoders, Figure 1) is
placed in the center of the DRAM chip, while the rest of the
area is devoted to the DRAM cell blocks [52]–[56]. Instead,
for LPDDR devices, the control logic is placed on an edge
pad. We received confirmation from a DRAM vendor that the
TRR mechanism is placed in the peripheral logic which is part
of the control logic. They also confirmed that it is feasible to
implement 2K counters in this area in an older technology
than the one used by PROTRR. While this is enough for
almost all settings we considered in §VII, more recent process
technologies are capable of implementing more counters if
needed.

VII. EVALUATION

In this section, we present an extensive evaluation of
PROTRR. We consider three key aspects that we assess for
both DDR4 and DDR5: the impact on performance, storage
requirements, and energy consumption. We show that PROTRR
is lightweight, incurs negligible energy and performance
overhead, and is practical for real-world deployments.

In § VII-A, we show PROTRR’s flexibility in supporting
different device constraints with a varying number of required
counters. To estimate the performance and energy overhead,
we run the SPEC2017 benchmark suite [57], as described in
§VII-B. We run the benchmarks using full system simulation,
allowing us to evaluate the impact of PROTRR under real-world
conditions. Additionally, even though PROTRR provides formal
guarantees, we verified its implementation against state-of-the-
art Rowhammer fuzzers [1], [3] and FEINTING (§VII-D). We
provide a confirmation of PROTRR’s feasibility with our ASIC
implementation (§VII-C), and lastly, we test FEINTING against
real DDR4 devices (§VII-E). We point out that PROTRR is
the first Rowhammer mitigation that is compatible with the
latest DDR standard (DDR5), and this is the first work that
evaluates the impact of RFM.

A. Storage size and supported vulnerability

The required storage of PROTRR is derived from the
number of banks (Nbanks) and the size of each summary.
A summary contains entries (Sentries), each consisting of a
row address and a counter. We consider 16-bit addresses, and

TABLE I: Hardware settings and DRAM geometries of our gem5 simulations.

CPU (OoO) Memory Controller DRAM DDR4
2933

DDR5
4800

Cores 8 Channels 2 Ranks 1 1
CPU Freq. 3GHz Page Policy Open Page Bankgroups 4 8
L1D/I Cache 32KiB Scheduling FR-FCFS Banks/Group 4 2
L2 Cache 256KiB Queue Structure Per Bank Banks/Rank 16 16
L3 Cache 8MiB Total Capacity 16GB Rows/Bank 64K 64K

log2(Hammermax) bits for the counter. The total size in bits
is Nbanks × Sentries × (16 + ⌈log2 (Hammermax)⌉).

Figure 12 presents the storage size of different DDR4 and
DDR5 settings based on the geometries given in Table I. These
figures show the required size per rank to support varying levels
of device vulnerability to Rowhammer in different setups. The
blast diameter of 4 incorporates devices subject to the recently
discovered half-double attack [34]. These results illustrate how
storage can flexibly be traded-off by a higher refresh rate, a
lower TRR distance, or RFM postponing in DDR5.
DDR4. We consider a tREFW of 64ms and 32ms with a TRR
volume of 2, for blast diameters of 2 and 4 (Figure 12-a). We
also indicate the highest vulnerability degree as reported in
previous work [21]. We make two observations using these
results: (i) Devices that use LPDDR4 with 64ms of tREFW
can no longer be protected against the half-double attack with
any possible integrated in-DRAM solution. We need to increase
the refresh rate to 32ms to be able to protect these devices
with PROTRR. (ii) The TRR distance has a significant impact
on the supported vulnerability. Due to the lack of RFM support
in DDR4, this suggests that a TRR distance of one is required
for newer process technologies. In Appendix F, we present the
same analysis for a TRR volume of 4.
DDR5. Figure 12-b shows the required storage size for
DDR5 for the worst possible case with RFM postponing of
6. We refer to Figure 20 (Appendix F) for more details.
We make the following observations: (i) Thanks to the RFM
extension, PROTRR can protect DDR5 devices with drastically
lower Rowhammer thresholds. (ii) Lowering RAAIMT only
marginally increases the offered protection, suggesting that the
current set of possibilities in the latest JEDEC standard [30]
is suboptimal. (iii) All the possible setups can protect against
the most recently discovered half-double patterns.

B. Performance and energy overhead

Methodology. We evaluate PROTRR on the SPEC®2017 [57]
benchmark suite to assess its performance and energy overhead
in real-world workloads. We follow the benchmark’s guidelines
and run each benchmark with eight parallel copies (i.e.,
number of cores) to maximize the simulated load. We use
gem5 [58], a cycle-accurate hardware simulator, in conjunction
with DRAMsim3 [59], a cycle-accurate memory controller.
We implemented PROTRR in DRAMsim3, and due to the
lack of publicly available DDR5 simulators, added DDR5
support to DRAMsim3, including the new RFM command. For
benchmarking, we use the full system simulation mode of
gem5 to run Ubuntu 20.04 with the Linux kernel 5.4.49. We
follow the SMARTS methodology [60] to obtain 20 equally-
spaced checkpoints, each running 10 M instructions, for a total
of 200 M instructions in line with previous work [20], [21].

0
40
80

120
160

200
TRR Distance = 1 TRR Distance = 3 TRR Distance = 5 TRR Distance = 7 TRR Distance = 10 TRR Distance = 15

5k 10k 15k 20k 25k
Supported device vulnerability

05k 10k 15k 20k 25k
Supported device vulnerability

05k 10k 15k 20k 25k
Supported device vulnerability

05k 10k 15k 20k 25k
Supported device vulnerability

0

a.

S
iz

e
[K

iB
]

0
50

100
150

200
250

RAAIMT=32 RAAIMT=40 RAAIMT=48 RAAIMT=56 RAAIMT=64 RAAIMT=72 RAAIMT=80

S
iz

e
[K

iB
]

b.

LP
D

D
R

4

D
D

R
4

D
D

R
3

B=2 tREFW=64ms B=2 tREFW=32ms B=4 tREFW=32msB=4 tREFW=64ms

B=4 d=2B=4 d=1B=2 d=2B=2 d=1

5k 10k 15k 20k 25k
Supported device vulnerability

05k 10k 15k 20k 25k
Supported device vulnerability

05k 10k 15k 20k 25k
Supported device vulnerability

05k 10k 15k 20k 25k
Supported device vulnerability

0

Fig. 12: Storage size of PROTRR, per-chip values. The green arrows indicates the worst device vulnerability taken from Kim et al. [21]. a. DDR4 storage
size. V = 2. b. DDR5 storage size. m = 6, V = 2. The results for DDR4 with tREFW = 32ms also apply for DDR5 without RFM support.

R
FM

s
/ R

E
Fs

 [%
]

D=1 D=2

D=1 D=2

32 40 48 56 64 72 80
RAAIMT La

te
nc

y
ov

er
he

ad
 [%

]

2

0

1

30

0

10

20

Latency

RFMs

a. b.

64ms

Perf. overhead: 12.5%
Tail latency overhead: 2.5%

32ms
tREFW

Fig. 13: Average performance impact on DDR4 and DDR5. (a) DDR4.
Performance and tail latency overhead with tREFW = 32ms. (b) DDR5. Left:
percentage of RFM, relative to REFs in a tREFW. Right: tail latency overhead.

