
RemembERR: Leveraging Microprocessor Errata for Design Testing and Validation

Flavien Solt, Patrick Jattke and Kaveh Razavi
Computer Security Group, ETH Zürich

Abstract—Microprocessors are constantly increasing in com-
plexity, but to remain competitive, their design and testing cycles
must be kept as short as possible. This trend inevitably leads to
design errors that eventually make their way into commercial
products. Major microprocessor vendors such as Intel and AMD
regularly publish and update errata documents describing these
errata after their microprocessors are launched. The abundance
of errata suggests the presence of significant gaps in the design
testing of modern microprocessors.

We argue that while a specific erratum provides information
about only a single issue, the aggregated information from the body
of existing errata can shed light on existing design testing gaps.
Unfortunately, errata documents are not systematically structured.
We formalize that each erratum describes, in human language,
a set of triggers that, when applied in specific contexts, cause
certain observations that pertain to a particular bug. We present
RemembERR, the first large-scale database of microprocessor
errata collected among all Intel Core and AMD microprocessors
since 2008, comprising 2,563 individual errata. Each RemembERR
entry is annotated with triggers, contexts, and observations,
extracted from the original erratum. To generalize these properties,
we classify them on multiple levels of abstraction that describe
the underlying causes and effects.

We then leverage RemembERR to study gaps in design testing
by making the key observation that triggers are conjunctive, while
observations are disjunctive: to detect a bug, it is necessary to
apply all triggers and sufficient to observe only a single deviation.
Based on this insight, one can rely on partial information about
triggers across the entire corpus to draw consistent conclusions
about the best design testing and validation strategies to cover
the existing gaps. As a concrete example, our study shows that
we need testing tools that exert power level transitions under
MSR-determined configurations while operating custom features.

I. INTRODUCTION

What are the bugs that we could not discover before
we sent the microprocessor design for fabrication? This is
probably the most important question that design test engineers
repeatedly ask themselves. The question is not getting any
easier to answer with the ever-increasing complexity of modern
microprocessors [1]. Despite advances in design testing tools
and techniques [2]–[23], we still see plenty of post-production
bugs after new microprocessors are released, indicating that
there exist gaps in design testing and validation. In this paper,
we identify these gaps and propose concrete actions to cover
them by leveraging a new classification based on errata reported
by Intel and AMD.

Design testing and validation. Before a microprocessor is
shipped to customers, it goes through a variety of testing
and validation steps. In the early stages, a design simulation
using random or human-driven inputs may reveal bugs [2],
[16]. Once the design matures, formal verification techniques
ensure the correctness of selected design parts [17]–[19], [24],

[25]. Finally, many bugs can only be found in post-silicon
testing under real-world conditions [26]–[31]. These design
testing and validation methods, unfortunately, do not scale to
the complexity of today’s microprocessor designs [16]. In the
testing steps, the lingering question is whether the test cases are
providing a sufficient coverage [32]–[34]. Similarly, expensive
verification efforts should be targeted to those parts of the
design where critical bugs are likely to lurk.

Microprocessor errata. In response to the discovery of bugs
after production, microprocessors vendors regularly publish
errata documents: human-readable documents containing a list
of errata [15], [35]–[38]. The goal of publishing this list of
defects is to document known bugs and to provide system
designers with workaround guidance where appropriate. The
organization of errata differs across vendors, but the structure
of each erratum entry remains similar. Each erratum, from
both Intel and AMD, includes a description with information
about the conditions under which the bug occurs and a brief
discussion of its implications once triggered. Furthermore, each
entry includes information about the proposed workarounds
and whether or not the bug has been fixed. While the individual
erratum is useful for keeping track of a bug and informing
users about it, we argue that grouping them reveals precious
information that can guide future design testing and validation.

RemembERR. To extract the relevant information from the
errata, we created RemembERR, a comprehensive, annotated
database of all errata of Intel Core and AMD microprocessor
families since 2008, with a total of 2,563 entries. Creating
this database itself presented challenges since the errata are
not machine-readable: (a) they lack an identical structure
between documents, (b) they contain a significant number of
errors such as duplicate entries in the same document, reused
errata numbers, and erroneous Model Specific Register (MSR)
numbers, and (c) a lack of classification and consistency in
notations. To facilitate guiding testing and validation, we create
a new classification of errata for RemembERR. We manually
annotate each RemembERR entry with its necessary triggers,
the contexts to which the bug applies, and the observations
that can be made once the bug is triggered. We call this
level the concrete level of our classification. Although useful,
the concrete level can sometimes be too erratum-specific to
generalize. For example, a particular offset inside a certain
machine-specific register must be written to trigger a bug. To
study causes and effects in an aggregate manner, we further
classify and annotate RemembERR entries at two higher levels
of abstraction, which we call the abstract and class levels.

Equipped with RemembERR, we then study trends to identify
design testing gaps. We make a key observation that in almost



every erratum, trigger conditions are conjunctive, while contexts
and observations are disjunctive. This means that to discover a
bug, all triggers must be activated (e.g., a misaligned load that
causes a page fault), in any of the applicable contexts (e.g.,
in user mode), and observing any behavior deviating from
the expected behavior (e.g., a machine check exception) is
sufficient to detect the bug. This powerful insight allows us to
extract valuable information from aggregated errata, regardless
of how vague each individual erratum may be on its triggers
and/or observations (the contexts are usually clear). Importantly,
this information about triggers, contexts, and observations is
necessary for directing design testing and validation campaigns
to discover bugs that are not currently missed by the existing
tools and techniques.

Our study shows that more than 40% of bugs are uncovered
only when two distinct trigger types are combined. Moreover,
most triggers do not interact with each other, while others
seem to be closely related and together, they bring up new
bugs. Exploiting these interactions is crucial to boost future
design testing and validation of microprocessors and to keep
up with their increasing complexity.

Contributions. We make the following contributions:
• We propose a new classification of design flaws based on

necessary triggers, and sufficient contexts and observa-
tions.

• We create RemembERR, a comprehensive database created
from 2,563 public errata across all 12 first generations of
Intel Core and 13 current AMD microprocessor families.

• Using RemembERR, we study trends in post-production
microprocessor bugs and develop testing and validation
guidelines that relate triggers, contexts, and observations.

Open sourcing. We make the entire RemembERR database, in-
cluding our annotations, publicly available1 so that researchers
and design test engineers can draw conclusions specific to their
goals and automate their tools.

II. BACKGROUND

This section provides some brief background on existing
hardware bug detection techniques (Section II-A) and errata
documents (Section II-B).

A. Bug detection methods

We provide background on the three commonly used
techniques for detecting hardware bugs [16]: simulation, formal
methods, and silicon testing.

