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Abstract—Mitigating Rowhammer requires performing addi-
tional refresh operations to recharge DRAM rows before bits
start to flip. These refreshes are scarce and can only happen
periodically, impeding the design of effective mitigations as newer
DRAM substrates become more vulnerable to Rowhammer, and
more “victim” rows are affected by a single “aggressor” row.

We introduce REGA, the first in-DRAM mechanism that can
generate extra refresh operations each time a row is activated.
Since row activations are the sole cause of Rowhammer, these
extra refreshes become available as soon as the DRAM device
faces Rowhammer-inducing activations. Refresh operations are
traditionally performed using sense amplifiers. Sense amplifiers,
however, are also in charge of handling the read and write
operations. Consequently, the sense amplifiers cannot be used for
refreshing rows during data transfers. To enable refresh operations
in parallel to data transfers, REGA uses additional low-overhead
buffering sense amplifiers for the sole purpose of data transfers.
REGA can then use the original sense amplifiers for parallel
refresh operations of other rows during row activations.

The refreshes generated by REGA enable the design of simple
and scalable in-DRAM mitigations with strong security guarantees.
As an example, we build REGAM, the first deterministic in-
DRAM mitigation that scales to small Rowhammer thresholds
while remaining agnostic to the number of victims per aggressor.
REGAM has a constant 2.1% area overhead, and can protect
DDR5 devices with Rowhammer thresholds as small as 261, 517,
and 1029 with 23.9%, 11.5%, and 4.7% more power, and 3.7%,
0.8% and 0% performance overhead.

I. INTRODUCTION

Rowhammer has been a moving target when it comes
to mitigations. Worsening Rowhammer thresholds in newer
DRAM devices have enabled new access patterns that bypass all
deployed in-DRAM mitigations [1]. New Rowhammer effects
such as half-double further challenge the design of secure
mitigations as they increase the number of potential victim
rows for a single aggressor row [2]. The next generation of
Rowhammer mitigations will require exceedingly more refresh
operations to protect potential victim rows. Unfortunately, the
current DRAM architecture provides limited capabilities for
additional refreshes.

Since Rowhammer is triggered by DRAM row activations,
the only way to scale the number of required refresh operations
is during the activations themselves. We present a new
in-DRAM mechanism called REfresh-Generating Activation
(REGA). REGA time-multiplexes existing DRAM resources
using additional lightweight elements, enabling parallel refresh
operations while a row is being activated. These parallel
refreshes allow for simple, effective, and scalable in-DRAM
mitigations against current and future Rowhammer attacks
while respecting the respective standards [3], [4].

Rowhammer attacks. Rowhammer is part of a broader class
of reliability issues known as disturbance errors. Kim et al. [5]
showed that Rowhammer affects most DRAM devices in
production settings. To trigger Rowhammer, an aggressor row in
DRAM must be accessed repeatedly. If this happens frequently
enough, bits start to flip in the neighboring victim rows. Follow-
up research showed that these reliability errors can compromise
systems in a variety of scenarios, most notably, to escalate
privileges [2], [6], [7], compromise the browser [8]–[11],
phones [12]–[14], clouds [15]–[18], and across the network [19],
[20]. Given the severity of these attacks, numerous mitigations
have been devised by both academia and industry.

Mitigations. Most research in academia proposes to modify
the CPU’s memory controller (MC) to track aggressor rows,
for blocking them before they cause bits to flip in their
victims [21], or to send preventive refreshes to their victim
rows [5], [22]–[27]. In contrast, in recent years, industry has
adopted mitigations that solely operate inside DRAM given the
high cost of mitigating Rowhammer inside the CPU [28]. These
mitigations track aggressor rows and issue preventive refreshes,
also known as Target Row Refresh (TRR), to potential victim
rows. Recent academic work provides a formal foundation for
designing secure in-DRAM TRR mitigations [29].

New effects and new patterns. The additional refreshes that
can be generated inside DRAM are scarce, and generating
them from the CPU negatively impacts the performance [27].
This forces the mitigations to keep track of aggressor rows to
utilize these precious refreshes only when necessary. Tracking
aggressors requires assumptions on the behavior of Rowham-
mer, which is constantly changing with newer technology
nodes: the number of required aggressor accesses is rapidly
dropping [30] while the number of affected victim rows for a
given aggressor is increasing [31]. Researchers were quick to
show that these new effects enable new access patterns that
evade the mitigations on newer devices [1], [2], [28]. Learning
from these experiences, the next generation of Rowhammer
mitigations must not tailor their design towards specific (known)
behaviors of Rowhammer. The question is how to make this
possible given the limited refreshing capability in the current
DRAM architecture.

REGA. To cleanly decouple the mitigation mechanism (i.e.,
additional refreshes) from Rowhammer-dependent policies,
we should minimize or completely eradicate the state that
is necessary for tracking aggressors. Our new in-DRAM
mechanism, REGA, makes this possible by allowing parallel



refresh operations whenever DRAM receives an activate
command to access a row. Because row activations are the sole
cause of triggering Rowhammer, these parallel refreshes are
immediately available for mitigating Rowhammer without the
need for tracking aggressors. As an example, we have built
a simple and scalable in-DRAM mitigation on top of REGA,
called REGAM, that sequentially refreshes all rows in a DRAM
sub-array that receives activate commands.

Refresh-generating activations. Modifying DRAM to enable
parallel refresh operations is non-trivial due to its highly-
optimized architecture and stringent timing requirements dic-
tated by the respective DDRx standards [3], [4]. Without alter-
ing the dense DRAM mats (where the data is stored), REGA
enables refresh-generating row activations by decoupling row
refreshing and data transfer operations performed by the DRAM
sense amplifiers. REGA achieves this using a second set of
low-overhead buffering sense amplifiers for the sole purpose
of supporting data transfers, while the original sense amplifiers
are used for parallel refresh operations.

Operating the bitline wires inside the DRAM mats with
the additional sense amplifiers complicates the timing of
the internal DRAM signals. To ensure the correct operation
of REGA, we developed a new accurate DRAM model in
collaboration with a DRAM vendor. On top of showing the
correctness of REGA in this model, we show that the time
between two row activations is sufficient for REGA to perform
a single parallel refresh on all 21 DDR4 and 16 DDR5 devices
in our test pool. We can further scale REGA to refresh multiple
rows during a single activation by increasing the time a row
must remain active, defined in the standard as tRAS.

Our evaluation using an ASIC implementation of the
mitigations on top of REGA, and an analog and cycle-accurate
simulation of REGA itself, demonstrates a constant 2.1%
area overhead, independent of the degree of Rowhammer
vulnerability. The performance and power overhead of REGA
depends on the number of refreshes it needs per activation to
protect DRAM devices with varying degree of Rowhammer
vulnerability. As an example, REGAM protects DDR5 devices
with Rowhammer thresholds as small as 261, 517, and 1029
with 23.9%, 11.5%, and 4.7% more power, and 3.7%, 0.8%
and 0% performance overhead; regardless of the number of
victims per aggressor. These results show that REGA is the first
mitigation that can comfortably scale to Rowhammer thresholds
that are up to 36× smaller than previously reported (i.e.,
9.8 K [30]). Without relying on other mitigations (e.g., ECC),
we estimate that REGA can comfortably provide Rowhammer
protection for another 10 years. Furthermore, REGA can be
scaled to even lower thresholds using the same circuitry by
increasing tRAS if necessary.

Contributions. The following summarizes our contributions:
1. We present REGA, the first in-DRAM mechanism that can

scale the number of required refreshes with activations.
2. We develop a new, accurate model of DRAM internals in

collaboration with a DRAM vendor. We use this model to
ensure the correctness of REGA. To enable future research
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Fig. 1: DRAM. Example of multiple DRAM chips on a DIMM ( 1 ). The chip
layout is divided into banks ( 2 ) and includes a control logic pad. Each bank
is comprised of multiple sub-arrays ( 3 ), in turn composed of mats ( 4 ). Each
row spans across an entire sub-array. Each mat is surrounded by bitline sense
amplifiers for accessing data inside the mat ( 5 ). Rowhammer affects victim
rows adjacent to a repeatedly accessed aggressor row inside a sub-array ( 6 ).

on DRAM architecture, we release this model as open
source to the community: https://comsec.ethz.ch/rega.

3. We design and implement a new in-DRAM mitigation on
top of REGA, called REGAM, that can protect against
current and future Rowhammer attacks.

4. We evaluate the correctness, performance, area, and
power impact of REGA and REGAM using an ASIC
implementation, SPICE and cycle-accurate simulations.
REGAM has a constant minimal area impact while its
performance and power overhead scales to very small
Rowhammer thresholds.

II. BACKGROUND AND MOTIVATION

We describe DRAM’s organization and operation (§II-A),
discuss Rowhammer attacks and defenses (§ II-B), and the
ongoing Rowhammer trends with DRAM technology scaling
and what they entail for future defenses (§II-C).

A. Organization and Operation of DRAM

Logical Organization. The DDRx standard [3], [4] describes
the logical organization and operation of DRAM devices at-
tached to an external memory controller (typically, in the CPU).
Multiple DRAM devices are usually operated simultaneously
by the memory controller in a dual in-line memory module
(DIMM), as shown in Figure 1. The memory controller can
access DRAM by providing an address, which specifies a
DRAM bank, a row inside that bank, and a column inside
that row that identifies a single byte of data. Internally and
abstracted away from the memory controller, each bank is
organized into multiple sub-arrays. Each sub-array contains
multiple DRAM mats arranged in rows and columns. Each
DRAM row consists of capacitors (or cells), each storing one
bit of information as an electrical charge. To access a specific
column, the entire DRAM row is first selected by a row decoder
in the sub-array. The charges in the capacitors of the selected
row are then detected by sense amplifiers, collectively known
as the row buffer. A column decoder then selects the sense
amplifiers associated with the requested column.
The DDR Protocol. To access data in DRAM, the memory
controller must first activate the row by sending an ACTIVATE

https://comsec.ethz.ch/rega


(ACT) command to a specific DRAM bank. After sending an
ACT, the memory controller must wait tRCD for reliable logical
values to become present in the sense amplifiers. Once this
happens, the MC can send a READ or WRITE command to a
selected column. The data will then be read from or written to
the DRAM bus after tCL or tCWL, respectively. DRAM allows
one row of a bank to be activated at a time. Thus, if a different
row is requested, the memory controller must first deactivate
the currently activated row by issuing a PRECHARGE (PRE)
command. The PRE is considered complete after waiting for
tRP, and the new row of choice can now be activated by
sending an ACT for that row. Independently of the DRAM
operations, a row can be precharged only after a minimum of
tRAS has passed since its activation.