The simulated hardware setup is listed in Table I. The results
are relative to a baseline, which was obtained by running the
benchmarks without any active mitigation. The simulations
consider varying (a) TRR volumes, (b) TRR distances, and
(c) tREFW durations. As recommended by JEDEC [61] to
help against Rowhammer, we assume that the REFs cannot
be postponed. We still show in § VIII how PROTRR can
support postponing REFs. We configure the memory controller
to immediately send an RFMsb upon reaching RAAIMT,
which is the worst-case scenario for performance. Note that
our performance and (dynamic) power measurements are
independent of Rthresh. A vendor should select the correct
TRR distance, tREFW (in case of DDR4), and RAAIMT (in
case of DDR5) according to the Rthresh for their device. In
contrast, the implementation-dependent area and static power
overhead depend on Rthresh which we report in §VII-C using
our ASIC implementation.
Performance. In DDR4, TRRs happen only during REF
without any performance overhead. However, as discussed, a
default tREFW of 64ms may not provide adequate protection
with low Rowhammer thresholds. For this reason, we evaluated
the impact of changing tREFW to 32ms (Figure 13-a). This
not only reduces the time window available for an attack but
also increases the frequency of internal TRRs. The result is an
average CPI (cycles-per-instruction) overhead of 12.5% while
increasing the tail latency of DRAM accesses by 2.5%2.

In DDR5, TRR events still happen during REF, but, if
required, the new RFM command is sent, potentially introducing
overhead. To analyze the RFM’s impact, we tested all possible

2Considering DRAM accesses that take longer than 200 cycles.

32 40 48 56 64 72 80
RAAIMT

0

1

2

E
ne

rg
y

ov
er

he
ad

 [%
]

D=1
D=2

1 3 5 7 10 150

0.2

0.4

0.6
a.

E
ne

rg
y

ov
er

he
ad

 [%
]

TRR distance (D)

b.

64ms
32ms

Fig. 14: Average energy impact on DDR4 and DDR5. (a) DDR4. Energy
overhead of TRRs performed during REF. (b) DDR5. Energy overhead due
to TRRs performed during REF and RFM.

combinations of RAAIMT and TRR distances. In all scenarios,
the performance overhead is always negligible, never exceeding
0.2%. To better understand the impact of RFM, we present
the percentage of RFM compared to REF commands and the
increasing tail latency with varying RAAIMT and TRR distance
in Figure 13-b (for more details, see Appendix F). We make
two observations: (i) For small RAAIMT numbers, we require
a substantial number of RFM commands (30.87% increase
compared to the baseline REF in the worst case). These RFM
commands, however, do not alter the instruction throughput
(i.e., CPI) due to the parallelism offered by the out-of-order
CPU cores and bank-level parallelism offered by RFM. In
DDR4, the REF is a per-rank command, blocking the entire
rank and substantially increasing the overhead when moving
from tREFW of 64 ms to 32 ms. (ii) While CPI (i.e., instruction
throughput) remains mostly unaffected, RFM does increase the
tail latency of DRAM accesses (1.25% in the worst case).
Energy. We analyze the energy impact of the additional
refreshes during TRR events. For each benchmark, we calculate
the energy consumption as a sum of the device’s plain energy,
the energy of the TRRs performed during REF commands,
and the energy consumed by RFM commands. To estimate the
energy of these extra TRR refreshes, we calculate the energy
required to refresh a single row and multiply it by the volume.

Figure 14-a reports the energy overhead of PROTRR in
DDR4 for a tREFW of 64ms and 32ms with varying TRR
distance between 1 and 15. Figure 14-b shows the energy
overhead of DDR5 for different RAAIMT and the two possible
TRR distances. We make the following observations: (i) The
energy overhead in DDR4 is always below 0.6% of the device’s
total energy. (ii) The energy overhead in DDR5 is generally

a. b.

Counters (log scale)

0.1

0.2

0.3

To
ta

l a
re

a
[m

m
2]

1

2

3

P
ow

er
 [m

W
]Area

Power

Counters (log scale)
64 128 256 512 1024 204864 128 256 512 1024 2048

DDR4
DDR5

5

15

25

35

45
R

T
H

R
E

S
H

 (x
10

3)

Fig. 15: PROTRR feasibility, per-bank values. (a) Required number of
counters for different Rthresh in DDR4 (tREFW = 64ms, d = 1) and DDR5
(TRFM = 32, d = 1). (b) ProTRR ASIC costs in terms of total area and
power consumption.

higher than for DDR4 due to the additional TRRs. However,
this is still relatively small and at 2.11% in the worst case.
(iii) In DDR5, given the same number of activations, for a
TRR distance of 2, a higher number of RFM must be sent to
compensate, increasing the energy overhead.

C. Feasibility

We implemented PROTRR in ASIC, using a popular 12 nm
technology and the Synopsys Design Compiler. Figure 15-b
reports the total area required and power consumption and
Figure 15-a shows the Rthresh that PROTRR can protect for
the number of counters. As results show, having more counters
than 1024 does not substantially increase security; therefore,
we consider it as the worst-case scenario. We designed the
ASIC such that all updates (including lookups) are faster than
the time between two consecutive ACTs, allowing PROTRR
to execute in parallel. In particular, the operations require V
cycles during a refresh, and B+1 cycles during an ACT. We
considered 45 ns as the minimum time between two activations,
as previously reported [19].
Static power. Although previous work showed that the energy
consumption for the mitigation logic is negligible [19], [20], we
evaluated it for completeness. The overhead for 1024 counters
is at maximum 17.44mW for 16 banks, obtaining a total
of 139.52mW for 8 chips. This is in line with previously
reported values [20]. For a baseline static consumption of
3W/8GiB [62], this leads to 4.65% static power overhead.
However, given the current technology and consumer DDR4
chips, 512 counters are enough to ensure protection in the
worst cases, leading to 2.35% static power overhead.
Area. Chips area depends on process technology, fabrication,
and the array size. For our analysis, we consider a common
density for DDR4 devices, 0.247GB/mm2 [63]. For a chip
that uses 16 banks and 1024 counters per bank, this leads to
a maximum area overhead of 3.7%. Unfortunately, currently
deployed TRR mechanisms are kept secret and there is no
open DRAM implementation that can integrate PROTRR. For
this reason, to further confirm the feasibility of PROTRR, we
contacted a DRAM manufacturer. We obtained confirmation
that (i) up to 2K counters have already been deployed in the
past, and (ii) given PROTRR’s specifications (dimension, as
obtained from results), it is reasonable to deploy it.

D. Correctness

We tested PROTRR against FEINTING to check its implemen-
tation by running PROTRR in DRAMsim3 with memory traces.

TABLE II: Result of FEINTING on three DDR4 devices. We report the best
attack’s parameters (Best Params.) as: attacks duration (in tREFIs), TRR
distance, and number of victim hammer repetitions.

DIMM Mf. Date
(yy-ww)

Size
(GiB)

Freq.
(MHz)

Geom.
#R., #B.

Best
Params.