Simulation. Design simulation is a traditional testing tech-
nique that is already used early in the design’s development
cycle [16]. During a simulation, the design is given sequences
of inputs. The outputs and the resulting state of the design
are then compared against a golden model [12] or inspected
manually [16], [39]. Modern simulators provide a rich set of
features, such as undefined values (i.e., don’t care values),
signal injection, and various coverage metrics [40]–[42].

1https://github.com/comsec-group/rememberr

Testing with simulation has two major shortcomings. First,
simulation-based testing is extremely slow. Therefore, it can
process only a few inputs in a reasonable time, making it
challenging to reach all possible system states. For example,
the open-source CVA-6 64-bit RISC-V core requires four days
to boot Linux in simulation [43]. We expect more complex
CPUs, tailored towards high performance, to be even more
complex by several orders of magnitude. Simulation becomes
mostly ineffective for complex modern microprocessors without
limiting the test cases to those effective in triggering bugs.
Second, simulation cannot expose issues related to the physical
design, such as timing violations, data loss after power
gating [44], or interaction with real-world peripherals and
memories. Emulation, in spite of being significantly faster,
suffers from the latter shortcoming as well.

Formal methods. Unlike simulation, which may suffer from
limited input coverage, formal verification methods aim to
prove that certain properties always hold given some allowed
inputs. This approach makes it possible to prove correctness for
all expected inputs — achieving completeness. However, these
powerful formal methods have three weaknesses. First, they
typically do not scale to complex designs with many stateful
elements [16], [45]–[47]. Therefore, a typical approach is to
verify only selected design parts while modeling the rest [48]–
[50]. Second, properties may be difficult to express formally,
and there can exist many properties for complex designs [51],
[52]. Third, properties related to power management or other
physical effects may be difficult to reason about [44], [53]–
[56]. As each property is proven exhaustively, quickly rendering
verification time infeasible, the test and validation engineers
must carefully decide which properties to prove.

Silicon testing. Complex bugs often escape traditional pre-
silicon testing and validation [26]–[31], [57]. Therefore, silicon
testing remains a crucial part of design validation, and takes
up to 50% of the testing cost for commercial designs [58].
In contrast to simulation, silicon testing achieves far higher
throughput, but it does not reach the completeness offered
by formal methods. Furthermore, silicon testing makes the
design’s internals inaccessible.

B. Errata

For each design generation (Intel) or family (AMD) of
microprocessors, vendors typically provide a specification
update document, also known as errata, for listing known bugs
after a product has been shipped. When a customer observes
that a microprocessor deviates from its original specification,
they can look through the errata documents to verify whether
it is a known bug. The errata also provide information on
how to avoid triggering unwanted behavior. Notably, the bugs
described in errata documents can no longer be fixed and
remain for the lifetime of the affected microprocessors.

Organization. Following their intended purpose, errata docu-
ments produced by Intel and AMD are human-readable PDF
documents listing the individual bugs. Each erratum has a
title, a description, implications, workarounds, and a status

https://github.com/comsec-group/rememberr


Table I. An erratum for Intel Core 12th generation.
ID: ADL001
Title: X87 FDP Value May be Saved Incorrectly
Description: Execution of the FSAVE, FNSAVE, FSTENV, or FNSTENV
instructions in real-address mode or virtual-8086 mode may save an incorrect
value for the x87 FDP (FPU data pointer). This erratum does not apply if the
last non-control x87 instruction had an unmasked exception.
Implications: Software operating in real-address mode or virtual-8086 mode
that depends on the FDP value for non-control x87 instructions without
unmasked exceptions may not operate properly. Intel has not observed this
erratum in any commercially available software.
Workaround: None identified. Software should use the FDP value saved by
the listed instructions only when the most recent non-control x87 instruction
incurred an unmasked exception.
Status: For the steppings affected, refer to the Summary Table of Changes.

Table II. An erratum for AMD Zen 3 family.
ID: 1361
Title: Processor May Hang When Switching Between Instruction Cache and
Op Cache.
Description: Under a highly specific and detailed set of internal timing
conditions, running a program with a code footprint exceeding 32 KB may
cause the processor to hang while switching between code regions that
consistently miss the instruction cache and code regions contained within
the Op Cache.
Implications: System may hang or reset.
Workaround: System software may contain the workaround for this erratum.
Status: No fix planned.

indicating whether a fix is available for current or future releases
of the same CPU generation or family. Intel released separate
erratum documents for the Mobile and Desktop version of
its Core microprocessors until generation 5. After that, they
released only one document per generation. AMD uses a single
document per CPU family (i.e., per CPU microarchitecture).

Errata examples. We provide two recent errata examples. In
Table I, we show the first erratum for Intel Core 12th generation
CPUs, and in Table II, the most recent erratum for AMD Zen
3 family CPUs.

III. MOTIVATION: LEARN FROM THE PAST

The number of published errata has not significantly de-
creased over time, as we show in Section IV. Strikingly, we will
show that some bugs require years to be reported, while similar
bugs were already found in previous designs. These trends
point to gaps in existing design testing and validation tools
and techniques. A data-driven approach using the information
contained in the errata can shed light on these gaps and provide
directions for covering them.

Accessibility. Each erratum is specific to one bug in a
particular design, complying with a certain Instruction Set
Architecture (ISA). This makes deriving any valuable insights
from a series of individual errata difficult. Further, it does not
incite communities that build and verify other microprocessors
to read and learn from known pitfalls and spots that require
special testing focus. This is becoming increasingly more
important as the complexity of community-driven micropro-
cessors is progressively catching up with their proprietary and

closed-source counterparts [59]–[61]. By aggregating errata
and building an annotated database, we intend to make this
information more accessible than it currently is.

Structure. The way errata are structured is suitable for reading
by an experienced human but is not optimized for automated
data mining. A clear specification of what each field contains
or implies is missing. The useful information is often spread
across the title, description, and implication (and sometimes
workaround) fields, with a high degree of redundancy. This
observation calls for creating and maintaining an improved
erratum structure, scheme and tooling support that would be
more adapted for data mining and to rule out redundancy while
remaining human-readable.

Guiding design testing and validation. In complex CPU
designs, all testing and validation methods must be directed.
Formal methods require knowing the bug type to target and
prioritizing the parts of the design that are most susceptible.
Furthermore, formal properties must be local and specific to
minimize the impact of state explosions. For dynamic methods
such as simulation and silicon testing, it is crucial to know
which input signals to provide in which context and what
effects to expect if a bug is triggered [39], [62]. In Section VI,
we provide an in-depth discussion on how the annotated errata
information can enhance existing validation methodologies.