As discussed, DRAM saves data on capacitors that leak
charge over time. Therefore, to prevent data corruption, the
capacitors’ charge is periodically restored via the REFRESH
command (REF). REF has to be sent on average every tREFI
to keep data integrity. DRAM handles REF as multiple row
activations where an incremental index defines a subset of
rows that are activated and precharged simultaneously. We will
provide more information on the organization and operation of
DRAM when describing our accurate DRAM model in §V-C.

B. Rowhammer

As shown in Figure 1, electrical interferences generated by
activating a row (aggressor row) can accelerate charge leakage
in physically adjacent rows (victim rows). If the victim rows’
charges leak fast enough, i.e., before these rows are refreshed
by a REF, DRAM can no longer detect the values that were
previously stored in these cells, and bits start to flip. This
type of crosstalk was of concern already in 2002 [32] and
was demonstrated for the first time in 2014 [5]. Shortly after,
security researchers showed many critical attacks based on this
effect, now famously known as Rowhammer.
Attacks. Rowhammer allows an attacker to compromise the
integrity of data stored in adjacent rows that are assumed
not be accessible to the attacker. Rowhammer attacks often
go through three stages: templating, memory massaging,
and exploitation [16]. First, the attacker identifies vulnerable
memory locations (templating). The attacker then forces the
system to store security-sensitive information in these locations
(memory massaging) and retriggers Rowhammer to corrupt the
security-sensitive information (exploitation).

Previous research has shown that Rowhammer can be
used for local privilege escalation [2], [6], [7], [12], [13],
compromising co-located cloud virtual machines [15]–[17], web
browsers [8]–[11] and even machines across the network [19],
[20]. It has recently even been shown that Rowhammer can
increase the strength of Spectre attacks [33].
Defenses. Common mechanisms to mitigate Rowhammer
include preventive refreshes to victim rows, which are broadly
known as Target Row Refresh (TRR) [28], isolation of sensitive
data, and error-correcting codes (ECC). Isolation of sensitive
data requires software changes, making it challenging to deploy
in practice. ECC complicates Rowhammer attacks but does not
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Fig. 2: Trend of Rthresh from 2016 to 2035 (B=4). The curve represents
the minimum number of activations to induce bit flips, both for the absolute
minimum values and for the average. Vertical orange lines report the minimum
Rthresh for ProTRR [29], Hydra [27] and our mitigation, REGA. For REGA,
the minimum depends on its configuration, as later discussed in the paper. The
fitting is based on previous work [34], [42]. We refer the reader to Appendix A
for details about the mitigations’ threshold and the estimation methodology.

prevent them [18]. Furthermore, the increasing density of bit
flips in newer technology nodes makes secure ECC schemes
rather expensive [34]. As a result, TRR is the only specific
mitigation that is currently deployed for tackling Rowhammer.

TRR can be implemented in software [13], [19], [35]–[37],
in the CPU’s MC [5], [21]–[27], [38], and inside DRAM [29],
[39]–[41]. Mitigating Rowhammer is costly, making its deploy-
ment unattractive for software and CPU vendors. Consequently,
TRR is currently deployed inside the component affected by
Rowhammer, which is DRAM itself. Unfortunately, recent
work shows that all existing implementations of TRR in DDR4
DRAM devices are vulnerable to special access patterns [1],
[2]. This is due to the limited availability of additional refresh
operations to perform TRR in the current DRAM architecture
and the increasing cost of tracking potential aggressor rows for
using these refresh operations judiciously. New Rowhammer
effects due to technology scaling further accentuate the cost
of future mitigations.
C. The Impact of Technology Scaling on Rowhammer

There are two Rowhammer trends as DRAM moves to
smaller technology nodes: the worsening Rowhammer vul-
nerability and the Rowhammer impact of a single aggressor.
As we show, these factors have an heavy impact on existing
Rowhammer mitigations.
The worsening Rowhammer thresholds. The original
Rowhammer study with DDR3 DRAM [5] measured the
minimum number of activations required to induce bit flips
(i.e., Rthresh) to be in the order of 139 K to 284 K. A more
recent study showed that the Rthresh is dropping with each
new generation of DRAM devices, reaching as few as 9.6 K
activations [30]. Figure 2 shows that Rthresh has dropped
almost 15 times since Rowhammer was first demonstrated and
is posed to drop even further with future generations of DRAM
devices. Figure 2 further shows that proposed mitigations can
only cope for a few more years with the dropping Rthresh. This
is due to the fact that they need to keep a non-trivial amount
of state to use the available row refreshes without significantly
sacrifying performance. We show that our proposed mitigation,
REGA, provides better scalability against Rowhammer in future
devices by reducing the cost of refreshes inside DRAM.
The increasing impact of a single aggressor. An aggressor
row impacts the victim rows directly adjacent to it. This means
that the aggressor row has a blast diameter (B) of 2 victim rows.
Recent work [2] shows that the blast diameter has increased



to 4 in more recent DRAM devices. The blast diameter is
posed to further increase, and we are likely to see devices with
blast diameters of 6 or even higher based on a recent JEDEC
specification [43]. None of the existing mitigations has so far
considered blast diameters of 6 or above. We show that the
refreshes generated by our new in-DRAM mechanism enable
the construction of mitigations that are independent of the blast
diameter.

III. THREAT MODEL

We assume that the CPU’s MC complies with the respective
DRAM standard. We assume the software to be untrusted:
the attacker can send ACT commands to target DRAM
rows through native code execution [6], [7], [12], [13], [15],
[16], a browser tab (e.g., running JavaScript) [9]–[11], or
over the network [19], [20] to trigger Rowhammer bit flips
that compromise the target system. We assume that DRAM
is vulnerable to Rowhammer and that bits start to flip if
(aggressor) rows receive a certain number of ACT commands
before the standard refresh mechanism in a tREFW refreshes
their victims. All recent DRAM devices are reported to be
vulnerable to Rowhammer [1], [30]. While some Rowhammer
effects are known (e.g., half-double [2]), we assume more will
be discovered over time, and our proposed mitigation should
be able to cope with that.

IV. OVERVIEW

Our goal is to design a new mechanism that can scale the
number of additional refreshes as needed to defend against
current and future Rowhammer attacks. We first overview the
requirements for this new mechanism, called REGA, before
discussing the challenges in designing it.
A. Requirements

We define our requirements (R1 – R3) around scalability,
(forward) security, and practicality.
Refresh scaling. The DDR4 protocol only allows issuing extra
refreshes during REFs [44]. The DDR5 protocol improves this
by introducing the RFM command [4], [29], which can period-
ically send additional refreshes to help mitigate Rowhammer.
However, its periodic nature requires mitigations to keep a
state (e.g., counters) to decide which victims to refresh. As
discussed before (§II-C), maintaining this state becomes more
expensive with smaller technology nodes. Further, shortening
the RFM period to allow for more refreshes would negatively
impact performance. Instead, an ideal mechanism should allow
scaling REFs as needed, up to generating an extra REF, or
more, for each ACT received by the DRAM device.

Requirement (R1). REGA should allow scaling of extra
REFs as needed.

Forward security. Deployed mitigations do not decouple
mechanisms from policies. This impedes their adaptability
to new Rowhammer effects, such as the rapidly dropping
Rthresh with smaller technology nodes [30] and the half-
double effect [2]. The main reason is the need for careful state
management in hardware due to the scarcity of extra REFs.

Hence, as a second requirement, we define the possibility of
configuring simple (stateless) policies to mitigate current and
future Rowhammer effects.

Requirement (R2). REGA should decouple its mitigation
mechanism from policies to counter current and future
Rowhammer effects.

Practicality. An in-DRAM solution must meet two require-
ments to make its deployment practical. First, the new REF
mechanism should have a small impact on current and future
technology nodes. Requiring more area with smaller technology
nodes will reduce the benefits of using the smaller technology
nodes in the first place. Moreover, the DRAM mats should
not be changed since they are the most important and highly
optimized building block of today’s DRAM chips. Second, a
new mitigation should operate within the bounds defined by
the DDR standards [3], [4] as protocol changes are a multi-year
effort requiring consensus among all involved parties.

Requirement (R3). REGA should have a minimal impact
on the area and layout of the DRAM while operating inside
the bounds of the respective DDR standard.

Next, we discuss how fulfilling these requirements introduces
challenges in the design and implementation of REGA, and
summarize how we address these challenges in the rest of the
paper.

B. Challenges
REGA requires changing certain DRAM elements to achieve

low-cost and scalable refresh generation. To ensure that our
changes do not compromise the device’s functionality, it is
paramount to use an accurate DRAM model. Currently, such
a model does not exist, which brings us to our first challenge:

Challenge (C1). Deriving an accurate model of DRAM
internals that represents modern DRAM devices.

We address this challenge in §V by explaining the details
of the internal DRAM architecture and presenting REGA
Model (REM), an accurate DRAM model that we developed
in collaboration with Zentel Japan. Furthermore, we show
that REM captures timings and internal signal propagations
more precisely than the previous state-of-the-art DRAM model.
Equipped with REM, we seek to understand and modify the
DRAM architecture to fulfill requirements R1 and R3.

So far, extra refreshes have been generated only in response
to REF or RFM commands, which are periodic and do not
directly scale with a decreasing Rthresh. Hence, to fulfill R1,
the DRAM chip must be able to generate these extra refreshes
as part of ACTs. To fulfill R3, these extra refreshes should
not change the DRAM timings, as defined in the respective
standards [3], [4]. Consequently, we propose generating these
refreshes in parallel with ACT commands.

Challenge (C2). Generating refreshes in parallel with ACTs.

In §VI, we discuss possible placement options for REGA
and explain involved timings, leading us to its final design.
Because we need direct control of rows, REGA is deployed



����������������������

���

����

�����������������

���������


���

��

��������������

������
���������


�
�
��
��
��

��

��

��
�

������

����

��
�

������

����
��

�
�� ��

��������� Bank in PRE

��
��

�
������

��
�

������

��
�

����
	���

Vdd/2

��
��

�
��

�

��
��

����

Vdd/2

0V

�

�
�

� �

�

���

���

��

������
���������

ACT

����
	��� +Cell��
��

�
��

�

�

��

��
�


Vpp

Vss

��

�

� ���

���

��

������
���������

PRE

����
	���
��

��
�

��
�


�
��

Vss

Vdd/2

Fig. 3: DRAM’s internal physical organization. Top left: DRAM bank
composition. Top right: voltage levels when a bank is in the precharged state.
Bottom left: voltage levels when a row is activated. Bottom right: voltage
levels when going from an activated to a precharged state. The voltage levels
under these different states are discussed in §V-B.

next to the mats. To perform extra refreshes in parallel with
every ACT, REGA must finish before a PRE. We describe the
additional circuitry to achieve this capability.