Bit Flips
Observed

D0 20-03 8 2666 1, 16 2048, 9, 1 ✔
D1 20-06 32 2666 2, 16 2048, 9, 3 ✔
D2 20-10 8 2400 1, 16 8192, 9, 4 ✔

In all the cases with a correct configuration, PROTRR could
withstand FEINTING. Instead, in cases where PROTRR was
improperly configured, FEINTING could successfully trigger
bit flips. We also generated traces from two state-of-the-
art Rowhammer fuzzers [1], [3] and executed them against
PROTRR for three days without observing any bit flip.

E. FEINTING on real devices

FEINTING assumes a mitigation that counts every activa-
tion with an adequate number of counters. Existing TRR
schemes are not ideal and may employ multiple concurrent
mechanisms to catch aggressors, some completely different
from PROTRR [2]. However, we were still interested to see if
FEINTING is able to generate bit flips on devices with a deployed
counter-based mitigation. To evaluate this, we acquired three
DDR4 devices from the same manufacturer previously reported
to use a counter-based mitigation [2] (see Table II).

We conducted our experiments on an Intel i7-8700K running
on Linux with kernel 4.15.0. We adapted FEINTING based
on insights from [2] as follows: we assumed that counters
could track at most 16 rows (i.e., 18 decoys needed as part
of FEINTING-Ghost), and systematically tested different attack
durations (2048× up to 32768× tREFI) as a row could be
refreshed multiple times in a tREFW. We tested different TRR
distances (1 up to 9) and victim hammer repetitions (1 to 4)
while assuming 5 hammering repetitions for decoys.

In Table II, we show the results of running FEINTING-Ghost
on our acquired DDR4 devices. An attack trace can be seen in
Figure 16, where the duration is 8192× tREFI. Our results
show that with minor adaptations, we could successfully trigger
bit flips on all three devices using FEINTING. Further, we can see
that an attack duration shorter than a tREFW and hammering
the victim fewer times (e.g., one time for D0) can be beneficial
because sampling may happen only at specific times as reported
in previous work [1], [3]. We tested Blacksmith [3] on the
same devices, which could trigger bit flips on all of them,
while TRRespass [1] failed to obtain bit flips on DIMM D0.

VIII. DISCUSSION

We discuss how PROTRR can (i) be adapted to handle
postponing and pulling-in of refresh commands, (ii) obtain
better bounds by using subarray parallelism, and (iii) generalize
to other, yet unknown, Rowhammer effects.
Postponing and pulling-in of REFs. The DDRx standard
gives some flexibility in terms of REFs by allowing REF
postponing and pulling-in. Attackers can exploit postponing
to maximize TRR-free REFs, which reduces the number of
decoys needed for both DDR4 and DDR5. For DDR4, the
victim can be hammered more often than before, but for DDR5

1 8191 81928190
R

ow
 ID

2
...

Activation o�set in tREFi
44 881 22 66

Activation o�set in tREFi
44 881 22 66

Activation o�set in tREFi
44 8822 66

1

18
12
6

Activation o�set in tREFi
44 8822 66

Activation o�set in tREFi
44 8822 66

Fig. 16: Trace of FEINTING-Ghost against DDR4 samples with 16 counters. The attack duration is 8192 tREFI.

nothing changes due to RFM still being sent. A more detailed
analysis of REF postponing/pulling-in is given in Appendix A.
Subarray parallelism. Subarrays enable a bank to refresh
multiple rows at each REF. PROTRR can potentially leverage
this to perform more TRRs when necessary. We provide a
detailed description of how FEINTING can be adapted to subarray
parallelism in Appendix C. In summary, each bank can perform
multiple TRRs at the same time, effectively increasing V .
However, the additional TRRs cannot target any row as each
subarray can still only refresh V rows at any given TRR event.
An adapted FEINTING can exploit this limitation by reducing
the number of required decoys to create the optimal attack.
Generalization. FEINTING provides the basis to configure
PROTRR to protect against Rowhammer. The only (implicit)
requirement for FEINTING is knowing the interaction between
an aggressor and its victims. In the case of a basic Rowhammer
attack, which we originally considered, an aggressor activation
interacts with its direct neighboring victim rows. With new
Rowhammer effects, FEINTING should be adjusted to consider
new interactions between aggressors and victims. We discuss
two of these cases next.

During the development of PROTRR, the half-double pattern
was disclosed by Google researchers [34]. To also protect
against it, we only needed to consider that on certain devices,
an aggressor activation can also interact with victim rows that
are more than one row apart (i.e., up to B rows). Currently, a
rigorous characterization of the half-double effect is missing.
For this reason, we assumed the worst-case in the design of
PROTRR, i.e., the same effect on every row in the blast diameter.
Once this relationship is better understood, future research can
adapt FEINTING accordingly to derive the optimal version of
PROTRR when B > 2.

Another concurrent discovery shows that rows that are kept
active can also influence adjacent rows [64]. PROTRR can easily
generalize to this case as well. The only new requirement is
to increase the counter for victims of the (aggressor) row that
remains active. It remains unclear, however, whether simply
keeping a row active is more effective than using the time
for additional hammering which should be characterized more
rigorously in the future.

IX. SECURITY ANALYSIS OF EXISTING SCHEMES

We first discuss a general limitation when mitigating
Rowhammer outside of DRAM. We then present our security
analysis of state-of-the-art hardware mitigations, which resulted
in the discovery of novel vulnerabilities in four earlier proposed
schemes [16], [19], [45], [65].
Internal row remapping. Previous work has observed that
bits can flip in rows that are not adjacent to an aggressor [12],

[13], [15]. This is due to internal row remapping that does not
necessarily map logically-adjacent to physically-adjacent rows
inside the DRAM device [66]. This is a major limitation of all
existing Rowhammer mitigations that are outside of DRAM,
both hardware and software [9], [12], [15], [15]–[19], [22],
[24], [25], [45] except Blockhammer [20]. PARA [15] explicitly
requires this remapping information to be communicated from
the DRAM to the CPU, which has never been implemented. In
contrast, the in-DRAM nature of PROTRR allows it to use the
correct row mapping that is known by the DRAM chip only.
CBT [45] and CAT-TWO [16]. Both mitigations reset their
table after a tREFW period. If within this period, an aggressor
row reaches Rthresh activations, its neighbors are refreshed.
An attacker can, however, activate an aggressor Rthresh − 1
times immediately before and after the tREFW, violating the
guarantees provided by the mitigation. A second issue concerns
CAT-TWO only: it employs trees of counters distributed among
the rows of a full rank. However, these trees are blind to
victim rows that share aggressor rows across different trees. By
hammering each aggressor for Rthresh − 1 times, the victim
can exceed the threshold.
Graphene [19]. Refreshing a row with TRR has a similar
effect like an ACT, which is used while hammering rows. As a
consequence, an attacker could exploit TRRs to hammer rows.
While this could be easy to fix, it is not taken into account
in the current design of Graphene. We discuss how PROTRR
securely handles TRRs in Appendix D.
Panopticon [65]. Concurrent to our work, Panopticon is a new
in-DRAM mitigation against Rowhammer that relies on per-row
counters stored in DRAM and uses the ALERT mechanism to
request more time (from the memory controller) to TRR victim
rows that reached a threshold. While storing counters inside
DRAM itself is cheap, it is insecure as they can similarly be
affected by Rowhammer bit flips. Furthermore, overloading the
ALERT mechanism has multiple undesirable implications. First,
not all devices may support ALERT as it is optional according
to the standard, and the PHY-level errors causing them are very
rare. Second, ALERT is a signal that blocks the whole device,
likely causing significant performance degradation. Finally, it
is unclear how the memory controller can tell the difference
between a real ALERT (to retry commands) and one due to
Rowhammer activity. If counters in DRAM can be secured
(e.g., with a strong ECC), PROTRR can use these counters to
provide a better alternative.