For example, errata reveal that specific bugs require ongoing
PCIe communication. Is connecting a PCIe device enough
to discover all PCIe-related bugs? Looking at all the errata,
we observe that some PCIe-related bugs require triggering
a reset signal. Furthermore, how can we efficiently observe
whether a bug was triggered? This knowledge of the interaction
between different input types, contexts, and effects is crucial
for maximizing a testing campaign’s efficiency and efficacy.

IV. REMEMBERR

In this section, we introduce RemembERR, an annotated
database of 2,563 errata from AMD and Intel microprocessors.
In Section IV-A, we first describe the scope and our method-
ology. Based on this (yet unannotated) database, we present
essential observations about the current state of microprocessor
errata in Section IV-B.

A. Methodology

Figure 1 presents an overview of our methodology. Our
approach can be summarized into four steps: 1a First, we
acquired the latest errata documents from Intel and AMD,
and 1b analyzed duplicate errata. This already allows us
to make general observations about errata’s current state
(Section IV-B). 2 We then generalized the triggers, contexts,
and observable effects to derive a universal classification
scheme for errata (Section V-A). 3 Using automation, we
classified a portion of the errata, and for the rest, we used
four-eyes manual classification. The result is the annotated
RemembERR database. 4 Lastly, we leveraged RemembERR
to derive novel insights for filling the gaps in existing design
testing and validation (Section V-B).



A

B
RemembERR
(annotated)

RemembERR
(non-annotated)

=?

Classification Scheme

1a

1b

2

3
4

Trg_MBR
_cbr
_pbr
...

Trg_MOP
...

Ctx_PRV
_boo
_vmg
...

Ctx_FEA
...

Eff_HNG
_unp
_hng
...

Eff_FLT
...

Fig. 1. Overview of our methodology.

Table III. Inspected errata documents. Left: Intel Core CPUs,
right: AMD CPUs. (M): Mobile, (D): Desktop.

Intel AMD

Gen. Reference Fam. Models Reference

1 (D) 320836-037US 10h 00-0F 41322-3.84
1 (M) 322814-024US 11h 00-0F 41788-3.00
2 (D) 324643-037US 12h 00-0F 44739-3.10
2 (M) 324827-034US 14h 00-0F 47534-3.18
3 (D) 326766-022US 15h 00-0F 48063-3.24
3 (M) 326770-022US 15h 10-1F 48931-3.08
4 (D) 328899-039US 15h 30-3F 51603-1.06
4 (M) 328903-038US 15h 70-7F 55370-3.00
5 (D) 332381-023US 16h 00-0F 51810-3.06
5 (M) 330836-031US 17h 00-0F 55449-1.12
6 332689-028US 17h 30-3F 56323-0.78
7/8 334663-013US 19h 00-0F 56683-1.04
8/9 337346-002US
10 615213-010US
11 634808-008US
12 682436-004US

Examined documents. We comprehensively examined all the
errata documents listed in Table III. Vendors usually withdraw
errata documents once the processor line is not supported
anymore, which makes finding the errata documents not always
straightforward. We scraped the web thoroughly and took the
most recent findable document for each generation (Intel) or
family (AMD). We examined all the errata from the Intel Core
series and all the errata from AMD CPUs since 2008.

Errata in errata. Errata documents contain many errors
themselves. Examples are two revisions pretending to have
added the same erratum (affects 8 errata across 3 documents),
some errata are never mentioned in the revision notes (affects
12 errata across 2 documents), the same name refers to two
different errata (affects an erratum named AAJ143), there are
missing or duplicate fields in errata (affects 7 errata across 4
documents), or there are errors in the MSR numbers (affects
3 errata across 3 documents). In rare cases, errata may be
repeated inside the same errata document (affects 11 errata
pairs across 6 documents). These errors are a clear indicator
that the writing of errata is a manual process. Humans not only
express errata in a human language, but they also seem to be

responsible for non-systematically (redundantly) distributing
information across errata fields.
Duplicates. As we will show, it is common that two (or
multiple) designs from the same vendor with different release
dates are affected by the same erratum. RemembERR contains
all the duplicates as often as they appear across documents.
This provides useful information about bugs shared among
generations or families. However, to allow filtering for unique
entries, RemembERR features a keying mechanism that assigns
a unique identifier to each cluster of identical errata.

AMD identifies errata across microprocessor families using
a unique numeric identifier: two families are affected by the
same erratum if both have an erratum with the same number in
their corresponding errata document. This mechanism protects
against intra-document duplicates. Besides different errata
numbers, some cases are indistinguishable given the limited
information in the errata’s fields. For example, errata no. 1327
and no. 1329 only differ in their suggested workaround but
may originate from distinct root causes. In total, we collected
506 errata from AMD, of which 385 are unique.

Intel errata documents do not provide a simple way to
identify duplicates across generations. Instead, we base our
duplicate detection on the errata titles. As a first step, we
marked all errata with the same title as duplicates. Extensive
manual inspection of all the candidate duplicates shows that
when the titles are (nearly) identical, all other fields are
identical as well. Except for minor phrasing variations or
slightly different levels of detail. As a second step, we manually
analyzed remaining errata that have not been marked yet as
duplicates, sorted by decreasing title similarity, given that title
similarity is a strong indicator of potential duplicates. We could
manually identify 29 pairs as duplicates. In total, we collected
2,057 errata for Intel, of which 743 are unique.

Because Intel and AMD use different identifiers for their
errata, it is difficult to determine whether a bug is common
between products of these two vendors; at least, we could
not find any occurrence giving strong evidence. Arguably,
Intel and AMD designs are proprietary; hence they might not
share hardware blocks. It is, hence, unlikely for identical bug
instances to occur across vendors.

B. Observations

The data gathered in RemembERR allows us to make several
novel observations about the current state of errata.

1) Timeline: We first analyze the number of reported bugs
accumulated over time. Unfortunately, bug discoveries are not
timestamped; hence, we approximate the timestamp of each
erratum by identifying in which revision of the errata document
it first appeared. We then use the errata document’s release or
update date to approximate the timestamp.

In some cases, the revision summary does not indicate
in which revision a certain erratum was added. Fortunately,
errata are sequentially numbered. Hence, we can approximate
the date by assuming that the subsequent erratum was added
simultaneously. In rare cases, we observed contradicting dates:
revision logs falsely pretend that the same erratum was added



25

50

75

100

125

150

175

200

Core 1 (D)
Core 1 (M)

Core 2 (D)
Core 2 (M)

Core 3 (D)
Core 3 (M)

Core 4 (D)
Core 4 (M)

Core 5 (D)
Core 5 (M)

Core 6
Core 7-8

Core 8-9
Core 10

Core 11
Core 12

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
Disclosure date

0

25

50

75

100 10h
11h

12h
14h

15h-0
15h-1

15h-3
15h-7

16h-0
16h-3

17h-0
17h-3

19h

N
um

be
ro

fd
is

cl
os

ed
er

ra
ta

(c
um

ul
at

ed
)

Fig. 2. Disclosure dates of Intel Core errata (top) and AMD CPU errata (bottom). The y-axis represents the cumulative number
of disclosed errata. The data point represents the errata’s release date.

in two consecutive revisions. In this case, we consider the date
of the earlier of the two revisions as the correct one.