REGA’s implementation needs to time-multiplex wires in the
mats, which implies that more operations must be performed
during tRAS. Through experiments conducted on real DDR4
and DDR5 devices in §VII, we show that this is already feasible
in today’s existing DRAM designs. To protect devices with
ultra-low Rthresh, REGA requires increasing the tRAS further.

With REGA in place, we address R2 by building a secure,
configurable, and future-proof mitigation against Rowhammer.

Challenge (C3). Building a secure and configurable miti-
gation on top of REGA.

In §VIII, we present REGAM, a new deterministic mitigation
on top of REGA that protects against all known and future
Rowhammer attacks by relying on the sole assumption that
Rowhammer is induced by activations. REGAM is secure
against new Rowhammer effects by design, and its power
consumption can be configured depending on the Rthresh.

V. ACCURATE MODELING OF DRAM

We now describe the details of DRAM’s internal physical
organization (§V-A) and focus on the sense amplifier’s opera-
tion (§V-B). Then, we present our novel DRAM model and
compare it with the state-of-the-art DRAM model [45] (§V-C).
A summary of all abbreviations and symbols introduced in this
section can be found in Appendix B.

A. Physical Organization
In DRAM, data is saved in cells as a full charge (Vdd) or

an empty charge (Vss). Depending on the encoding, either
one of the two charge levels can correspond to a logical
one (1b) [46]. Physically, cells are organized in compact,
hierarchical, and matrix-based structures as shown in Figure 3.
These structures (mats) are composed of 512× 1024 cells ( 1 ),
and each cell is connected to a column bitline ( 2 ), via an
access transistor ( 3 ) [42], [46], [47]. Along a mat’s row, all
access transistors share the same control line, the sub-word
line (SWL) ( 4 ), which is raised upon row activation by the
sub-word line driver (SWD, 5 ) [48], [49]. Functionally, the
SWL corresponds to the logical row selector. A single row
address uses multiple mats. Multiple rows, typically 512, form
a sub-array and multiple sub-arrays form a bank [50], [51].

The bitlines are connected to bitline sense amplifiers (BLSAs,
6 ) placed on top or on the bottom of the mat in an alternating
manner. Each BLSA is connected to two bitlines, one coming
from the mat above (BL) and one from the mat below it (BLB).
During the sensing operation, one bitline transmits information,
and the other is used as a reference voltage. This open bitline
design reduces crosstalk between bitlines and improves space
efficiency. Along a mat’s row, each cell has a unique bitline,
but along a column, all cells share the same bitline.
Activation process. After the memory controller sends an
ACT, the associated SWLs are raised by the SWDs. All the
cells of the row get connected to the BLSAs, which are
subsequently activated. The BLSAs read and amplify the stored
data; as they read it, they also recharge the cells. After the
sensing operation stabilizes to a logical value, data can be
read (or written) by specifying a column. The column’s data
is obtained by connecting one byte from each mat to the local
I/O (LIO). The LIO precedes the global I/O (GIO), and other
data manipulation, such as further sensing operation (I/O sense
amplifier), serialization, and I/O line drivers [52].

B. Sense Amplifier
We now describe the bitline sense amplifier and its op-

eration. In DRAM, the cell capacitance is in the order of
femtofarads (fF) [53], which allows for high-density memories.
However, because of the low capacitance, sense amplifiers are
needed to amplify the cell’s value to become interpretable.
Moreover, sense amplifiers are also used to restore the capac-
itors’ charge. A sense amplifier is a circuit with two inputs:
BL and BLB (Figure 4-center). When the sense amplifier is
activated, it senses the voltage difference between BL and
BLB, amplifies it, and obtains its rail-to-rail output. That is,
if V (BL) > V (BLB) for voltage V , then BL is raised to Vdd
and BLB is brought to Vss (whose voltage levels are given
in Appendix C). These values are then held or latched. As
described before, only BL or BLB will be connected to a cell.
Charge sharing. Before the first ACT reaches a bank, the bank
is in a precharged state (Fig. 3, “Bank in PRE”). Consequently,
all SWLs are low, and all BLSAs are OFF. A precharge circuit
keeps the bitlines’ voltage at Vdd/2. After an ACT is received
(Fig. 3, “ACT”), the precharge is turned off, allowing the
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Fig. 5: DRAM model comparison (SWL). CLR-DRAM inaccurately assumes
an optimistic rise of the SWL. This results in faster (de-)activation of the
access transistor.

bitline’s voltage to change. Then, the corresponding SWLs are
raised to connect the cells to the bitlines.

For a given BLSA, when the access transistor is activated
the bitline voltage varies depending on the charge stored in the
cell. As the other bitline connected to the BLSA remains at
Vdd/2, the difference between BL and BLB can be amplified
by activating the sense amplifier (Fig. 4-center, signals S/S#).
Because the bitline has a high parasitic capacitance, the cell’s
value is lost during this operation, which is called charge
sharing. The sensing operation amplifies the signal to enable
retrieving its logical value, and restores the charges in the cells.
Precharge. When PRE is received (Fig. 3, “PRE”), the SWLs’
voltage is lowered, thus disconnecting the cells. Now the
BLSAs are driving the bitlines to either Vdd or Vss. At
this point, if another row were to get activated, the values
in this other row would get corrupted [54]. To avoid this,
after having turned the sense amplifier to OFF, the precharge
circuit (Figure 4-left) brings the bitlines back to Vdd/2.
Timings and parasitics. The operations we described are
delayed by parasitic elements of the lines (i.e., resistance and
capacitance). For example, the SWL’s parasitics slow down the
(de-)activation of the access transistors. The bitline’s parasitics
reduce the sensed voltage, slow down the signal propagation,
and increase the time required for the precharge operation.
These effects are the key elements for a correct and realistic
DRAM simulation. Yet, no accurate and up-to-date circuit
description based on real devices exists today.

We collaborated with a DRAM vendor to overcome this
limitation by designing an accurate model called the REGA
Model (REM), using details from a real DRAM design. Next,
we provide additional details about REM and show that it
captures DRAM details that existing models [45], [48] do not.
We open source REM to enable further research on DRAM
architecture and its security in the following URL: https://
comsec.ethz.ch/rega.
C. REM

In the following, we present REM and compare it with the
state-of-the-art model described in CLR-DRAM [45]. In CLR-

TABLE I: Identified issues in CL-DRAM compared to REM. Summary of
differences (DIFF) and inaccuracies (IN) of CL-DRAM compared to REM.

Property DIFF IN Explanation

Transistors sizes ✔ Inaccurate ratios
Voltage sources ✔ Simplified sources
Control voltages ✔ Simplified control
Line parasitics ✔ Low parasitics
SWL drivers ✔ Not modeled
LIO & MIO loads ✔ Not modeled

DRAM, the authors propose DRAM architecture modifications
to improve performance. To derive our accurate model, REM,
the DRAM vendor provided us with real physical values
obtained from DDR4 devices and the circuit we use in this
work. REM and CLR-DRAM differ substantially.

Overall, accurately describing DRAM requires knowing the
(i) transistor dimensions, (ii) source voltages, (iii) control
voltages, and (iv) line parasitics. Table I summarizes our
findings. We divide our comparison with CLR-DRAM into
inaccuracies (IN) and circuit differences (DIFF). Inaccuracies
are fundamental as they affect the simulation’s validity. Differ-
ences in the circuit may not always be critical as they could
emerge from alternative but correct DRAM topologies. Lax
timing constraints are easier to comply with, and the resulting
power consumption will generally be underestimated. More
importantly, an inaccurate model does not have enough fidelity
to confirm the feasibility of proposed DRAM modifications. We
now describe the differences between REM and CLR-DRAM.
Sub-word line (IN). A major inaccuracy of CLR-DRAM is the
SWL’s characterization. First, this model considers SWL as a
single element instead of a transmission line. Second, the model
underestimates the line resistance and parasitic capacitance.
Lastly, the SWDs are not modeled at all, heavily impacting
the reliability. We observed that SWL’s rising time, illustrated
in Figure 5, is one of the slowest in the circuit when modeled
accurately. A slow SWL delays the activation of the access
transistor, which further delays the sense amplifier’s activation.
Evaluating the SWL’s actual timing is essential to assess
the feasibility of performing REGA’s parallel refresh within
tRAS. Likewise, the SWL timing affects most architectural
modifications as it affects the precharging and activation speed.
Voltages (DIFF). CLR-DRAM considers only two voltage
sources in the circuit: 1.2V and 2.5V. Our model describes
voltages controlled by 1V, 1.1V, 1.4V, 1.5V and 2.5V
sources (see Appendix C). Modeling incorrect voltages may
affect switching speeds, noise robustness, and power consump-
tion. Our bitlines are referenced to a maximum of 1V, which
makes the sensing operation more difficult yet realistic.
Sense amplifier’s transistor ratios (IN). Transistors ratios
characterize the speed of operation of the sense amplifiers,
reflecting in noise sensitivities and timings. For the sense
amplifiers, CLR-DRAM uses overly optimistic ratios and
optimistic absolute transistor sizes. In other cases, CLR-DRAM
uses pessimistic ratios.
Data path (IN). We modeled the local and global I/O lines,
which all previous models omitted. LIO and GIO lines act as
a load to the BLSA during read/write operations.

https://comsec.ethz.ch/rega
https://comsec.ethz.ch/rega
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Fig. 6: REGA’s concept. Row requested (RR) is activated and REGA sense
amplifier (SAR) starts latching its charge ( 1 ). While SAR latches the value,
RR and SAR are disconnected from the bitline. Row shadow (RS) and the
original sense amplifier (SAO) are activated ( 2 ). RS is recharged by SAO ( 3 ).
SAR and RR are connected, and RR is recharged ( 4 ).