X. RELATED WORK

We summarize existing work on Rowhammer mitigations in
Table III and compare the following properties: (i) scalability,
i.e., the optimality of resource allocation; (ii) security, i.e.,

TABLE III: Rowhammer mitigations in hardware and software.

Mitigation Scalability Security Support Integration
Flex. Opt. Det. FP Vuln. DDR4 DDR5 OS CPU DRAM

H
W

-b
as

ed

PROTRR —
Blockhammer [20] —
CBT [45]
CAT-TWO [16]
Graphene [19]
MRLoc [17]
Panopticon [65]
PARA [15] —
PRoHIT [48]
TWiCe [18]

SW
-b

as
ed

ALIS [12] — — — —
ANVIL [22] — — — —
CATT [24] — — — —
GuardION [9] — — — —
ZebRAM [25] — — — —

the strength of the provided security guarantees; (iii) support,
i.e., the mitigation’s supported DRAM standards; (iv) and
integration, i.e., the solution’s required integration effort.

For scalability, we consider if mitigations optimally use
counters and refreshes (Opt.); and if these resources can flexibly
be traded-off with each other (Flex.,). For flexibility, we
further analyze if the mitigation’s required storage size is
always the same (), hence is more wasteful, or scales with
the system’s connected devices (). The security category
includes the mitigations’ guarantees, which are either determin-
istic (Det.,) or probabilistic (). Deterministic mitigations
provide a stronger guarantee against bit flips. Further, we
consider if a mitigation provides a formal proof (FP) for its
design (). Lastly, we highlight those mitigations for which
we (or existing work) revealed vulnerabilities (Vuln.), and we
distinguish between minor issues () and fundamental flaws
in the design (). An extensive support of different DRAM
standards (DDR4, DDR5) is essential to ensure practicality and
widespread adoption. We further analyze whether mitigations
require changes to the DRAM protocol () or not ().
Finally, we consider the system integration effort by describing
which components need to be modified. Minimizing the
effort is critical for real-world adoption as indirectly affected
manufacturers (i.e., CPU/OS vendors) may not be willing to
implement complex solutions.
Scalability. Only two mitigations (PROTRR and Graphene)
are optimal w.r.t. counters and refresh requirements. PROTRR
is the only solution that can flexibly trade-off storage with
additional refreshes. PROTRR, ProHIT and Panopticon are
the only mitigations that have counters in-DRAM, i.e., their
required storage scales per connected device. Panopticon’s
storage is flexible as the counter table uses DRAM memory.
PARA is completely stateless and does not require any storage.
Similarly, MRLoc has negligible storage requirements. All other
hardware-based mitigations are implemented in the memory
controller; hence vendors need to provision enough storage for
the system’s maximum supported DRAM size.
Security. Few mitigations provide formal security guarantees
for protection against Rowhammer attacks. We denote mit-
igations without known vulnerabilities by “—”. Based on
our security analysis (§ IX) and previous work [19], most
of the hardware-based mitigations suffer from vulnerabilities.

PARA’s security is probabilistic, and to protect modern devices
the overhead can be substantial [21]. Instead, all software
mitigations provide a partial protection because of blindness to
internal row remapping, and to newer Rowhammer variants like
half-double [34]. Previous work has also shown design-level
flaws in ANVIL [8], [44], [66] and GuardION [42].
Support. None of the existing hardware-based mitigations are
DDR5-ready, except PROTRR, which considers the new RFM
extension introduced in the DDR5 standard [30]. Software-
based mitigations are agnostic to the DDR technology. PROTRR,
ProHIT, and Blockhammer are the only three mitigations that do
not require changing the DRAM protocol. TWiCe and Graphene
require adding new DRAM commands for refreshing rows
adjacent to the aggressors, and PARA requires communicating
the mapping of internal rows to the CPU. All other mitigations
implicitly assume that there exists a DRAM command for
refreshing a specific row – which currently does not exist.
Integration. Our comparison shows that all hardware-based
solutions require modifications to the CPU (e.g., memory
controller), except for PRoHIT, and PROTRR, which can
be fully implemented in-DRAM. PRoHIT is vulnerable to
specific patterns [19]. Panopticon [65] requires the CPU’s
memory controller to handle the ALERT signal gracefully, and
as discussed in Section IX, some of its security aspects remain
unclear. Instead, PROTRR is the only solution with deterministic
and formal security guarantees. Software-based solutions are
often integrated into the operating system’s kernel. None has
seen widespread adoption so far.

XI. CONCLUSION

We introduced PROTRR, the first in-DRAM Rowhammer
mitigation with formal security guarantees, for which we also
proved that it is optimal in terms of storage and refresh overhead
for any given DRAM technology. PROTRR is secure against
FEINTING, the best possible attack we have formally constructed
against a perfect in-DRAM TRR. Moreover, we used insights
from FEINTING to provide a flexible trade-off between needed
storage and refreshes given a DRAM device with a certain
degree of vulnerability to Rowhammer. PROTRR is compatible
with DDR4 and leverages the recent RFM extension in
DDR5 to support future devices that are more susceptible
to Rowhammer. We evaluated PROTRR’s space, performance,
and power overhead using an ASIC implementation and
cycle-accurate simulation. In summary, PROTRR can protect
current and future devices while requiring minimal storage and
incurring negligible power and performance overhead.

ACKNOWLEDGMENTS

We thank our anonymous reviewers, also Stefan Saroiu
and Hans Diesing for their valuable feedback. We thank
Kubo Takashi for sharing valuable insights into DRAM
technology. This research was supported by the Swiss National
Science Foundation under NCCR Automation, grant agreement
51NF40 180545, and in part by the Netherlands Organisation
for Scientific Research through grant NWO 016.Veni.192.262.

REFERENCES

[1] P. Frigo, E. Vannacci, H. Hassan, V. van der Veen, O. Mutlu, C. Giuffrida,
H. Bos, and K. Razavi, “TRRespass: Exploiting the Many Sides of Target
Row Refresh,” in IEEE S&P, 2020.

[2] H. Hassan, Y. C. Tugrul, J. S. Kim, V. Van der Veen, K. Razavi, and
O. Mutlu, “Uncovering in-dram rowhammer protection mechanisms:
A new methodology, custom rowhammer patterns, and implications,”
in MICRO-54: 54th Annual IEEE/ACM International Symposium on
Microarchitecture, 2021, pp. 1198–1213.

[3] P. Jattke, V. van der Veen, P. Frigo, S. Gunter, and K. Razavi, “Blacksmith:
Scalable Rowhammering in the Frequency Domain,” in IEEE S&P, May
2022.

[4] F. de Ridder, P. Frigo, E. Vannacci, H. Bos, C. Giuffrida, and
K. Razavi, “SMASH: Synchronized Many-sided Rowhammer Attacks
from JavaScript,” in USENIX Security, 2021.

[5] D. Gruss, C. Maurice, and S. Mangard, “Rowhammer.Js: A Remote
Software-Induced Fault Attack in JavaScript,” in DIMVA, 2016.