Figure 2 shows the cumulative growth of errata over time,
where duplicate entries are counted individually. We observe
that Intel updates its errata documents significantly more
frequently than AMD. Desktop and mobile processors released
at close dates have very similar curves, for example, Intel Core
2, 3, and 4 during the year 2013. This may suggest that the
same bugs tend to affect multiple generations. In Section IV-B2,
we study this bug transmission effect across design generations
in more detail.

Figure 2 further demonstrates that vendors keep introducing
new bugs into their products. While the latest microarchitectures
seem to be less affected, it is likely that many bugs have not
yet been discovered or reported.

(O1) Observation. The number of reported errata does not
significantly decrease over time with new designs.

All cumulative curves tend to be concave. The more time
passes, the fewer bugs are found in a given period. In most
older designs, the curve stagnates towards the end, where only
very few new bugs are discovered after many years from the
initial release of the CPU, especially for Intel Core designs.
This observation confirms the intuition that finding new bugs
in a design becomes increasingly more difficult or that older
designs are not as rigorously tested anymore compared to newer
designs.

(O2) Observation. The increase in errata for a given design
is usually concave.

2) Heredity: It is known from well-studied bugs such
as Meltdown [63], Foreshadow [64], RIDL [64] and Zom-
bieLoad [65], that different designs may suffer from exactly the
same bug. One cause for this phenomenon may be the reuse of
microarchitectural blocks across design generations. We study

Core
1 (D

)

Core
1 (M

)

Core
2 (D

)

Core
2 (M

)

Core
3 (D

)

Core
3 (M

)

Core
4 (D

)

Core
4 (M

)

Core
5 (D

)

Core
5 (M

)

Core
6

Core
7-8

Core
8-9

Core
10

Core
11

Core
12

Core 1 (D)

Core 1 (M)

Core 2 (D)

Core 2 (M)

Core 3 (D)

Core 3 (M)

Core 4 (D)

Core 4 (M)

Core 5 (D)

Core 5 (M)

Core 6

Core 7-8

Core 8-9

Core 10

Core 11

Core 12

165 87 49 43 35 35 17 17 13 14 6 6 6 6 0 0

125 44 37 29 29 18 18 15 15 4 4 4 4 0 0

130 112 75 75 35 35 27 28 11 11 11 11 0 1

112 61 61 20 20 19 19 7 7 7 7 0 1

114 114 36 36 27 27 11 10 10 10 0 1

117 36 37 28 28 12 11 10 10 0 1

167 165 66 65 29 27 22 26 1 0

177 67 67 30 28 22 26 1 0

120 108 34 31 25 29 2 1

134 37 35 29 32 2 1

187 138 117 116 7 5

153 123 126 9 5

133 113 4 4

130 9 5

30 10

32

Fig. 3. Bug heredity: number of common bugs across Intel
microprocessor generations.

this phenomenon to provide an answer to the questions: (a) How
often are bugs transmitted across generations or families?
(b) Are transmitted bugs rediscovered multiple times?

Transmission. By definition, distinct AMD families have
distinct microarchitectures. Our data corroborates that, as we
find fewer shared errata between AMD families, compared to
Intel Core generations. Furthermore, AMD provides limited
chronological information, as depicted in Figure 2. Hence, we
focus this part of our study on Intel errata.

Figure 3 shows the number of identical errata between pairs
of Intel errata documents. We can observe that Desktop and



2016 2017 2018 2019 2020
Disclosure date

40

60

80

100

N
um

.e
rr

at
a

(c
um

ul
.)

Core 6
Core 7-8

Core 8-9
Core 10

Fig. 4. Disclosure dates of Intel Core errata for bugs that are
shared by all Intel Core generations from 6 to 10.

mobile processors share the vast majority of bugs, matching our
observation of similar curves in Section IV-B1. The processors
that share a substantial part of their microarchitecture are
salient in this diagram, such as Intel Core generations 6 to 10.
Note that if a security bug is discovered only after multiple
generations, an attacker could have exploited it for years
without being uncovered. Therefore, the duration between bug
introduction and discovery is not a suitable proxy for estimating
criticality, especially regarding security. In Figure 3, long non-
zero horizontal lines indicate long-lasting bugs. 6 bugs stayed
from Core 1 to Core 10, and one erratum from Core 2 was
still identified 11 generations later, more than 10 years after
its initial discovery.

(O3) Observation. Bugs are often shared between genera-
tions of microprocessors. Shared bugs may stay for up to
11 generations.

Rediscovery. We conducted a further study to answer the
question: from errata shared between microprocessors, which
proportion was already reported in an earlier generation at the
time of release?

Figure 4 shows the reporting date for the 104 bugs shared
by all Intel Core generations from 6 to 10. This set of bugs
corresponds to a salient region of common bugs in Figure 3.
The first data point corresponds to the release date of each
generation. Clearly, most of the shared design errors were
known before the release of the subsequent generation, some
even many years before.

This raises the question of where bugs are first discovered:
in older designs and then confirmed on more recent ones
(forward), or are they usually first found on more recent designs
and then confirmed on older ones (backward)? While Figure 4
provides a qualitative insight, to answer this question, we define
a forward-latent erratum as an erratum that was reported in one
design and (strictly) later reported in a later design. Similarly,
we say that an erratum is backward-latent if it was reported in
a design (strictly) before being reported in an earlier design.

Figure 5 shows the forward-latent and backward-latent errata
for Intel Core CPUs (again, the AMD errata documents lack
sufficient chronological information for such an analysis).
The salient portion of backward-latent errata around the year
2015 may represent a period at Intel where less resource

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

0

25

50

75

100

N
um

be
ro

fl
at

en
te

rr
at

a

forward-latent
backward-latent

Fig. 5. Forward-latent and backward-latent errata among Intel
Core generations.

was allocated to testing older CPU generations, for example,
to prepare for the release of the Skylake microarchitecture.
The increasing forward-latent numbers typically denote cores
sequences with similar microarchitectures, where a bug has
not been fixed, although it was known before the official CPU
release. The number of forward-latent errata has always tended
to increase, and this trend has accelerated since 2015. Note
that these curves, for the time interval displayed here, may
increase in the future with the rediscovery of more errata in
existing or future Intel Core generations.