Sense amplifier circuit (DIFF). So far, literature has kept
adopting the textbook DRAM model [48] where the BLSAs are
supplied with a single voltage Vdd. However, in reality modern
DRAM implementations may differ, with BLSAs that can be
overdriven [51], [55], [56]. The DRAM vendor confirmed that
they use overdriven BLSAs, and we designed our DRAM
model to implement overdriven BLSAs as described by them.
Such BLSA can switch between the common cell high voltage
of 1V and a higher (overdrive) voltage of 1.4V. The goal of
the overdrive voltage is to accelerate the first phase of sense
amplification, while the lower 1V, used in the second phase,
saves energy and avoids overcharging the cell.

VI. REGA

Equipped with REM, we proceed to the design of REGA.
Parallelizing an additional DRAM operation next to an ongoing
one has (to the best of our knowledge) not yet been explored.
We provide a high-level description of how REGA achieves this
in §VI-A, before discussing implementation details and internal
signal timing control in §VI-B and §VI-C, respectively. We
also discuss supporting multiple refreshes per ACT in §VI-D.

A. High-Level Operation

To parallelize DRAM operations, one obvious direction is
doubling the bitlines to make cells in different rows accessible
at the same time. Unfortunately, this introduces a significant per-
cell area overhead in the otherwise highly-optimized DRAM
mats. This means that to remain area-efficient, REGA must
multiplex the bitlines during the parallel operations.
Time-multiplexing the bitline. The most effective scenario
for a Rowhammer attack is one that maximizes the number of
activations by simply alternating ACT and PRE on an aggressor
row [22], [29]. This means that REGA should generate the
necessary refresh either during ACT or PRE. In the same bank,
the time between a PRE and an ACT is tRP, typically 13.75 ns.
As discussed in §V, DRAM requires this time to bring the
bitlines back to the reference voltage. Therefore, we cannot
use tRP for our parallel operation.

The time between an ACT and a PRE is defined as tRAS,
which is at minimum 32 ns. The row activation at the beginning
of tRAS also uses the bitlines. However, since tRAS is

relatively long, we can leverage it to multiplex the bitlines for
our parallel operation in REGA.
Reads and writes. During bitline multiplexing, the memory
controller will send either READ or WRITE. As described in §V,
these commands can be sent tRCD after an activation, which
is less than tRAS. REGA should comply, allowing reads and
writes while refreshing an additional row in parallel.
Shadow refresh. REGA allows normal DRAM operations on a
requested row while simultaneously enabling refreshing another
row. We denote the requested row by RR and the shadow row
by RS (i.e., the row that gets refreshed in parallel). One may
propose using the bitline sense amplifiers to first read data from
RR (as part of ACT) and then to refresh RS. However, after RR
has been activated, the memory controller can read from/write
to any column at any given time. Therefore, there should be
two sets of sense amplifiers: the original sense amplifiers (SAO)
to perform refresh operations, and a new set of sense amplifiers,
called the REGA sense amplifiers (SAR), to hold the values
that could be read (or written). In practice, SAR acts as a buffer
to the original SAO.

Figure 6 shows the high-level operation of REGA. To enable
time-multiplexing of the bitlines, we make a key observation
that for the sense amplifiers to start their mechanism, charge
sharing is the only required operation ( 1 ). This step provides
the logical values that can be read by the memory controller in
time with a tRCD. After the charge sharing phase, the bitlines
can be disconnected and connected to a different row and
sense amplifiers ( 2 ). When the second set of sense amplifiers
is connected, REGA refreshes the shadow row ( 3 ). After
the shadow refresh, the RR is reconnected ( 4 ), allowing any
operation conforming to the standard to be executed identically
to what is possible after a normal ACT on RR. In other words,
REGA does not require changing the DRAM standard, hence
satisfying R3. The time available to perform both refreshes
is tRAS; after this, the memory controller can send a PRE.
If tRAS is preceded by a read, the value can be read by the
sense amplifier that had latched the logical value. If tRAS is
preceded by a write, the new value will replace the one latched
by SAR, later used to finish refreshing RR.

B. Low-Level Operation
REGA requires replicating existing elements in the sub-

array’s circuit as shown in Figure 8. In particular, additional
sense amplifiers and transmission gates (Figure 4-right) are
required. No modification to the data path is necessary. We
now describe REGA’s operation for a single sense amplifier,
as the same applies to all of them. We assume that the device
receives an ACT for RR, which may or may not be part of
an attack, and we assume that the shadow refresh targets RS.
REGA’s complete design for a single cell is in Figure 7.
Circuit’s basics. For each bitline, two sets of sense amplifiers
are used: the already present, “original” sense amplifier (SAO),
and our addition, the REGA sense amplifier (SAR). SAR latches
the requested row’s value and serves as an I/O buffer. SAO
refreshes the shadow and requested rows. REGA uses the
existing circuit to precharge the bitline.
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Fig. 7: REGA’s design. The DRAM receives an ACT for RR. After turning OFF the precharge and connecting RR, SAR starts latching supported by SAO ( 1 ).
After SAR has started amplifying the voltage, the gate and RR are disconnected, the bitline is precharged, and SAO is turned OFF ( 2 ). SAR remains active to
support reads and writes. When the bitline has been precharged, RS is connected, and SAO starts refreshing it ( 3 ). After RS has been refreshed and RS is
closed, the bitline is precharged ( 4 ). RR and SAR are connected to the bitline ( 5 ). Lastly, SAO is turned ON to support the refresh operation on RR ( 6 ).

Stage 1: Logical ACT. In Stage 1 (Figure 6), REGA latches the
logical values from the requested row. The latching mechanism
is first started by SAO and quickly latched by SAR (Figure 7,
Stage 1.1). This combined operation allows SAR to be smaller
than SAO, thereby keeping area overhead and power consump-
tion low. To correctly multiplex the bitline, a transmission gate
is required between the two sense amplifiers, which prevents
SAO’s refresh mechanism from corrupting SAR’s logical value
when the signal VG is low. Therefore, before activating RS, two
events are necessary: turning OFF the original sense amplifier
SAO and precharging the bitline (Figure 7, Stage 1.2).
Stage 2: Parallel REF. In Stage 2 (Figure 6), REGA performs
a parallel refresh to RS. First RS is activated, then the standard
charge sharing and recharging, as described in §V, happen via
SAO (Figure 7, Stage 2.1). Before Stage 3 can be started, SAO
must be turned OFF, and the bitline must be precharged. This
precharge is needed because the SAR might lose the latched
value due to the high-charge parasitics of the bitline.
Stage 3: Logical REF. In the last stage, REGA recharges RR
with the up-to-date logical value. This is necessary, as the cell
had partially lost its value during the charge sharing operation
of Stage 1. First, the transmission gate is turned ON, connecting
SAO to the bitlines (Figure 7, Stage 3.1). Then, SAR is activated
to assist in the refresh of RR (Figure 7, Stage 3.2).

C. Detailed Signal Timings

We now analyze the detailed signal timings. Our design
considers the worst-case scenario, where the RR and RS cells
have opposite values and with a minimum charge. The timings
are obtained using REM simulations as shown in Figure 9. In
this accurate description, we use SAO and SAOD to refer to the
activation of the original sense amplifier’s supply, either with
the common (1V) or overdriven (1.4V) voltage.
Stage 1: Logical ACT. In the initial state, the bitline is
precharged (Figure 9, 0 ). The memory controller sends an
ACT to the row RR. This causes the precharge signal to be
de-asserted and RR to be connected to the bitline while RR’s
SWL is set high ( 1 ). With this last operation, charge sharing

begins, inducing a voltage variation along the bitline. After the
bitline has received the capacitor’s charge, SAOD is activated
(SAOD is set high) to help SAR latch the value ( 2 ) with the
transmission gate active. Shortly after, SAR is activated and
starts latching the logical value of RR. SAOD is turned OFF,
and the transmission gate is opened (VG is set low, 3 ).

At this point, the bitline is precharged for the required
time ( 4 ). SAR will latch the logic value before a tRCD. This
operation is very fast because SAR does not have the load of
the bitline, which is disconnected via the transmission gate.
Before the end of tRAS, read and write operations go to SAR.
Stage 2: Parallel REF. This stage follows the standard charge
sharing and recharging but targets RS ( 4-6 ). After this activation
(used as a refresh) of RS is over, RS is disconnected from
the bitline, and SAO is turned OFF ( 7 ). Then, the bitline
is precharged. As previously noted, this precharge is needed
because in the next stage, SAR will be connected to the bitline.
SAR now holds a value that must be stored back in RR.

However, if the parasitics of bitline held an opposite value,
connecting the SAR might corrupt its value. This depends on
SAR’s transistors sizes, on its power supply, and on the bitline
parasitics. Considering the technology of our collaborating
DRAM vendor, the precharge operation is fast, and the SAR’s
transistors are big enough to reliably keep their value.
Supporting other DRAM technologies. We provide solutions
for cases where the SAR or the precharge circuit must be
very weak. First, we simulated a weaker precharge circuit and
determined that it is not required to bring the bitline exactly to
Vdd/2. Given our values for the SAR, we found that a margin
of at least 60 mV is tolerated. Second, we tested a weaker SAR
with transistor widths halved. This situation can be overcome
by controlling the gate circuity separately for the two bitlines
(BL and BLB). In particular, in Stage 3 only the gate that
connects BL can be connected. This improves the reliability
of SAR to hold its value once connected to charged bitlines. If
the assisted refresh is needed in Stage 3, SAO can initially be
kept OFF while only BLB is precharged. Then, BLB’s gate is
connected, and SAO finishes the refresh operation.
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Fig. 8: REGA’s Internal Deployment. REGA is deployed next to the original
bitline sense amplifier (BLSA).
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Fig. 9: Timing of REGA. Initially, the bitline is precharged ( 0 ). An ACT
is received for RR, and its word line is risen ( 1 ). After the charge sharing
operation, SAOD helps SAR latching the cell’s value ( 2 ). After SAR has
started the latching operation, the gate is opened to disconnect SAR from the
bitline ( 3 ). Now, the bitline is brought back to the reference voltage via the
precharge circuit ( 4 ). RS is activated, and SAO and SAOD perform a normal
refresh operation ( 5 , 7 ). Parallel to RS refresh, a read operation occurs ( 6 )
by reading from SAR. Once RS has been refreshed, SAO is turned OFF ( 7 ).
After a brief precharge operation, the gate is closed ( 8 ), and RR is refreshed
by the combined operation of SAR and the original sense amplifier.

Stage 3: Logical REF. RR is activated, and the gate is turned
ON ( 8 ). After a short time, SAOD is turned ON to assist the
row refresh. To compensate for the short refresh time, SAOD is
held overdriven longer than usual before switching to SAO.