[6] E. Bosman, K. Razavi, H. Bos, and C. Giuffrida, “Dedup Est Machina:
Memory Deduplication as an Advanced Exploitation Vector,” in IEEE
S&P, 2016.

[7] P. Frigo, C. Giuffrida, H. Bos, and K. Razavi, “Grand Pwning Unit:
Accelerating Microarchitectural Attacks with the GPU,” in IEEE S&P,
2018.

[8] V. van der Veen, Y. Fratantonio, M. Lindorfer, D. Gruss, C. Maurice,
G. Vigna, H. Bos, K. Razavi, and C. Giuffrida, “Drammer: Deterministic
Rowhammer Attacks on Mobile Platforms,” in ACM SIGSAC, ser. CCS
’16. New York, NY, USA: Association for Computing Machinery, 2016,
pp. 1675–1689.

[9] V. van der Veen, M. Lindorfer, Y. Fratantonio, H. P. Pillai, G. Vigna,
C. Kruegel, H. Bos, and K. Razavi, “Guardion: Practical Mitigation of
DMA-Based Rowhammer Attacks on ARM,” in DIMVA, 2018.

[10] K. Razavi, B. Gras, E. Bosman, B. Preneel, C. Giuffrida, and H. Bos,
“Flip Feng Shui: Hammering a Needle in the Software Stack,” in USENIX
Security, 2016.

[11] Y. Xiao, X. Zhang, Y. Zhang, and R. Teodorescu, “One Bit Flips, One
Cloud Flops: Cross-VM Row Hammer Attacks and Privilege Escalation.”
in USENIX Security, 2016.

[12] A. Tatar, R. K. Konoth, E. Athanasopoulos, C. Giuffrida, H. Bos, and
K. Razavi, “Throwhammer: Rowhammer Attacks over the Network and
Defenses,” in USENIX ATC, 2018.

[13] M. Lipp, M. Schwarz, L. Raab, L. Lamster, M. T. Aga, C. Maurice, and
D. Gruss, “Nethammer: Inducing Rowhammer Faults Through Network
Requests,” in EuroS&PW, 2020, pp. 710–719.

[14] M. Seaborn and T. Dullien, “Exploiting the DRAM Rowhammer Bug to
Gain Kernel Privileges,” in Black Hat USA, 2015.

[15] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping bits in memory without accessing them:
An experimental study of DRAM disturbance errors,” in ISCA, 2014.

[16] I. Kang, E. Lee, and J. H. Ahn, “CAT-TWO: Counter-Based Adaptive
Tree, Time Window Optimized for DRAM Row-Hammer Prevention,”
IEEE Access, vol. 8, pp. 17 366–17 377, 2020.

[17] J. M. You and J.-S. Yang, “MRLoc: Mitigating Row-hammering based
on Memory Locality,” in DAC. IEEE, 2019, pp. 1–6.

[18] E. Lee, I. Kang, S. Lee, G. Edward Suh, and J. Ho Ahn, “TWiCe:
Preventing Row-hammering by Exploiting Time Window Counters,” in
ISCA, 2019.

[19] Y. Park, W. Kwon, E. Lee, T. J. Ham, J. H. Ahn, and J. W. Lee, “Graphene:
Strong yet Lightweight Row Hammer Protection,” in MICRO. IEEE,
2020, pp. 1–13.

[20] A. G. Yağlikçi, M. Patel, J. S. Kim, R. Azizi, A. Olgun, L. Orosa,
H. Hassan, J. Park, K. Kanellopoulos, T. Shahroodi, S. Ghose, and
O. Mutlu, “BlockHammer: Preventing RowHammer at Low Cost by
Blacklisting Rapidly-Accessed DRAM Rows,” in HPCA, 2021, pp. 345–
358.

[21] J. S. Kim, M. Patel, A. G. Yağlıkçı, H. Hassan, R. Azizi, L. Orosa,
and O. Mutlu, “Revisiting RowHammer: An Experimental Analysis of
Modern DRAM Devices and Mitigation Techniques,” in ISCA, 2020, pp.
638–651.

[22] Z. B. Aweke, S. F. Yitbarek, R. Qiao, R. Das, M. Hicks, Y. Oren, and
T. Austin, “ANVIL: Software-Based Protection Against Next-Generation
Rowhammer Attacks,” in ASPLOS, 2016.

[23] L. Cojocar, K. Razavi, C. Giuffrida, and H. Bos, “Exploiting Correcting
Codes: On the Effectiveness of ECC Memory Against Rowhammer
Attacks,” in IEEE S&P, 2019.

[24] F. Brasser, L. Davi, D. Gens, C. Liebchen, and A.-R. Sadeghi, “CAn’t
Touch This: Software-Only Mitigation against Rowhammer Attacks
targeting Kernel Memory,” in USENIX Security, 2017.

[25] R. K. Konoth, M. Oliverio, A. Tatar, D. Andriesse, H. Bos, C. Giuffrida,
and K. Razavi, “ZebRAM: Comprehensive and Compatible Software
Protection Against Rowhammer Attacks,” in USENIX OSDI, 2018.

[26] Z. Zhang, Y. Cheng, D. Liu, S. Nepal, Z. Wang, and Y. Yarom,
“PThammer: Cross-User-Kernel-Boundary Rowhammer through Implicit
Accesses,” in MICRO, 2020, pp. 28–41.

[27] J.-B. Lee, “Green Memory Solution,” 2014.
[28] Micron, “DDR4 SDRAM Datasheet,” Tech. Rep., 2016.
[29] JEDEC Solid State Technology Association, “JESD79-4B, DDR4

Specification,” 2017.
[30] ——, “JESD79-5, DDR5 Specification,” 2020.
[31] J. Misra and D. Gries, “Finding repeated elements,” Science of Computer

Programming, vol. 2, no. 2, pp. 143–152, 1982.
[32] Y. Kim, V. Seshadri, D. Lee, J. Liu, and O. Mutlu, “A case for exploiting

subarray-level parallelism (SALP) in DRAM,” in ISCA. IEEE, 2012,
pp. 368–379.

[33] O. Mutlu, “The RowHammer Problem and Other Issues We May Face
as Memory Becomes Denser,” in DATE, 2017.

[34] G. LLC, “Half-Double: Next-Row-Over Assisted Rowhammer,” Google
LLC, Tech. Rep., May 2021.

[35] M. T. Aga, Z. B. Aweke, and T. Austin, “When Good Protections Go
Bad: Exploiting Anti-DoS Measures to Accelerate Rowhammer Attacks,”
in HOST, 2017.

[36] S. Bhattacharya and D. Mukhopadhyay, “Curious Case of Rowhammer:
Flipping Secret Exponent Bits Using Timing Analysis,” in CHES, 2016.

[37] ——, “Advanced Fault Attacks in Software: Exploiting the Rowhammer
Bug,” in Fault Tolerant Architectures for Cryptography and Hardware
Security, S. Patranabis and D. Mukhopadhyay, Eds. Singapore: Springer
Singapore, 2018, pp. 111–135.

[38] A. P. Fournaris, L. Pocero Fraile, and O. Koufopavlou, “Exploiting
Hardware Vulnerabilities to Attack Embedded System Devices: A Survey
of Potent Microarchitectural Attacks,” Electronicsweek, 2017.