These results suggest that either the test and validation cycles
are very long (in order of many years), making it difficult to
react to newly discovered bugs during this phase, or these bugs
are difficult to mitigate without fundamentally changing the
microarchitecture.

(O4) Observation. Most of the design flaws that are shared
between generations were already known before releasing
the subsequent generation.

Observation O4 indicates a correlation between long CPU
development cycles and the difficulty of finding complex bugs.

3) Workarounds: The vendors propose different workaround
types, depending on where the workaround should be applied,
i.e., which actor should (not) perform a specific action to ensure
proper functionality. Based on this, we classify the workarounds
into five categories: BIOS, software, peripherals, absent, and
None. The category absent indicates existing workarounds
without any specific information, such as “Contact [...] for
information on a BIOS update.” Instead of absent, whenever
possible, we classify the workaround into a specific category
even if the exact information is missing. Vendors use an
additional category documentation fixes to describe originally
intended behavior that was wrongly documented. This category
is negligible in size as it represents less than 0.5% of the total
number of errata.

We summarize our results in Figure 6, where identical
errata are merged. The errata that can be mitigated in the
BIOS are arguably the least critical, as long as the mitigation
does not substantially affect performance or security. Errata
requiring conditions in the peripherals or the software are more
challenging to mitigate due to the plethora of legacy hardware
and software. In total, 28.9% (AMD) and 35.9% (Intel) of all



BIO
S/Firm

ware

Soft
ware

Peri
ph

era
ls

Non
e

Abs
en

t
0

20

40

Pr
op

or
tio

n
of

er
ra

ta
(%

)

36.5

23.1

0.8

35.9

0

Intel

BIO
S/Firm

ware

Soft
ware

Peri
ph

era
ls

Non
e

Abs
en

t
0

20

40
31.6

39.8

1.9

28.1

0.8

AMD

Fig. 6. Suggested workarounds of errata by category.

C
or

e
1

(D
)

C
or

e
1

(M
)

C
or

e
2

(D
)

C
or

e
2

(M
)

C
or

e
3

(D
)

C
or

e
3

(M
)

C
or

e
4

(D
)

C
or

e
4

(M
)

C
or

e
5

(D
)

C
or

e
5

(M
)

C
or

e
6

C
or

e
7-

8
C

or
e

8-
9

C
or

e
10

C
or

e
11

C
or

e
12

0

50

100

150

200

N
um

be
ro

fe
rr

at
a

Intel
Fa

m
.1

0h
Fa

m
.1

1h
Fa

m
.1

2h
Fa

m
.1

4h
Fa

m
.1

5h
-0

Fa
m

.1
5h

-1
Fa

m
.1

5h
-3

Fa
m

.1
5h

-7
Fa

m
.1

6h
-0

Fa
m

.1
6h

-3
Fa

m
.1

7h
-0

Fa
m

.1
7h

-3
Fa

m
.1

9h

AMD

No fix
Fix

Fig. 7. Proportion of fixed vs. unfixed bugs.

unique errata do not have any suggested workaround at all.

(O5) Observation. A substantial number of errata do not
have any suggested workaround.

As we discuss soon, this is not because bugs were fixed but
because most bugs are deeply rooted in the design, limiting
possible workarounds.

4) Fixes: In some cases, the vendors fix the root cause of
a bug, as indicated explicitly in dedicated parts of the errata
documents (in dedicated tables or in a status field). Fixes
are distinct from workarounds as the former rules out the
bug from the design completely, while the latter dynamically
aims at preventing the bug from interfering with proper design
functionality. Fixes may require a re-spin of the processor,
which is an update of the CPU’s design masks. We could not
find any requirements driving the decision to fix a bug rather
than proposing a workaround. Most likely, the decision is made
based on the bug’s criticality by considering functionality or
security impact, and also the complexity of fixing the bug.

Figure 7 shows the number of bugs that are fixed in different
designs. Clearly, the vast majority of bugs are never fixed. For
Intel CPUs, there has been a weak trend over the last few
generations toward fixing bugs.

(O6) Observation. Bugs are rarely fixed.

V. CLASSIFICATION

This section introduces an errata classification scheme based
on triggers, contexts, and effects. We start by describing the
methodology we applied to design our classification scheme in

Section V-A, after which we explain the classification scheme’s
categories. Using the classified data, we present new insights
about bugs based on our classification results in Section V-B.

A. Categories

A crucial part of our classification is the definition of concrete
categories. We first made an exploratory pass over the errata
documents to determine appropriate categories for triggers,
contexts, and effects. To make the classification useful for our
intended purpose, we require our concrete categories to be

(a) unambiguous: a category should clearly be distinctive from
other categories to improve our classification’s reliability,

(b) usable: categories should be helpful to guide the design
testing process,

(c) and self-explanatory: a one-sentence description should
be sufficient to understand the category.

For instance, requiring a reset signal to observe faulty behavior
is an unambiguous trigger (i.e., unlikely to be misclassified or
misunderstood). It is a usable trigger because it is necessary
to trigger observable behavior, and it is self-explanatory. If
reset signals are not needed to find some bugs of interest, we
should apply more relevant, directed test cases to increase
effectiveness and close design testing gaps.

1) Classification methodology: In the following, we describe
our systematic approach for designing our errata classification
scheme. After that, we explain how we efficiently classified
the errata consistently and reliably.

Goal. We designed a hierarchical classification scheme that
allows us to seamlessly switch between different levels of
abstraction. These abstraction levels are crucial for making the
necessary observations and recommendations for improving
design testing and validation. If the recommendations are too
precise, methods cannot easily generalize the insights when
looking for new bugs. If they are too abstract, however, then
limited guidance will hamper efficiency and coverage.

Our classification scheme is composed of three levels: the
concrete level, the abstract level, and the class level. We
explain them for the example of triggers. First, the concrete
level represents the exact action that is described in the erratum.
For example, “the core resumes from the C6 power state” is
an action described at the concrete level. Second, the abstract
level represents a slightly higher level of abstraction. As an
example, a transition between core power states is an action
described at the abstract layer. The abstract level is crucial
since design testing and validation tools must achieve generality
to maximize coverage. In the example before, considering
only transitions from the core C6 power state may not catch
unknown bugs that only manifest when transitioning from other
power states. Finally, the class level represents the highest
level of abstraction; in our example, power management is the
representation of the action at the class level. This last level of
abstraction provides even more generality, contributes to better
readability and allows us to make more general conclusions
about the bugs triggered by a particular trigger class.



0 1 2 3 4 5 6
Step

0

200

400

600

800

N
um

be
ro

fe
rr

at
a

Intel

0 1 2 3 4 5 6
Step

0

100

200

300

400

AMD

Fig. 8. Number of errata per errata classification discussion
step.