All the discussed timings need to consider the rising time
and the delays due to parasitics. For the sake of simplicity, we
did not include them in this description. They are, however,
used in our simulations and included in our model. All voltage
levels are summarized in Table VI.
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Fig. 10: REGA Performing Multiple Refreshes. The bitline is
precharged ( 1 ), after which the target shadow row is activated ( 2 ), and SAO
is used to perform its refresh ( 3 ). The same can be repeated for more shadow
rows ( 4 ), and lastly, the process can be completed by restoring RR ( 5 ).

Output : Number of corruptions C for all rows

1 S← PICKRANDOMROWS(1000) // (≈ 2MiB)
2 for t ← {8,16,24,32} do // tRAS in ns
3 for R ← S do
4 Fill R with a random data pattern
5 Send ACT-PRE to R with tRAS = t
6 Read R
7 Ct

R ← number of corruptions in R
8 if Ct

R == 0 then
// If it does not corrupt with a low tRAS,
// neither it will with a higher tRAS

9 Remove R from S
10 return C

Alg. 1: Experiment for measuring the slack in tRAS.

D. Parallel Refresh of Multiple Rows
As we discuss in § VIII, multiple parallel refreshes at

every activation enable protecting devices with very small
Rowhammer thresholds. REGA can perform more than one
refresh in parallel to a row activation without changing its
circuit. Parallel refreshes involve repeating some key operations,
illustrated in Figure 10 for shadow rows RS1 to RSV. For each
shadow row, REGA interleaves bitline precharging with Stage
2 (Parallel REF). First, the bitline is precharged ( 1 ). Then, the
target shadow row is activated ( 2 ), and SAO is used to perform
its refresh ( 3 ). Then, these operations can be repeated for a
different shadow row ( 4 ), or the process can be completed by
(re)storing the charge in the requested row ( 5 ).

In the next section, we show that on recent DDR4 and DDR5
devices, the minimum tRAS of 32 ns suffices for refreshing
a single shadow row (V = 1). Performing multiple refreshes
requires more time, which a DRAM device can do by extending
tRAS from its minimum of 32 ns. To refresh V shadow rows
on top of RR, REGA requires a tRAS of 32+(V −1)×(17.5)
ns which we evaluate in §IX.

VII. IMPACT OF REGA ON tRAS

For a single shadow refresh (V = 1), REGA needs 16 ns (Fig-
ure 9). We introduce two experiments showing that (i) tRAS



has sufficient slack to implement REGA in today’s devices, and
(ii) reducing tRAS does not negatively affect data retention.
We present our experimental platforms in § VII-A, and the
experimental methodologies and results in §§VII-B and VII-C.
We discuss how tRAS can be configured for values higher than
32 ns allowing multiple parallel refresh operations in §VII-D.
A. Experimental Platforms

We measure the slack in tRAS on PCs to obtain minimal
tRAS values. To measure the impact of reducing tRAS on
data retention, we rely on an FPGA platform which provides
us with precise timing for DRAM commands.
PC configurations. We use Intel Core i7-8700K (DDR4)
and Intel Core i7-12700K (DDR5) machines for PC-based
experiments. Our mainboards (Appendix D) allow accurately
setting DRAM timings, such as tRAS. We use a SO-DIMM-to-
UDIMM extender to connect our SO-DIMMs to these machines,
which limits their speed to 2666MHz. We use MemTest86 Pro
(version 9.4) for testing the DIMMs under reduced tRAS.
FPGA details. Our platform is based on a Zynq ZCU104
FPGA running Antmicro’s Rowhammer tester [57]. It supports
off-the-shelf DDR4 SO-DIMMs, and allows issuing DRAM
commands directly to the memory device. Further, we have
a DRAM heating infrastructure with which we can keep the
DRAM device’s temperature up to 100 ○C.
Test devices. Our DRAM test pool consists of 21 DDR4 SO-
DIMMs and 16 DDR5 UDIMMs, all off-the-shelf DRAM
devices, covering all major DRAM manufacturers and varying
in size and frequency. For more details about our test devices
and the experimental platforms, we kindly refer to Appendix D.
B. Experiment 1: Slack in tRAS

In this first experiment, we investigate the slack in the default
tRAS of existing devices. We achieve this by sending ACT-PRE
sequences with a reduced tRAS value and using corruptions
as an indicator for failures caused by a too small tRAS value.

We describe our experiment in Algorithm 1. As temperature
might affect the DRAM’s operation, we perform this experiment
under normal room temperature (25 ○C) and the maximum
temperature specified by the JEDEC standard (85 ○C). Because
precise timing is essential, we executed this experiment using
our FPGA platform on all our SO-DIMMs. The results for
the devices where we observed any corruptions are given in
Table II. We observe that even with an extremely reduced
tRAS of 8 ns, we could only observe corruptions on 3 of 21
tested DDR4 devices. S16 reports fewer corruptions with a
higher temperature. This is because higher temperatures can
lower the threshold of access transistors, allowing for faster
data restoration in some cases (i.e., fewer corruptions). For a
tRAS of 16 ns, the value we require for REGA with V = 1,
we never observed corruptions.

We do not have precise control over DRAM commands on a
PC. However, to verify that our results hold for UDIMMs, we
reconfigured the tRAS of these devices in the PC’s BIOS/UEFI
to 16 ns. We then ran a full pass of all 16 MemTest86 [58] tests
on all our test devices (including the SO-DIMMs) to check for
any corruptions that might be caused by the lower tRAS. We

TABLE II: Result of our free
tRAS slack experiment. We report
the no. of corruptions on all SO-
DIMMs and UDIMMs in our test
pool. We omit devices without any
observed corruptions.

DIMM Room temp. Max. (85 ○C)

/tRAS 8 16 8 16

S6 7 0 1,747 0
S13 1,413 0 2,840 0
S16 2,937 0 1,315 0
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Fig. 11: Retention time experiment. Time required for corruptions to occur
on the DDR4 SO-DIMMs under different tRAS settings and temperatures.

confirm having observed no corruption over all tests in any of
our DDR4 and DDR5 devices.

C. Experiment 2: Impact of a Reduced tRAS on Data Retention
This experiment’s goal is to show that reducing tRAS does

not negatively affect the data retention time even though less
time is given to the ACT command. In other words, reducing
tRAS should not lead to data corruption due to retention errors.
To analyze this, we construct an experiment where we refresh
rows varying tRAS values and use wait periods of different
lengths to see the impact of tRAS on data retention.

We precisely describe our experiment in Algorithm 2, which
we repeat for the two different temperature levels for all DDR4
SO-DIMMs in our test pool. As the JEDEC standard requires
a data retention time of 64ms, we do not expect to see any
retention failures for this waiting period. Figure 11 reports
the number of DIMMs in which we observed corruptions,
for different values of tRAS and after a waiting period. The
data clearly shows that for up to 256ms, there are no data
corruptions: the first corruptions start to appear after a waiting
time of 1 s. This is significantly more than the 64ms that
JEDEC specifies in the DDR4 standard. Furthermore, there is
no clear difference between the retention profiles of devices
with different tRAS values. Hence, we conclude that it is safe
to reduce the tRAS value to 16 ns, or more precisely, use the
available slack to perform REGA operations.

D. Configuring tRAS

DDRx devices use an SPD chip to inform the memory
controller which timings to use [59]–[61]. The content of the
SPD chip is standardized by JEDEC [62], [63] and intended
to allow departing from the timings described in the DDR
standard for future devices.

The SPD chip includes tRAS, therefore devices deploying
REGA can set the necessary tRAS value. For DDR4 devices,
the tRAS in the SPD can be set up to 512 ns, making REGA
with high V (e.g., 8) already deployable. On DDR5 devices, the
tRAS on the SPD can be set up to 65.5 ns, making V values
higher than 2 not immediately compatible with the current
SPD standard. As we discuss in §VIII, V > 2 enable protection
for devices with Rthresh smaller than 517, estimated to occur
in around 7 years from now. We hence recommend future
revisions to the JEDEC SPD standard to allow the SPD chip to
set higher tRAS values as necessary. In §IX we evaluate the



Output : Number of corruptions C for all rows

1 S← PICKCONSECUTIVEROWS(1000) // (≈ 2MiB)
2 for R ← S do
3 Fill R with a random data pattern;
4 for t ← {8,16} do // tRAS in ns
5 for m ← {64k,16k,4k,1k,256,64} do // waiting time in ms
6 Ct

R ← 0;
7 for r ← 0 to 5 by 1 do // reps. account for VRT
8 for R ← S do
9 Send PRE-ACT with tRAS = t ns // ≜ refresh

10 Wait by sending NOPS for m ms;
11 for R ← S do
12 Read R;
13 Ct

R ← Ct
R+ number of corruptions in R;

14 if Ct
R == 0 then
// m causes no corruptions
// Ô⇒ any m′ <m will not cause corruptions

15 break;
16 Ct

R ← Ct
R/5 // Average over the 5 repetitions

17 return C

Alg. 2: Evaluation of the impact of tRAS on the data retention time.

performance overhead introduced by increasing tRAS beyond
32 ns.

VIII. REGAM

We show how we can leverage refreshes generated by REGA
to design new Rowhammer mitigations by demonstrating
a blast-independent, fully in-DRAM, stand-alone mitigation
called REGAM. REGAM is simple, deterministic, and config-
urable based on the device’s Rthresh.
A. Design

Aggressor rows only affect victims inside the same sub-
array since sub-arrays are physically separated from each other
by sense amplifiers. Given a sub-array, REGAM cyclically
refreshes all its rows as it receives activations. In particular,
REGAM refreshes V different rows in a sub-array every time
it receives T activations. T and V are parameters that can
be dynamically configured through a freely available register
inside SPD to account for devices with different Rowhammer
thresholds and the discovery of new Rowhammer effects. We
show in § IX that REGAM outperforms the state-of-the-art
in-DRAM mitigation when it comes to known Rowhammer
effects. Furthermore, since REGAM refreshes all rows in a
sub-array that is receiving activations, it also provides strong
protection against new (yet unknown) Rowhammer effects. As
an example, after this paper was submitted, the latest JEDEC
standard extended the maximum supported blast diameter to
6 [43]. REGAM is immediately capable of protecting devices in
these scenarios. To easily integrate normal refresh operations,
refreshes targeting a particular sub-array will use REGAM’s
row index as a target, and then increment it.
B. ASIC implementation

We propose to implement REGAM in the CMOS area of the
DRAM chip, similarly to our previous work [29]. Figure 12
provides an overview of REGAM’s ASIC implementation.
REGAM is made of Nb identical blocks, where Nb is the
number of banks. Each block is essentially composed of Ns

indices Ii, where Ns is the number of sub-arrays inside a
bank and each Ii is a 9-bit register pointing to the next row
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Fig. 12: Overview of the REGAM implementation.
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Fig. 13: Trend of Rthresh from 2016 to 2035. In orange is reported the
minimum Rthresh for REGAM1 , REGAM2 , REGAM4 and REGAM8 .

to be refreshed in the corresponding sub-array. Additionally,
each block contains Ns registers Ti, which are duty-cycling
the refresh commands, i.e., to ensure that REGAM sends a
refresh every T activations received by a sub-array. Whenever
an activation affects the i-th sub-array, if Ti = T − 1, then V
refreshes are sent to Ii, Ti is reset and Ii is incremented by
V , wrapping around the maximum row index.