[39] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard, “DRAMA:
Exploiting DRAM Addressing for Cross-CPU Attacks,” in USENIX
Security, 2016.

[40] D. Poddebniak, J. Somorovsky, S. Schinzel, M. Lochter, and P. Rösler,
“Attacking Deterministic Signature Schemes Using Fault Attacks,” in
EuroS&P, 2018.

[41] R. Qiao and M. Seaborn, “A New Approach for Rowhammer Attacks,”
in HOST, 2016.

[42] Z. Zhang, Z. Zhan, D. Balasubramanian, X. Koutsoukos, and G. Karsai,
“Triggering Rowhammer Hardware Faults on ARM: A Revisit,” in ASHES,
2018.

[43] X.-C. Wu, T. Sherwood, F. T. Chong, and Y. Li, “Protecting Page Tables
from RowHammer Attacks Using Monotonic Pointers in DRAM True-
Cells,” in ASPLOS. New York, NY, USA: Association for Computing
Machinery, 2019, pp. 645–657.

[44] D. Gruss, M. Lipp, M. Schwarz, D. Genkin, J. Juffinger, S. O’Connell,
W. Schoechl, and Y. Yarom, “Another Flip in the Wall of Rowhammer
Defenses,” in IEEE S&P, 2018.

[45] S. M. Seyedzadeh, A. K. Jones, and R. Melhem, “Counter-Based Tree
Structure for Row Hammering Mitigation in DRAM,” IEEE Computer
Architecture Letters, vol. 16, no. 1, pp. 18–21, 2016.

[46] M. Kaczmarski, “Thoughts on Intel Xeon E5-2600 v2 Product Family
Performance Optimisation Component Selection Guidelines,” 2014.

[47] A. Kwong, D. Genkin, D. Gruss, and Y. Yarom, “RAMBleed: Reading
Bits in Memory Without Accessing Them,” in IEEE S&P, 2020.

[48] M. Son, H. Park, J. Ahn, and S. Yoo, “Making DRAM Stronger Against
Row Hammering,” in DAC, 2017, pp. 1–6.

[49] E. D. Demaine, A. López-Ortiz, and J. I. Munro, “Frequency Estimation
of Internet Packet Streams with Limited Space,” in ESA. Springer,
2002, pp. 348–360.

[50] S. Ayyapureddi and R. Sreeramaneni, “Apparatus and method including
analog accumulator for determining row access rate and target row
address used for refresh operation,” US Patent US10 964 378B2, Mar.,
2021.

http://aod.teletogether.com/sec/20140519/SAMSUNG_Investors_Forum_2014_session_1.pdf#page=15
https://infobazy.gda.pl/2014/pliki/prezentacje/d2s2e4-Kaczmarski-Optymalna.pdf
https://infobazy.gda.pl/2014/pliki/prezentacje/d2s2e4-Kaczmarski-Optymalna.pdf

[51] Y.-C. Lai, P.-H. Wu, and J.-S. Hsu, “Target row refresh mechanism
capable of effectively determining target row address to effectively
mitigate row hammer errors without using counter circuit,” US Patent
US10 916 293B1, Feb., 2021.

[52] K. et al., “A 1.2v 38nm 2.4gb/s/pin 2gb ddr4 sdram with bank group
and ×4 half-page architecture,” 2012, pp. 40–41.

[53] T. Vogelsang, “Understanding the energy consumption of dynamic
random access memories,” in 2010 43rd Annual IEEE/ACM International
Symposium on Microarchitecture. IEEE, 2010, pp. 363–374.

[54] N. Chatterjee, N. Muralimanohar, R. Balasubramonian, A. Davis, and
N. P. Jouppi, “Staged reads: Mitigating the impact of dram writes on
dram reads,” in IEEE International Symposium on High-Performance
Comp Architecture. IEEE, 2012, pp. 1–12.

[55] C. et al., “A 16gb lpddr4x sdram with an nbti-tolerant circuit solution, an
swd pmos gidl reduction technique, an adaptive gear-down scheme and
a metastable-free dqs aligner in a 10nm class dram process,” in 2018
IEEE International Solid - State Circuits Conference - (ISSCC), 2018,
pp. 206–208.

[56] S. et al., “A 16gb 1.2v 3.2gb/s/pin ddr4 sdram with improved power
distribution and repair strategy,” in 2018 IEEE International Solid - State
Circuits Conference - (ISSCC), 2018, pp. 212–214.

[57] J. Bucek, K.-D. Lange, and J. v. Kistowski, “SPEC CPU2017: Next-
Generation Compute Benchmark,” in ICPE, 2018, pp. 41–42.

[58] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”
SIGARCH, vol. 39, no. 2, pp. 1–7, Aug. 2011.

[59] S. Li, Z. Yang, D. Reddy, A. Srivastava, and B. Jacob, “DRAMsim3: A
Cycle-Accurate, Thermal-Capable DRAM Simulator,” IEEE Computer
Architecture Letters, 2020.

[60] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe, “SMARTS:
Accelerating Microarchitecture Simulation via Rigorous Statistical Sam-
pling,” in ISCA, 2003, pp. 84–97.

[61] JEDEC Solid State Technology Association, “JEP300-1: Near-Term
DRAM Level Rowhammer Mitigation,” 2021.

[62] M. T. Inc. How Much Power Does Memory Use?
[63] T. Inc. Micron MT40A4G4JC-062E E 1z nm DDR4 Process Flow Full.
[64] L. Orosa, A. G. Yaglikci, H. Luo, A. Olgun, J. Park, H. Hassan,

M. Patel, J. S. Kim, and O. Mutlu, “A deeper look into rowhammer’s
sensitivities: Experimental analysis of real dram chips and implications
on future attacks and defenses,” in MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture, 2021, pp. 1182–1197.

[65] T. Bennett, S. Saroiu, A. Wolman, and L. Cojocar, “Panopticon: A
Complete In-DRAM Rowhammer Mitigation,” in DRAMSec, 2020.

[66] A. Tatar, C. Giuffrida, H. Bos, and K. Razavi, “Defeating Software
Mitigations against Rowhammer: A Surgical Precision Hammer,” in
RAID, 2018.

APPENDIX

A. Impact of REF postponing and pulling-in: FEINTING-
PostponingREFs

The DDR4 and DDR5 standards [29], [30] allow the memory
controller to postpone some REF commands (i.e., under heavy
DRAM activity) or to pull in a number REF commands (i.e.,
under idle DRAM activity). With the standard refresh rate in
DDR4, up to 8 REF commands can be postponed or pulled in,
and the maximum distance between two consecutive refreshes
can be up to 9× tREFI. Likewise, for DDR5 devices, up
to 4 REF commands can be postponed or pulled in, and the
maximum distance between two consecutive refreshes can be
up to 5× tREFI. The JEDEC consortium recommended to
disable REF postponing and pulling-in to reduce the impact
on in-DRAM Rowhammer mitigations [61]. Nonetheless, we
show how PROTRR can securely support REF postponing and
pulling-in by slighting modifying FEINTING.