Methodology. We define the categories for triggers, contexts,
and observable effects in an iterative way. We process all unique
errata to extract concrete triggers, contexts, and observable
effects. For each of them, we check if we already have a
corresponding abstract category. If so, we then label the erratum
with this abstract category; otherwise, we create a new abstract
category, and we check if we have a corresponding class
category. If a corresponding class category exists, we add the
new abstract category to the existing class category; otherwise,
we create a new class category and attach the new abstract
category to it. We provide a detailed overview of class and
abstract categories in Tables IV to VI.

RemembERR is a cross-ISA database as typically, only
items (i.e., triggers, contexts, or effects) at the concrete level
may be ISA-specific. Therefore, RemembERR can naturally
be extended with errata from designs implementing other ISAs
(e.g., POWER, ARM).

Four-eyes classification. Some errata contain expressions that
are specific enough to be classified automatically using regular
expressions into some categories, but many errata-category
pairs require manual analysis for classification. Besides being
time-consuming, manually extracting and annotating such
an immense database of complex items is error-prone. To
significantly improve the reliability of our results, two of
the researchers involved in this work independently classified
the errata. After completing the classification, they discussed
and resolved each mismatch individually. To improve the
classification and clarify our understanding of the categories,
the discussions were made iteratively in seven successive steps
for each design, using the same method but with the next batch
of individually classified errata. Figure 8 shows the cumulative
number of errata in each classification step. Figure 9 shows
the evolution of the agreement of the decisions of the two
humans. Note that, since the AMD errata were classified after
the Intel errata, the data provided in Figure 9 is chronological.
There are multiple reasons for mismatches, notably (i) human
errors as classification is a tedious, long, and difficult process;
(ii) imprecise description of the trigger, contexts, or effects
in errata, leaving room for interpretation; and (iii) ambiguous
classification categories. We note that the agreement percentage
is generally above 80%.

Software-assisted classification. The cumulative number of
categories for triggers, contexts, and observable effects is large:

0 1 2 3 4 5 6
Step

0

20

40

60

80

100

A
gr

ee
m

en
ts

(%
)

Intel

0 1 2 3 4 5 6
Step

AMD

Fig. 9. Percentage of human-classified errata-category pairs
classified identically by both humans before the discussion.

in total, we defined 60 categories. First, we merge identical
unique errata in the decision-making process, resulting in 1,128
remaining errata. This still amounts to 1128× 60 = 67,680
classification decisions per human, even without considering
the discussions for mismatches yet. We measured a typical
average duration of 30 seconds per classification decision,
which amounts to more than 560 hours of high-focus work per
human merely for the individual classification part.

Fortunately, some classes can be automatically filtered out
as irrelevant for a given errata, given the text describing it.
Some others can be automatically said to be clearly relevant
to an erratum. With conservative filtering based on regular
expressions, we could reduce the number of decisions to 2,064
per human in the individual phase. These remaining decisions
are difficult to make automatically and reliably. For example,
if a reset signal is a trigger or an effect in an erratum based on
its description. For guiding the human-based classification, we
designed a syntax highlighting engine with regular expressions
to emphasize parts of the errata descriptions relevant to a
given category. With this tool’s assistance, we could reduce
the amount of pure classification work and discussion to
approximately 30 hours per human in total. We release all code
along with the RemembERR database and envision that such
computer-assisted classification tools will encourage further
contributions to errata classification.

2) Triggers: Inputs that cause an exceptional observable
effect are often not clearly stated or unspecified. At first sight,
this renders the majority of errata unusable as they cannot easily
be reproduced. However, we tackle this major challenge by
designing a trigger classification scheme based on conditions
that are necessary to cause an observable effect. Effectively,
this means we define the required conditions under which
suitable inputs can trigger a certain bug. This new classification
method comes with several benefits. First, it allows deriving
valuable insights even if only a limited amount of information
is available. This makes our scheme especially useful for newer
microprocessors or ISAs where fewer errata are available.
Second, the categories we defined are largely independent
and not exclusive, which allows for a simple estimation of a
bug’s complexity: the more necessary conditions are involved,
the more complex the bug is to trigger. Furthermore, this
classification scheme can easily be augmented in the future
with new trigger classes, if needed.



Table IV. Classification of triggers.

Trg_MBR a data operation on a...
- _cbr cache line boundary.
- _pbr page boundary.
- _mbr memory map boundary such as canonical.

Trg_MOP a memory operation involving...
- _mmp an interact. with a memory-mapped element.
- _atp an atomic/transactional memory operation.
- _fen a memory fence or a serializing instruction.
- _seg a condition on segment modes.
- _ptw a core page table walk.
- _nst translation on nested page tables.
- _flc flushing some cache line or TLB.
- _spe a speculative memory operation.

Trg_FLT related to exceptions and faults
- _ovf a counter overflow.
- _tmr a timer event.
- _mca a machine check exception.
- _ill an illegal instruction.

Trg_PRV related to privilege transitions
- _ret a resume from System Management or OS

mode.
- _vmt a transition between hypervisor and guest.

Trg_CFG related to dynamic configuration
- _pag a paging mechanism interaction.
- _vmc a virtual machine configuration interaction.
- _wrg a configuration register interaction.

Trg_POW related to power states
- _pwc a transition between power states.
- _tht a change in thermal or power supply condi-

tions, or throttling.

Trg_EXT related to external inputs
- _rst a (cold or warm) reset.
- _pci an interaction with PCIe.
- _usb an interaction with USB.
- _ram a specific DRAM configuration.
- _iom an access through the IOMMU.
- _bus system bus (HyperTransport, QPI, etc.).

Trg_FEA related to features
- _fpu floating-point instructions.
- _dbg debug features such as breakpoints.
- _cid design identification (CPUID reports).
- _mon monitoring (MONITOR and MWAIT).
- _tra tracing features.
- _cus other specific features (SSE, MMX, etc.).

In Table IV, we show all the categories for trigger that
we defined on the abstract and class levels. We write class
descriptors as the concatenation of two elements: (i) a prefix
determining whether it refers to a trigger, context, or effect, and
(ii) a suffix determining the class, given the prefix. For example,
the class Trg_EXT consists of all triggers involving external

Table V. Classification of contexts.

Ctx_PRV related to privileges
- _boo booting or being in the BIOS.
- _vmg being a virtual machine guest.
- _rea operating in real mode.
- _vmh being a hypervisor.
- _smm being in SMM.

Ctx_FEA related to features
- _sec security feature enabled (SGX, SVM, etc.).
- _sgc running in a single-core configuration.