C. Security
REGAM can protect a device for a minimum Rthresh

depending on its configuration. To obtain Rthresh, we consider
the worst-case scenarios happening before and after a victim
row is refreshed. For a typical sub-array size of 512 rows, a
victim row is refreshed after a maximum of 512

V
×T activations,

during which its aggressor rows can repeatedly be activated. Of
these activations, 512

V
will perform extra refreshes. Therefore,

because the SWL is raised twice, these will hammer the
victim twice. The last extra-refresh operation is an exception,
as the victim will be refreshed after SWL is raised once.
Instead, 512

V
× (T − 1) activations will not perform extra

refreshes, hammering the victim only once. Lastly, refreshed
rows will also hammer the victim if inside its blast diameter B.
Depending on the victim’s position inside the refreshed group,
the refreshed rows will either be a hammering baseline for the
next iteration or will hammer before the victim’s refresh. In
either case, this will result in a total of B hammerings (i.e.,
row activations). A victim will always have a hammer baseline
of 1 due to the SWL raise after its refresh. Therefore, a victim
row can be hammered at most 512

V
× (T + 1) +B times. We

further validated REGAM using state-of-the-art Rowhammer
fuzzers [1], [28] without observing any bit flips.

In certain DRAM chips, rows that are kept active for longer
periods could increase the Rowhammer vulnerability [64]. This
behavior still requires extensive characterization to conclude
whether it can provide an additional benefit to an attacker.
If necessary, REGAM can completely eliminate this effect
with a minor variation. Because REGA adds buffering sense
amplifiers, RR does not need to stay active during writes and
reads. REGAM write back operation can then be performed



during a PRE, as it only requires 12 ns.
Figure 13 reports REGAM thresholds for V = 1,2,4,8,

respectively as REGAM1-8, offering Rowhammer protection
for devices up to 10 years from now.

IX. EVALUATION

We now evaluate the key aspects of REGA and the
mitigations REGAM1-8. Results for REGA and the ASIC
implementation are shared by all the mitigations. Results that
are V -specific are indicated as REGAMX (V = x).

First, we analyze the die’s area overhead due to the extra
REGA circuitry and the ASIC implementation, and we report
the static power consumption (§IX-A). Second, we evaluate
the circuit’s reliability based on 160 K analog Monte Carlo
simulations (§IX-B). Third, we estimate the power, energy and
performance overhead of REGAM1-8 by running cycle-accurate
simulations (§IX-C).

We compare the overheads of REGAM1-8 with ProTRR [29],
which is the state-of-the-art in-DRAM Rowhammer mitigation.
We synthesized REGAM’s ASIC and ProTRR using a 12 nm
technology with Synopsys Design Compiler 2021. In our
evaluations, we consider B = 2 for the classical Rowhammer
effect [5], B = 4 for the recently introduced half-double
effect [31], B = 6 that has been added in the latest JEDEC
standard [43] and B = 8 for future DRAM technologies where
an aggressor row can cause bit flips in four victim rows on
each side. We regard Rthresh of interest to be lower than 4 K.
A. Area Overhead

The area in the DRAM chip is generally limited, and the
vendors aim to maximize the area for the mats. Given that, we
must ensure that REGA’s implementation is practical, i.e., it
consumes a reasonably small amount of die area.
Methodology. Depending on the DRAM design and technology,
the ratio between the sensing circuit and the chip’s die can
vary between 8% and 15% [42], averaging 11.5%. The sensing
circuit includes column selectors, precharge circuits, and
BLSAs. According to the sense amplifier layout reported by
our collaborating DRAM vendor, the BLSAs occupy 60% of
the sensing area. REGA adds small buffering sense amplifiers
and transmission gates, and for simplicity, we consider their
length to be equivalent to the original BLSAs. More precisely,
REGA requires eight additional transistors per each BLSA:
four that are 1/6-th of the BLSA’s transistors width and another
four that are 1/8-th of the BLSA’s transistors width.

To conservatively evaluate the area overhead of REGA, we
assume no available free space to place our extra transistors.
Instead, because each BLSA is formed by four transistors, we
propose placing them in two groups following the BLSAs.
Consequently, REGA’s area overhead can be calculated as
follows: 60% × ( 1

6
+

1
8
) × 11.5% resulting in, on average, only

2% area overhead. Our ASIC implementation of REGAM incurs
as little as 0.06% area overhead.
Comparison with ProTRR. In Figure 14, we show the total
area overhead of REGAM compared to ProTRR for DDR4
and DDR5. As REGAM does not use any counters, its area
overhead is independent of the Rowhammer threshold.

TABLE III: Gem5 system configuration.
CPU Memory Controller DRAM DDR4 DDR5

Sched. Type OoO #Channels 2 Freq (GHz) 2.9 4.8
#Cores 8 Page Policy Open Ranks 1 1
Freq. (GHz) 3 Scheduler FR-FCFS Bankgroups 4 8
L1 (KiB) 2x32 Queue Type Per Bank Banks/group 4 2
L2 (KiB) 256 Capacity (GiB) 16 Banks/rank 16 16
L3 (MiB)1 8 Rows/bank 64 K 64 K

In DDR4, ProTRR struggles for Rowhammer thresholds
lower than 4 K (B = 2) or has no protection (B > 2). For DDR5
devices, REGAM’s area is lower for Rowhammer thresholds
lower than 1156 (B = 2) and any threshold lower than 4 K
(B > 2). As thresholds approach 1 K, ProTRR can no longer
protect these devices (B = 4,6,8).
Static power overhead. The extra sense amplifier circuit uses
CMOS technology and incurs a negligible static power over-
head. For 32 banks, REGAM has a static power consumption
of 0.015%, for a baseline of 3W [29]. This is significantly
less than ProTRR, which requires overheads between 4.65%
and 2.35% for 16 banks.

B. Circuit Reliability

Methodology. We used LTspice [65] to simulate REGA using
REM. We ran 40 K Monte Carlo simulations while introducing
random variations of ±5% in the transistor’s dimension and the
line parasitics. As previously done for DRAM [40], [45], [66]–
[69], we modeled the transistors using the 22 nm predictive
transistor model (PTM) [70]. Based on indications from our
DRAM collaborator, we set the DRAM cells’ charge to the
minimum that is still considered correct. We repeated the
simulations for V = 1,2,4,8.
Results. The circuit reported 100% reliability on all 160 K
Monte Carlo simulations for REGAM1-8. We consider the circuit
reliable if all capacitors are recharged to the correct value. To
evaluate the worst-case scenario, we tested the combinations
where the sequence of cells to recharge have opposite values.

C. Performance, energy and power overhead

We benchmark SPEC®2017 [71] with a cycle-accurate
simulator, evaluating the energy and power overhead of the
extra row refreshes, and the performance overhead due to the
corresponding tRAS extension. Before presenting our results,
we briefly describe our methodology and simulation setup.
Because power presents the main design factor for devices, we
refer the reader to Appendix E for the energy overhead results.
Gem5 simulation. We configured gem5 [72] as described
in Table III to do a full-system simulation of Ubuntu (Linux
kernel 5.4) based on an 8-core out-of-order CPU. Like previous
work [29], we modeled the DRAM subsystem using DRAM-
sim3 [73] as it allows for a higher accuracy than the DRAM
model included in gem5. Per SPEC®2017’s recommendation,
we ran multiple copies in parallel, equal to the number of cores
(i.e., eight in our configuration). This maximizes the workload
and, as such, increases the load on the memory subsystem. For
each benchmark, we obtained 20 equally-spaced checkpoints

1For results including L3, see Appendix I.
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Fig. 14: Area and power overhead of REGAM1-8 . (i.) Area overhead. Overhead for 32 banks and blast diameters of 2, 4, 6, and 8. (ii.) Power overhead
per bit (DDR5/4). Power overhead related to a bit for a fixed chip area. In orange, the point of crossing between REGAM and ProTRR is highlighted. Because
REGAM is blast independent, its evaluation for different Bs is identical. The only difference is a Rthresh shift of 2 between each panel (see §VIII-C).

(SMARTS methodology [74], [75]) and we ran each checkpoint
for 10 M instructions.

Methodology for energy and power overhead. We evaluated
the energy overhead on top of a regular ACT operation for
V = 1,2,4,8 extra refreshes. We considered the worst case
where a cell needs to be fully recharged. Simulating REGA
using LTspice [65], averaging over 50 Monte Carlo simulations,
showed a per-ACT energy overhead of 38%, 95%, 223% and
479%, respectively for V = 1,2,4,8. For each benchmark, we
extracted the average total energy consumed and the energy
consumed due to activations, repeated for DDR4 and DDR5.
Depending on T and V , we obtained the overhead with respect
to the baseline (V = 0). We used this energy to derive power
consumption and power overhead, by using the individual CPU
time simulated for each benchmark and each checkpoint. We
then calculated the energy and power overhead per bit by
considering a fixed die size available, as we do not expect
manufacturers to increase the die area freely.

Power overhead. REGAM performs refreshes every T activa-
tions, which depends on the Rowhammer threshold and on V .
A high value of T substantially decreases power consumption.
For example, if a device has a Rowhammer threshold of
4 K, REGAM1 can be activated every 6 activations, incurring
6 times less energy overhead and consequently less power
overhead. Figure 14 shows the average power overhead per
bit depending on the Rowhammer threshold, compared with
ProTRR. In almost all cases of interest, REGAM has a lower
power consumption compared to ProTRR. As an example,
to protect DDR5 devices with Rthresh of 1027 and B = 2,
REGAM requires only 7% extra power per bit, while ProTRR
needs 18%. In the case of extended tRAS and high values of
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Fig. 15: Performance overhead. Average performance overhead for V=1, 2,
4, 8 for SPEC®2017 on DDR4 and DDR5.