Postponing and pulling-in are a relaxation of when REF
commands need to be sent to a DRAM device. That said,

RAAIMT REF REF REF

ACTs used Extra ACTs accumulated

+ +

RFMs

RAAIMT RAAIMT

=RAAMMT

Fig. 17: FEINTING for large TRFM . As the attacker sends activations, REF
can reduce RAA accounting only for RAAIMT activations. The exceeding value
eventually reaches RAAMMT, and m RFMs are sent by the controller.

even with postponing and pulling-in, a certain number of REF
commands needs to be sent to the DRAM device in a tREFW.
Given that the structure of the FEINTING is agnostic to when
REF commands are issued, the only remaining question is
whether it enables using fewer decoys. In both DDR4 and
DDR5, at the end of the tREFW, the attacker can abuse
postponing to maximize the number of tREFIs without any
REF commands, which we indicate by Pmax (1 when there is
no postponing).

This configuration has two implications. First, (Pmax−1)×V
fewer decoys are needed compared to the original FEINTING
for both DDR4 and DDR5. Second, for DDR4, an attacker
can continuously hammer the victim for Pmax×tREFI. For
DDR5, if RAAIMT is between 32 and 64, this does not change
the number of times the victim can be hammered other than
what is allowed by RFM postponing (as discussed in §V-D).
When RAAIMT is set to 72 or 80, however, the distance
between groups of RFM commands can be higher than those of
postponed REF commands: 6 × RAAIMT > 5 × TREF . Where,
in the default tREFW of DDR5 (32 ms), TREF is equal to 83.
In these cases, equally as in DDR4, the last round of the attack
is extended.

B. RFM postponing: FEINTING-PostponingRFMs

We now consider a more advanced memory controller that
postpones RFM commands. This means that RFM commands do
not have to be sent exactly after RAAIMT activations. Instead,
the controller has the flexibility to choose a better scheduling.
As explained in §IV, the only requirement set by the stan-
dard [30] is that RAA can never exceed TRFM =m×RAAIMT.
In other words, RFM commands can be postponed up to m
times. In a real scenario, it is very hard for an attacker to
influence the way RFM commands are scheduled. Nonetheless,
we assume the most favorable scheduling from an attacker’s
perspective. Depending on TRFM , there are two possibilities:
(i) TRFM ≤ TREF , where the same as in an earlier section
(§V-C) applies and nothing changes from an attacker’s point of
view; and (ii) TRFM > TREF , where FEINTING can further be
improved. We now analyze case (ii) considering an attacker who
is able to precisely influence the scheduling of RFM commands.
FEINTING for large TRFM . Postponing RFM commands
enables a lucky attacker to avoid the situation of costly RFM
commands triggered due to only a few extra activations, such
as the case in Figure 7-c, § V-C. Instead, RFM postponing
can be used to create blocks of RAAIMT activations similar
to FEINTING-Medium (Figure 7-b, § V-C). This postponing,
however, causes the RAA counter to increase, and at some
point, the memory controller will have to issue RFM commands.
Overall, two phenomena are happening simultaneously: a slow

https://www.jedec.org/standards-documents/docs/jep300-1
https://www.jedec.org/standards-documents/docs/jep300-1
https://www.crucial.com/support/articles-faq-memory/how-much-power-does-memory-use
https://www.techinsights.com/products/pff-2007-801

accumulation of extra activations that results in a series of
RFM, and a fast increase of RAA that is reduced immediately
upon refresh as shown in Figure 17. However, given that our
LtREFW activations are now equally distributed over intervals
of size RAAIMT, this is the optimal scenario for the attacker
similar to FEINTING-Medium.

An exception are the last few intervals of FEINTING in this
scenario. The last RFM commands can potentially be sent after
the tREFW, de facto removing them from the mitigation. These
activations can freely be used to increase the count of the last
decoys (needed for REF) and the victim. We consider RFM
postponing when configuring PROTRR as discussed in §VI and
our evaluation in §VII.

C. FEINTING against subarray parallelism: FEINTING-Subarrays

In the following, we describe how FEINTING can be
adapted for subarray TRR parallelism. To obtain the highest
Hammermax, the choice of aggressor rows used for FEINTING
must be optimized. We define S as the maximum number of
subarrays refreshed at each TRR event. We consider a TRR
mechanism that refreshes the highest rows from S different
subarrays, resulting in a volume of S ×V . The number of rows
in each subarray is Rsb, typically 512 [32] resulting in 128
subarrays per bank.

Theorem 9 (Optimal aggressor distribution for subarray
parallelism). In the case of subarray TRR parallelism, the
aggressor rows have to be distributed equally over all the
subarrays in a bank to maximize Hammermax.

▸ Proof. The maximum number of decoys in a subarray is given
by Rsb ×B/(B + 1) (remember that B is the blast diameter of
an aggressor). If only one subarray is used for FEINTING, all
the rows involved would be refreshed after Talive = Rsb/V ×
B/(B + 1). If the aggressors are distributed over a number of
subarrays lower or equal to S, the same result would apply
as all the rows would be refreshed in parallel. Moreover, as
the number of subarrays in the attack increases up to S, the
share of activations used for the victim is reduced as this
only increases the number of necessary decoys, lowering the
final Hammermax. Instead, targeting a number of subarrays
higher than S means that the parallel refresh will be saturated,
and some subarrays will be skipped (Figure 18). Similar to
FEINTING without subarray parallelism, we assume that for
equal counters, the attacker can control that the victim row to
have the lowest refresh priority. That is, a subarray is never
picked for a refresh if at least S different subarrays exist with
the same maximum row count. Because of FEINTING, all the
rows are equally often activated. Considering targeting S + 1
subarrays and using all the possible decoys, it would mean
that in the first Talive TRR events, the S decoy subarrays are
completely refreshed, and in the last Talive event, the rows
from the victim subarrays are refreshed. In the same way as
the original FEINTING, any other distribution of activations
either induces a refresh on the victim subarray or is a loss
because a decoy is refreshed with a higher activation count
that could have otherwise been used for the victim. Therefore,

TABLE IV: Overview of used symbols.

Symbol Description Ref. (§)
tREFI Duration of a refresh interval (tREFW/8192) in µs. II-A
tREFW Duration of a REF window, e.g. 64 ms (DDR4). II-A
B No. of rows affected by an aggressor (e.g., 2 or 4). III
Rthresh Number of hammer required to trigger a bit flip. III
Lattk Number of total activations of an attack. V-A
m The value of the MR59 register in OP[7:6]. IV
RAA Rolling Accumulated ACT. IV
RAAMMT Maximum Management Threshold (RAAIMT ×m). IV
RAAIMT Initial Management Threshold. IV
V TRR volume: no. of rows refreshed at every TRR event. V
T No. of ACTs in between of two consecutive REFs. V
A Rowhammer attack: a sequence of row activations V-A
Hammermax Max. hammer count a victim can reach before refresh. V-A
LtREFW Total number of activations in a tREFW. V-A
DT No. of rows used in FEINTING (decoys and victims). V-B
D(α) No. of decoys that have not been refreshed at ACT a. V-B
d Distance of TRR events expressed in REFs. V-B
TREF Number of activations between two consecutive REFs

that perform a TRR.
V-C

TRFM Number of activations between two consecutive RFMs. V-C
N Maximum number of TRR events in a tREFW. VI-B
C No. of counters used to track victim rows. VI-B
Sentries Number of counters in a PROTRR summary. VII-A
Nbanks No. of banks of the system. VII-A
Pmax The max. number of tREFIs without any REFs. VIII

the distribution of rows across subarrays should still follow
the original theorems for FEINTING (see §V). To exploit the
saturation as much as possible, FEINTING must be performed
using all available subarrays. Figure 18 shows the structure of
FEINTING considering subarrays parallelism.