Ctx_PHY non-digital conditions
- _pkg package-specific.
- _tmp temperature-specific.
- _vol voltage-specific.

Table VI. Classification of observable effects.

Eff_HNG related to hangs
- _unp an unpredictable behavior.
- _hng a hang of the processor.
- _crh a crash of the processor.
- _boo a boot failure.

Eff_FLT related to faults
- _mca a machine check exception.
- _unc an uncorrectable error.
- _fsp one or multiple spurious faults.
- _fms one or multiple missing faults.
- _fid a wrong fault identifier or order.

Eff_CRP related to corruptions
- _prf a wrong performance counter value.
- _reg a wrong MSR value.

Eff_EXT related to physical outputs
- _pci issues observable on the PCIe side.
- _usb issues observable on the USB side.
- _mmd multimedia issues (e.g., audio, graphics).
- _ram abnormal interaction with DRAM.
- _pow abnormal power consumption.

input (e.g., a PCIe device). We write abstract descriptors as the
concatenation of two elements as well: (i) a prefix determining
the class where the abstract category belongs to, and (ii) a suffix
determining the abstract category, given the prefix. For example,
the abstract category Trg_EXT_rst refers to applying cold
or warm resets.

3) Contexts: Some bugs can only happen in specific settings,
for example, in a virtual machine guest or during BIOS/UEFI
initialization. Bugs that can be provoked from user mode repre-
sent a particular security risk as unprivileged user applications
are usually executed in this mode. Contrary to triggers, contexts
are disjunctive: there may exist multiple contexts in which the
same bug can be triggered. That said, for a given erratum, it
is sufficient to be in any of its contexts to observe the bug. In
Table V, we list all the abstract and class context categories
that we derived from our considered errata.



trg
C

FG
w

rg
trg

PO
W

th
t

trg
PO

W
pw

c
trg

FE
A

cu
s

trg
E

X
T

pc
i

trg
FE

A
db

g
trg

M
O

P
m

m
p

trg
PR

V
vm

t
trg

FE
A

tr
a

trg
C

FG
pa

g
trg

E
X

T
ra

m
trg

FL
T

m
ca

trg
M

O
P

se
g

trg
E

X
T

us
b

trg
M

O
P

at
p

trg
E

X
T

rs
t

trg
FE

A
fp

u
trg

M
O

P
ns

t
trg

C
FG

vm
c

trg
FL

T
ov

f
trg

E
X

T
io

m
trg

PR
V

re
t

trg
E

X
T

bu
s

trg
M

B
R

m
br

trg
FL

T
tm

r
trg

FE
A

ci
d

trg
FE

A
m

on
trg

FL
T

sw
f

trg
M

B
R

cb
r

trg
M

O
P

sp
e

trg
M

B
R

pb
r

trg
M

O
P

fe
n

trg
M

O
P

flc
trg

M
O

P
pt

w

0

5

10

15

A
ff

ec
te

d
er

ra
ta

(%
)

Fig. 10. Most frequent triggers of all errata.

4) Observable Effects: The main objective of our effect
classification is to find an answer to the question: where to
look at when testing a design against an erratum with multiple
observable effects?

In Table VI, we describe all the abstract and class categories
for observable effects that we derived from the errata under
study. Similar to contexts, an erratum’s observable effects
are disjunctive. For example, if a corrupted configuration
register inevitably leads to an unexpected fault, for instance,
because its corruption triggers an exception, then this bug
simultaneously belongs to two effect categories: wrong MSR
value (Eff_CRP_reg) and spurious faults (Eff_FLT_fsp).
There are also cases where an effect is observable in different
ways. To give an example, an operation bringing the CPU to
some incorrect power state can be observed either by reading
a configuration register or by measuring the CPU’s power
consumption.

Only a few bugs can be considered non-critical: criticality
generally depends on the assumptions made by the software
running on the faulty CPU. Therefore, it is necessary to be
conservative in this matter. For example, crashes and hangs are
evidently critical: systems depending on the liveliness of the
CPU would critically suffer. On the other extreme, seemingly
innocuous wrong values in performance monitors could as
well have critical consequences [66], not only on performance
due to incorrect monitoring but also on security, since several
recently proposed security defenses depend on the integrity of
performance counters [67]–[76]. Wrong performance counter
values open exploitable breaches in these defense systems.

B. Insights

In this section, we leverage RemembERR to present new
insights about the most common triggers, contexts, and obser-
vations. To avoid any bias in our analysis, we use RemembERR
with deduplicated (unique) errata.

Triggers. Our analysis starts by studying the most frequent
triggers for Intel and AMD designs. We present the re-
sults in Figure 10. We can see that the most frequent
triggers are either related to specific configurations set
up by writing to model-specific registers (trg_CFG_wrg),
power throttling (trg_POW_tht), or to power state transi-
tions (trg_POW_pwc). More generally, many bugs require
triggers related to power management, virtualization, external
inputs, or features such as debugging or tracing. This suggests
that implementing power management or communicating

1 2 3 4 5 6 7
Number of involved triggers

0

10

20

30

40

Pr
op

or
tio

n
of

er
ra

ta
(%

) 37.9

31.6
28.4

32.6

14.214.6

3.6 4.7
0.9 1.4 0.5 0.4 0.2 0.4

Intel
AMD

Fig. 11. Number of errata by the number of triggers.

trg
C

FG
pa

g
trg

C
FG

vm
c

trg
C

FG
w

rg
trg

E
X

T
bu

s
trg

E
X

T
io

m
trg

E
X

T
pc

i
trg

E
X

T
ra

m
trg

E
X

T
rs

t
trg

E
X

T
us

b
trg

FE
A

ci
d

trg
FE

A
cu

s
trg

FE
A

db
g

trg
FE

A
fp

u
trg

FE
A

m
on

trg
FE

A
tr

a
trg

FL
T

m
ca

trg
FL

T
ov

f
trg

FL
T

sw
f

trg
FL

T
tm

r
trg

M
B

R
cb

r
trg

M
B

R
m

br
trg

M
B

R
pb

r
trg

M
O

P
at

p
trg

M
O

P
fe

n
trg

M
O

P
flc

trg
M

O
P

m
m

p
trg

M
O

P
ns

t
trg

M
O

P
pt

w
trg

M
O

P
se

g
trg

M
O

P
sp

e
trg

PO
W

pw
c

trg
PO

W
th

t
trg

PR
V

re
t

trg
PR

V
vm

t

trg CFG pag
trg CFG vmc
trg CFG wrg
trg EXT bus
trg EXT iom
trg EXT pci
trg EXT ram
trg EXT rst
trg EXT usb
trg FEA cid
trg FEA cus
trg FEA dbg
trg FEA fpu
trg FEA mon
trg FEA tra
trg FLT mca
trg FLT ovf
trg FLT swf
trg FLT tmr
trg MBR cbr
trg MBR mbr
trg MBR pbr
trg MOP atp
trg MOP fen
trg MOP flc
trg MOP mmp
trg MOP nst
trg MOP ptw
trg MOP seg
trg MOP spe
trg POW pwc
trg POW tht
trg PRV ret
trg PRV vmt