T , the power is reduced with respect to the baseline (negative
overhead). This is due to a reduced amount of activations sent
for a given time, and is reflected in a performance overhead (see
next). We further provide REGAM’s absolute power overhead
(i.e., not relative to the area) in Appendix G.
Performance overhead. REGA does not require timing
changes when refreshing a single row (V = 1). Therefore,
it does not introduce any performance overhead. If REGA
refreshes V > 1 rows, tRAS must be extended.

We repeat the measurements for V = 2,4,8 and for the base-
line (V = 0). In Figure 15 we report the average performance
overhead relative to the baseline. A detailed overview can be
found in Appendix F. ProTRR has a negligible performance
overhead, however, for low thresholds it becomes infeasible due
to its area overhead or it cannot provide a sufficient protection.
REGAM offers a protection with 0% performance overhead
for the thresholds that are covered by ProTRR, and it extends
this protection to thresholds significantly lower by adding a
performance overhead due to extending tRAS (e.g., 3.7% for
Rthresh = 261).

X. RELATED WORK

In the following, we summarize and compare existing
Rowhammer mitigations to REGAM. In Table IV, we provide an



TABLE IV: Overview of Rowhammer mitigations.

Yr.
Security Comp. Eval. Concepts

Eff. Vuln. Det. DDR 4/5 DDR5 Ct. Pr. Is. B.I.– DRAM
REGAM1-M2 ’22 /
REGAM4-M8 ’22 /
Mithril [39] ’22 /
ProTRR [29] ’22 /
Panopticon [41] ’21 /
ProHIT [40] ’17 /

– Memory controller
Hydra [27] ’22 /
Row-Swap [38] ’22 /
BlockH. [21] ’21 /
CAT-TWO [24] ’20 /
Graphene [22] ’20 /
TWiCe [26] ’19 /
MRLoc [23] ’19 /
CBT [25] ’16 /
PARA [5] ’14 /

– Software
ALIS [19] ’18 – / –
GuardION [12] ’18 – / –
ZebRAM [37] ’18 – / –
CATT [36] ’17 – / –
ANVIL [35] ’16 – / –

overview of the existing mitigations, comparing them for their
security properties (Security), their deployment location, their
compatibility to the DDRx standard (Comp.), their approach
(Concepts), and if they were evaluated on the latest DDR
standard (Eval.). We differentiate between agreement ( ), and
disagreement ( ); for positive ( ) and negative properties ( ).
Not applicable properties are denoted by “–”.

Security. First, 15 of our 19 considered mitigations are
deterministic (Det.), which is favorable due to stronger security
guarantees. Other mitigations use probabilistic decisions such
as MRLoc, ProHIT, and PARA. Second, REGAM is the first
proposed mitigation that can protect against new (unknown)
Rowhammer effects without modification (Eff.) such as the
recently discovered half-double effect or even higher blast
diameters [2], [43]. Third, some mitigations suffer from known
vulnerabilities (Vuln.) as shown by existing work [22], [29]
and in Appendix H. We only considered insecurities in the
original design, not arising from new effects. As previously
exposed [76], in-CPU mitigations that rely on refreshes are
either vulnerable or incompatible. For a refresh to be secure,
the internal DRAM topology must be known. This way, the
mitigation can keep track of the rows that are hammered by
extra refreshes. Unfortunately this has never been addressed
by the standard, leading to new attacks to surface [2]. We
considered a mitigation to be vulnerable if they do not mention
this effect, or do not require the topology to be known.

Location. The majority of existing mitigations (9 out of 19)
need changes in the CPU’s memory controller. Software-based
mitigations involving the operating system have also been
proposed. Notably, the focus has moved since 2019 from
software- towards memory controller-based mitigations and,
more recently (2021+), to fully in-DRAM mitigations.

Compatibility. Most mitigations target the DDR4 standard,

though many require changes to the protocol, for example,
by requiring a new (refresh) command or the internal row
layout. We consider mitigations to be non-compliant, if in the
original publication they required standard modifications for
the evaluated protocol. We report Row-Swap to be compatible
with the standard, however, as confirmed with the authors,
the time delay for the operations should be roughly twice
what is used in the paper. Only the more recent mitigations
from 2022, namely REGA, ProTRR, and Mithril, are evaluated
for DDR5. We ignore software-based mitigations, as they are
by design independent of the DDRx standard. We considered
mitigations that rely on the knowledge of internal row mapping
to be incompatible but secure. Currently, REGAM4-M8 are non-
compliant with the DDR5’s SPD specification, which limits
the compatible volume to V = 1,2.
Concepts. Most mitigations employ counters (Cnt.) to keep
track of aggressors or victims. Those who do not employ
counters use other data structures such as queues (e.g., ProHIT
and MRLoc) or are entirely stateless (e.g., PARA). As it
is generally difficult to precisely track row activations from
software, 4 out of 5 proposed mitigations use isolation (Isol.)
to protect against Rowhammer. ANVIL is an exception to this
trend: it uses performance counters to track row activations.
We consider PARA, ProHIT, MRLoc, and also Row-Swap’s
random swapping of rows to be based on probabilities (Prob.).

REGAM is the only blast-diameter independent (B.I.) mit-
igation. The design of all other mitigations heavily relies on
the considered diameter. This gives REGAM the flexibility to
scale with the increasing blast diameter.

XI. CONCLUSION

We presented REGA, a new in-DRAM mechanism that can
scale the number of refreshes with activations. REGA uses
buffering sense amplifiers to time-multiplex DRAM bitlines
so that refreshes can occur in parallel to standard DRAM
operations. We demonstrated the correctness of REGA’s circuit
using a new accurate DRAM model that we developed in
collaboration with a DRAM vendor. REGA enables simple yet
powerful mitigations against current and future Rowhammer
attacks. We built a deterministic and scalable mitigation on top
of REGA, called REGAM, and evaluated its area, power and
performance impact. REGA is the first in-DRAM mitigation
that scales to small Rowhammer thresholds with a constant
small area overhead (2.1%) and power and performance
overhead dependent on the Rowhammer threshold. As an
example, REGA scales to Rthresh = 517 with 11.5% power
and 0.8% performance overhead.
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[21] A. G. Yağlikçi, M. Patel, J. S. Kim, R. Azizi, A. Olgun, L. Orosa,
H. Hassan, J. Park, K. Kanellopoulos, T. Shahroodi, S. Ghose, and
O. Mutlu, “BlockHammer: Preventing RowHammer at Low Cost by
Blacklisting Rapidly-Accessed DRAM Rows,” in IEEE HPCA, 2021, pp.
345–358.

[22] Y. Park, W. Kwon, E. Lee, T. J. Ham, J. H. Ahn, and J. W. Lee, “Graphene:
Strong yet Lightweight Row Hammer Protection,” in IEEE/ACM MICRO.
IEEE, 2020, pp. 1–13.

[23] J. M. You and J.-S. Yang, “MRLoc: Mitigating Row-Hammering based
on Memory Locality,” in ACM/IEEE DAC. IEEE, 2019, pp. 1–6.

[24] I. Kang, E. Lee, and J. H. Ahn, “CAT-TWO: Counter-Based Adaptive
Tree, Time Window Optimized for DRAM Row-Hammer Prevention,”
IEEE Access, vol. 8, pp. 17 366–17 377, 2020.

[25] S. M. Seyedzadeh, A. K. Jones, and R. Melhem, “Counter-Based Tree
Structure for Row Hammering Mitigation in DRAM,” IEEE Computer
Architecture Letters, vol. 16, no. 1, pp. 18–21, 2016.

[26] E. Lee, I. Kang, S. Lee, G. Edward Suh, and J. Ho Ahn, “TWiCe:
Preventing Row-Hammering by Exploiting Time Window Counters,” in
ACM/IEEE ISCA, 2019.

[27] M. Qureshi, A. Rohan, G. Saileshwar, and P. J. Nair, “Hydra: Enabling
low-overhead mitigation of row-hammer at ultra-low thresholds via hybrid
tracking,” in ISCA. New York New York: ACM, Jun. 2022, pp. 699–710.

[28] P. Frigo, E. Vannacci, H. Hassan, V. van der Veen, O. Mutlu, C. Giuffrida,
H. Bos, and K. Razavi, “TRRespass: Exploiting the Many Sides of Target
Row Refresh,” in IEEE S&P, 2020.

[29] M. Marazzi, P. Jattke, F. Solt, and K. Razavi, “PROTRR: Principled yet
optimal in-DRAM target row refresh,” in IEEE S&P, 2022.
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APPENDIX A
ROWHAMMER TREND

The fitting of the curves is based on the minimum Rowham-
mer thresholds reported in previous works [34], [42]. We now
briefly report the methodology and fitting results.
Average curve. For each DRAM vendor, we calculated the
average Rthresh in each year. Then, we averaged across vendors
for the same year. The resulting points are reported in Figure 2,
which also includes a fitted curve using an exponential function
(i.e., a×eb×x) obtained using MATLAB® 2020 automatic fitting
tool (R-square=0.96).
Absolute minimum curve. For each year, we considered the
absolute minimum across all vendors. In the dataset, the year
2018 included only a single point, which we considered to be
an overly optimistic outlier. For this reason, we removed it
from the computation, as it would have skewed the minimum
curve to be overly optimistic. Like above, the points used
for the fitting are reported in Figure 2, and fitted with an
exponential function (i.e., a× eb×x) obtained using MATLAB®
2020 automatic fitting tool (R-square=0.98).

The figure reports the minimum thresholds supported by the
mitigations. However, the Rowhammer threshold is defined
differently depending on the publication. In this work and
others [22], [29], [39], Rthresh is the minimum number of
activations to have bit flips. A Rthresh of 1024 with B = 4
could be reached by 4 different aggressors, each activated
1024/4 = 256 times. Other mitigations [27], [38] refer to
Rthresh relatively to aggressors. In those cases, the threshold is
the number of times every aggressor in the blast diameter needs
to be activated to induce bit flips. For example, Hydra [27]
targets a threshold of 500 with B = 4. Because each row can be
activated 500 times, and each victim has 4 different aggressors,
this corresponds to a Rthresh equal to 2000.