D. Impact of TRR Events

The TRR mechanism itself performs an activation when re-
freshing a row. This effect should be considered when deriving
Hammermax. In our study, the maximum number of activations
LtREFW is increased by the times TRR is performed and the
TRR volume: L′tREFW = LtREFW × (1 + V /T). Moreover,
because every T activations, V more TRRs are sent, the
effective TRR interval T ′ is calculated as T ′ = T + V .

E. Double-sided Rowhammer versus FEINTING

Double-sided Rowhammer is a technique to hammer a victim
row, where both its directly adjacent rows are alternatingly
activated. In PROTRR, this technique is avoided as it is not
beneficial for the attacker. To model the defender’s worst case,
we assume a closed-page policy for the DRAM device. This
means that a row is automatically precharged after activating
it. In other words, in an interval of T activations, a victim row
can be hammered T times by accessing only one aggressor.
This is the same amount of activations that can be achieved
with double-sided Rowhammer but with the difference that the
total number of victims affected is higher, and as such, the
total number of generated decoys. Consequently, for the same
number of TRR events where the victim is not refreshed, a
higher number of activations can be used against the victim,
resulting in a higher Hammermax.

...
ACT

+1

+1

+1

+1
ACT

...
ACT

+1

+1

+1

+1
ACT

ACT
+1

+1

...
ACT

+1

+1

+1

+1
ACT

...
...

(1) TRR
subarray

(2) TRR
subarray

...
+1

+1
ACT

...
+1

+1
ACT

ACT
+1

+1

...
ACT

+1

+1

+1

+1
ACT

...
...

(1) TRR
subarray

(2) TRR
subarray

...

...

ACT
+1

+1

...
ACT

+1

+1

+1

+1
ACT

...
...

(1) TRR
subarray

Subarrays

51
2

ro
w

s
ACT

+1

+1

...
ACT

+1

+1

+1

+1
ACT

ACT
+1

+1

...
ACT

+1

+1

+1

+1
ACT

ACT
+1

+1

...
ACT

+1

+1

+1

+1
ACT

...
...

(1) TRR
subarray

PARALLEL
TRR events

V=2
(2) TRR
subarray

V=2

Aggressor
Decoys

Target victim

T ACTs T ACTs...

Parallel
saturation Normal

Feinting

Refreshed

Fig. 18: FEINTING against subarray parallelism.

TRR Distance = 1 TRR Distance = 3 TRR Distance = 5 TRR Distance = 7 TRR Distance = 10 TRR Distance = 15

S
iz

e
[K

iB
]

V
=4

V
=2

0
40
80

120
160

200 B=2 tREFW=64ms B=2 tREFW=32ms B=4 tREFW=32msB=4 tREFW=64ms

0
40
80

120
160

200

5k 10k 15k 20k 25k
Supported device vulnerability

05k 10k 15k 20k 25k
Supported device vulnerability

05k 10k 15k 20k 25k
Supported device vulnerability

05k 10k 15k 20k 25k
Supported device vulnerability

0

Fig. 19: The storage size for different possible setups and degrees of vulnerability in DDR4. The first line considers volumes of 2 and the second volumes of 4.
Setups with tREFW of 64ms 32ms are alternated to blast diameters of 2 and 4.

 TRFM=32 d=1 m=1
 TRFM=80 d=1 m=1

 TRFM=32 d=1 m=6
 TRFM=80 d=1 m=6

 TRFM=32 d=2 m=1
 TRFM=80 d=2 m=1

 TRFM=32 d=2 m=6
 TRFM=80 d=2 m=6

a.

S
iz

e
[K

iB
]

25
50
75

100
125

0

b.

25
50
75

100
125

02500 5000 10000
Device vulnerability

2500 5000 10000
Device vulnerability

V=2 B=2V=4 B=4

Fig. 20: Required storage size on DDR5 for various possible setups.

Maximum vulnerability (Rthresh)

S
iz

e
[M

iB
]

TRFM=80TRFM=32

m=1
m=6

m=1
m=6

m=1
m=6

m=1
m=6

V=B=2 V=B=4

m=1
m=6

m=1
m=6

m=1
m=6

m=1
m=6

V=B=4V=B=2

d=2

d=1 d=1

d=2

d=1d=1

d=2d=2
600 800 10001200 1400 1600 1800
1

2

3

4

Fig. 21: Maximum vulnerability supported in DDR5.

F. Extra figures

Extended storage size analysis. Figure 19 and Figure 20 show
the storage size required for PROTRR in different settings,
including a volume of 4 at each TRR event. Figure 21 reports
the maximum vulnerabilities that can be protected, in various
DDR5 configurations.
Details of increased RFM sent. Figure 22 shows the increase
in RFM sent and the increased tail latency for individual SPEC
benchmarks.
Symbols. In Table IV, we present an overview of symbols

La
te

nc
y

ov
er

he
ad

 [%
]

0
1
2
3
4
5

 6 6 D=2D=1

bl
en

de
r

bw
av

es
ca

ct
uB

S
S

N
ca

m
4

de
ep

sj
en

g
ex

ch
an

ge
2

fo
to

ni
k3

d
gc

c
im

ag
ic

k
lb

m
le

el
a

m
cf

na
b

na
m

d
om

ne
tp

p
pa

re
st

pe
rlb

en
ch

po
vr

ay
ro

m
s

w
rf

x2
64

xa
la

nc
bm

k xz

bl
en

de
r

bw
av

es
ca

ct
uB

S
S

N
ca

m
4

de
ep

sj
en

g
ex

ch
an

ge
2

fo
to

ni
k3

d
gc

c
im

ag
ic

k
lb

m
le

el
a

m
cf

na
b

na
m

d
om

ne
tp

p
pa

re
st

pe
rlb

en
ch

po
vr

ay
ro

m
s

w
rf

x2
64

xa
la

nc
bm

k xz

Latency
RFMs

Latency
RFMs

2.5

R
F

M
s/

R
E

Fs 2
1.5

1
0.5

0

Fig. 22: RFMs sent relative to REFs and the increase in the tail latency for
all SPEC benchmarks. D={2;1}.

with references to the section where they were introduced.

	Introduction
	Background
	DRAM architecture
	Rowhammer
	Rowhammer mitigations

	Threat Model
	Refresh Management in DDR5
	Feinting
	Security analysis of TRRideal
	Feinting on DDR4
	Feinting on DDR5
	Feinting on DDR5 with RFM postponing

	ProTRR
	Design of ProTRR
	Optimality and Flexibility
	Implementation of ProTRR

	Evaluation
	Storage size and supported vulnerability
	Performance and energy overhead
	Feasibility
	Correctness
	Feinting on real devices

	Discussion
	Security Analysis of Existing Schemes
	Related Work
	Conclusion
	References
	Appendix
	Impact of REF postponing and pulling-in: Feinting-PostponingREFs
	RFM postponing: Feinting-PostponingRFMs
	Feinting against subarray parallelism: Feinting-Subarrays
	Impact of TRR Events
	Double-sided Rowhammer versus Feinting
	Extra figures