APPENDIX B
ABBREVIATIONS

In Table V, we summarize the abbreviations and symbols
we used throughout this work.

APPENDIX C
VOLTAGES USED IN REM

The voltage levels of our REM are listed in Table VI.

APPENDIX D
EXPERIMENT PLATFORM & DEVICES

In the following, we provide more details on our PC-based
test platform and the test devices of our DRAM test pool.
PC. We use Intel Core i7-8700K (“Coffee Lake”) machines for
DDR4 experiments, equipped with ASUS ROG STRIX Z930-
E mainboards. We use Intel Core i7-12700K (“Alder Lake”)
machines for DDR5 experiments, equipped with Gigabyte Z690
AORUS PRO mainboards.
DDR4/5 Test Devices. In Table VII, we list all the DDR4 and
DDR5 DIMMs in our DRAM test pool.



TABLE V: Abbreviations & Symbols. A summary of abbreviations and
symbols we used in our work with a brief description and reference to the
section where it has been introduced.

Abbrv./Symb. Description Ref. (§)

BLSA Bitline Sense Amplifier V-A
DIMM Dual-Inline Memory Module II-A
ECC Error-Correcting Codes II-B
GIO Global I/O V-A
LIO Local I/O V-A
MC Memory Controller X
MC Monte Carlo IX
REM REGA (DRAM) Model V-C
REGA Refresh-Generating Activations IV
RFM Refresh Management (DDR5 Extension) IV
SPD Serial Presence Detect IV
SWD Sub-Word Line Driver V-A
SWL Sub-Word Line V-A
TRR Target Row Refresh II-B

B Blast Diameter II-C
T Period of REGAM parallel refreshes VIII
V No. of shadows rows refreshed in parallel VI-B
ACT A DRAM activation command II-A
PRE A DRAM precharge command II-A
tRAS Min. Row Address Strobe: ACT-to-PRE delay II-A
Rthresh #ACTs req. to trigger bit flips II-C

TABLE VI: Voltage levels used by REM.
Parameter Voltage (V) Description

Vpp 2.5 SWD power supply and overdrive control
Vss 0.0 Ground
Vperi 1.1 Peripherical circuitry voltage
Vdd 1.0 DRAM core voltage and cell’s high value
Vpre 1.5 Control voltage of the precharge circuit
Vod 1.4 Overdrive voltage

APPENDIX E
ENERGY OVERHEAD

Results energy overhead. Figure 16 shows the average energy
overhead per bit depending on the Rowhammer threshold,
compared with ProTRR. Given the recent half-double effect,
REGAM is always convenient for DDR4 and DDR5 for the
threshold in scope. For B = 2, REGAM is comparable to
ProTRR (DDR5) and convenient in current DDR4 technologies.

APPENDIX F
PERFORMANCE OVERHEAD

Figure 18 and Figure 17 show the performance overhead
for V = 2,4,8, for the individual benchmarks of SPEC®2017
on DDR4 and DDR5. As discussed in the paper, V = 1 does
not incur any performance overhead.

APPENDIX G
POWER OVERHEAD

Figure 20 and Figure 19 show the average power overhead
without considering the area overhead. The value is relative to
the baseline power consumption, which depends on the device.
Average power consumptions around 3W are common [29].

APPENDIX H
MITHRIL

In this appendix, we point out vulnerabilities we discovered
in the state-of-the-art in-DRAM mitigation Mithril [39]. Our
analysis is focused on its security and standard compliance.

TABLE VII: Specifications of the DRAM devices in our test pool. Upper
half (Sx): DDR4 SO-DIMMs, lower half (Ux): DDR5 UDIMMs. We report
for each device its DRAM manufacturer (DRAM Manuf.) or “n/a” if there
is no information reported by the DIMM’s SPD chip; its manufacturing date
(Mf. Date), or the date of purchase (†) in case it is not reported by the SPD
chip; the frequency (Freq.); the device’s size (Size); the geometry (Geom.) as
number of ranks/banks; and its default tRAS value. DDR5: Same devices are
same-kit modules.

DIMM DRAM
Manuf.

Mf. Date
(yy-ww)

Freq.
(MHz)

Size
(GiB)

Geom.
(#R, #B)

tRAS
(ns)

S0 SK Hynix 22-31 † 2133 8 1, 16 33.000
S1 Micron 20-41 2400 16 1, 16 29.125
S2 Micron 20-48 3200 8 1, 16 26.250
S3 Samsung 20-47 2666 8 1, 16 32.000
S4 Samsung 20-52 2666 4 1, 8 32.000
S5 Micron 22-31 † 3200 16 1, 16 32.000
S6 Samsung 20-44 2133 4 1, 16 33.000
S7 Micron 20-45 2400 8 1, 16 32.000
S8 Nanya 20-43 2400 8 1, 16 32.000
S9 SK Hynix 22-31 † 2400 16 2, 16 32.000
S10 Samsung 19-34 2666 8 1, 16 32.000
S11 n/a 22-31 † 2666 8 1, 16 32.000
S13 Samsung 22-31 † 2666 16 2, 16 29.250
S14 Micron 22-22 2666 8 2, 16 32.000
S15 Micron 22-21 2666 16 2, 16 32.000
S16 Samsung 22-31 † 3200 8 1, 16 32.000
S17 Micron 22-31 † 3200 32 2, 16 32.000
S18 SK Hynix 21-28 2666 16 2, 16 32.000
S19 SK Hynix 16-25 2133 16 2, 16 33.000
S20 Zentel 22-31 † 2400 4 1, 16 32.000
S21 n/a 22-15 2666 16 2, 16 32.000

U0 Micron 22-04 4800 16 1, 32 32.000
U1 Micron 21-41 4800 16 1, 32 32.000
U2 SK Hynix 22-05 4800 8 1, 16 32.000
U3 Micron 22-07 4800 16 1, 32 32.000
U4 Samsung 21-52 4800 8 1, 16 32.000
U5,6 Micron 21-42 4800 16 1, 32 32.000
U7 Micron 21-49 4800 16 1, 32 32.000
U8 Samsung 22-01 4800 16 1, 32 32.000
U9 Samsung 21-42 4800 16 1, 32 32.000
U10,11 Micron 22-02 † 4800 16 1, 32 32.000
U12,13 Samsung 21-44 † 5600 16 1, 32 32.000
U14,15 SpecTek 21-48 4800 16 1, 32 32.000
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Fig. 16: Energy overhead per bit of REGAM1-8 . Energy overhead related to a
bit for a fixed chip area. In orange, the point of crossing between REGAM and
ProTRR is highlighted. Because REGAM is blast independent, its evaluation
for different Bs is identical and in this figure grouped in a single plot. The
only difference is a shift in Rthresh as described before (§VIII-C).

Missing standard compliance. Mithril is not compliant with
the current DDR5 standard. It proposes using the new RFM
command but fails to adhere to the correct parameters in the
respective JEDEC specification [4]. In particular, the authors
assume and evaluate an RFM command targeting a specific bank.
However, the RFM can only either target all banks (RFMab)
or banks that have the same ID in all bank groups (RFMsb).
Moreover, the standard specifies RFM periods between 32 and
80 with steps of 8. Mithril, however, assumes an arbitrary RFM
period. The standard also requires the bank activation counter
to be decreased at every REF, which is another aspect not
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Fig. 17: Individual performance overhead (DDR5). Performance overhead
for V=2,4,8 for the different benchmarks of SPEC®2017. Geometric mean =
0.8%, 3.7%, 12.7% respectively for V of 2, 4 and 8.
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Fig. 18: Individual performance overhead (DDR4). Performance overhead
for V=2,4,8 for the different benchmarks of SPEC®2017. Geometric mean =
1.6%, 5%, 16% respectively for V of 2, 4 and 8.

considered by Mithril.
Vulnerabilities. Mithril uses wrapping counters that expose
the design to security issues. The counters can be manipulated
to reach MAX-1 for a row a0, where MAX is the maximum
number the counter can hold before wrapping around. Now,
hammering a different row a1 would lead to it being replaced
and subsequently refreshed. At this point, any new hammered
row will replace the new minimum (0), and our victim row a0
will never be picked for a refresh until all the others have been
refreshed before.2 Lastly, the effect of the refresh itself is not
considered in the paper. It has been shown that refreshes can
be used as a vector for exploitation on real-world devices [2],
making the mitigation act as a confused deputy.

2See Appendix I for an update on this vulnerability.
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Fig. 19: Power overhead (DDR5). Average power overhead for REGAM .
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Fig. 20: Power overhead (DDR4). Average power overhead for REGAM .

APPENDIX I
ERRATA CORRIGE

Overheads. We discovered a bug that affected the gem5
simulations, where the L3 cache was configured but not enabled.
L3 caches are present on most desktop and server systems,
while mobile devices might not have an L3 cache. The absence
of L3 increased the memory load and made the original results
a worst-case scenario for REGA. We have rerun all the gem5
simulations with L3 enabled, and the results are presented in
Figures 21 to 27.
Mithril’s wrapping counters. The authors of Mithril [39]
contacted us to clarify the implementation of their wrapping
counters, which we now believe to be secure. However,
Mithril’s authors acknowledged that given the description in
Mithril’s paper, our attack is correct and would work. We want
to thank the authors of Mithril for their clarification.
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Fig. 21: Performance overhead (DDR5) with L3. Average performance
overhead for REGAM1-8 for SPEC®2017 on DDR5.

�������������������������� ������������� �������������

��
�
��
��

��
��

��
�
���

�

�
��
��
��
��

�������������������
��� ��� ��� �� �� ��

Fig. 22: Power overhead per bit (DDR5) with L3. Average power overhead
per bit (for a fixed chip area) for REGAM1-8 .
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Fig. 23: Power overhead (DDR5) with L3. Average power overhead for
REGAM1-8 .

������������������������������

����������������
�������������������

�


�

�






	�
�

����������������������������
�

�������� ��������

��� ��� ��� �� �� ��� ��� ��� �� ��
�������������������

��

Fig. 24: Energy overhead per bit (DDR5 and DDR4) of REGAM1-8 with
L3.
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Fig. 25: Performance overhead (DDR4) with L3. Average performance
overhead for REGAM1-8 for SPEC®2017 on DDR4.
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Fig. 26: Power overhead per bit (DDR4) with L3. Average power overhead
per bit (for a fixed chip area) for REGAM1-8 .
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Fig. 27: Power overhead (DDR4) with L3. Average power overhead for
REGAM1-8 .
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