11 11 1 7 1 16 10 2 1 6 1 3 2 2 3 5 1 10 28 4 4 2 2 3 17

5 2 10 6 5 1 1 2 1 1 4 11 2 3 1 5 21

6 6 7 16 9 7 1 21 12 2 2 16 4 9 1 9 2 2 11 4 1 21 7 3 6 3 14 27 5 12

7 2 2 1 1 4 13 2

3 1 1 3 1 2 5 4 1

3 4 7 1 5 1 9 13

2 2 3 1 1 9 19

1 2 2 2 4 2 10 16

2 3 1 1 3 1 3 2 1 2 9 2 2 3 2 2

1 1 1 2

13 8 13 8 3 4 1 11 1 1 8 11 1 12 2 5 2 7 16

3 16 2 4 1 2 2 2 4 2 7 2 17 4 2 10 16

1 2 1 2 3 2 2 3 9 1 1 1

2 1 4 9 3 1

3 3 3 8 3 7 1 5 7 5 4 12

4 1 1 1 1 1 4 1 3

2 2 4 7 3 2 1

2 1 4 1 3

13 7 6

1 1 2 2 1 1 1

1 1 1 1 8 2 3

3 1 1

2 6 2 1 1 2 1 1 1

1 1 1

2 1 1 1 1 1

8 4 2 4 9 6 7

1 3 1 3 13

1 2

1 4 12

49 2 2

8

Fig. 12. Pairwise cross-correlation between distinct abstract
triggers. The values represent the number of errata documents
that require at least these two triggers.

with other components (DRAM, memory-mapped components,
peripherals such as PCIe) seems to be particularly challenging,
thus resulting in many bugs. Such inputs correspond to stimuli
that are difficult to supply to simulation or emulation prototypes
that solely rely on the logical operation and that rule out power
or peripheral physical layer considerations. Such bugs seem
to be mostly discoverable by silicon testing. On the contrary,
only five errata for AMD and one for Intel mention that the
bug can only be triggered in simulation.

(O7) Observation. Most errata require specific MSR in-
teraction or configuration combined with throttling, power
state transitions, or peripheral inputs.

Figure 11 shows how many errata have a certain number of
triggers. 14.4% of the errata do not specify any clear trigger or
refer to trivial triggers such as usual load and store operations
or intense workloads, and are therefore excluded from the
figure. Mixing the errata from the two vendors, in total 49%



C
or

e
1

(D
)

C
or

e
1

(M
)

C
or

e
2

(D
)

C
or

e
2

(M
)

C
or

e
3

(D
)

C
or

e
3

(M
)

C
or

e
4

(D
)

C
or

e
4

(M
)

C
or

e
5

(D
)

C
or

e
5

(M
)

C
or

e
6

C
or

e
7-

8

C
or

e
8-

9

C
or

e
10

C
or

e
11

C
or

e
12

0

10

20

30

40

50

60

R
el

at
iv

e
tr

ig
ge

rr
ep

re
se

nt
at

io
n

(%
)

trg CFG
trg EXT

trg FEA
trg FLT

trg MBR
trg MOP

trg POW
trg PRV

Fig. 13. Trigger classes over Intel Core generations.

trg
M

BR

trg
M

OP

trg
FLT

trg
PRV

trg
CFG

trg
POW

trg
EXT

trg
FEA

0

5

10

15

20

Tr
ig

ge
ro

cc
ur

re
nc

es
(%

) Intel AMD

Fig. 14. Relative representation of trigger classes between Intel
and AMD.

of the errata require at least two combined triggers to cause
a faulty behavior. However, we cannot derive whether bugs
involving multiple triggers are rare or have been tested less.
8.7% of Intel and 20.8% of AMD unique errata mention that
a “complex set of conditions” is required to trigger the bug.
We ignored these indications as they are not precise enough to
be exploited reliably.

Figure 12 shows pairwise correlations between triggers
over all examined errata from AMD and Intel. This figure
provides two specific insights: the relevant complex triggers
and their interaction. Triggers typically interacting with other
triggers are visible through highly populated lines. Regarding
concrete interaction, a complex trigger can consist of debug
features (trg_FEA_dbg) and virtual machine state transi-
tions (trg_PRV_vmt), as we can see their intersection is
salient. This insight is crucial for an efficient and thorough
testing campaign. For example, many bugs involving DDR
(trg_EXT_vmt) or PCIe (trg_EXT_pci) will never be
triggered until power levels change.

(O8) Observation. Some abstract triggers tend to correlate
strongly, while most do not.

Figure 13 shows how the trigger classes evolved over
different generations of Intel Core designs. Notably, errata
triggered at memory boundaries (trg_MBR) are absent in the
two latest Intel Core generations. This could be explained
by different reasons: Intel’s testing approach might have
become more rigorous in this direction, or this kind of bug
is now more difficult to find, or they have not yet been
found and reported. Errata triggered by specific features or

trg
EXT

bu
s

trg
EXT

iom

trg
EXT

pc
i

trg
EXT

ram

trg
EXT

rst

trg
EXT

us
b

0

1

2

3

Tr
ig

ge
ro

cc
ur

re
nc

es
(%

)

Intel AMD

Fig. 15. Relative representation of triggers related to external
stimuli between Intel and AMD.

trg
FEA

cu
s

trg
FEA

db
g

trg
FEA

fpu

trg
FEA

mon

trg
FEA

tra

trg
FEA

cid
0

1

2

3

4

Tr
ig

ge
ro

cc
ur

re
nc

es
(%

)

Intel AMD

Fig. 16. Relative representation of triggers related to specific
features between Intel and AMD.

external communication have constantly been dominating.
Without resorting to the former, more than 60% of the known
errata cannot be reproduced in the 10th generation. Errata
triggered by privilege transitions are gaining importance in
the last generation. Importantly, all trigger classes are always
necessary to trigger some bugs, except in the latest two
generations. We additionally note that errata increasingly relate
to specific features (trg_FEA), again, except for the latest
two generations. Arguably, the latter generations may be too
recent to draw conclusions, as we expect more errata to be
released in the coming months and years.

(O9) Observation. It is necessary to apply all trigger
classes to trigger all known bugs.

Figure 14 shows the relative trigger class representation
between Intel and AMD errata. In this figure, for each vendor,
we counted the total number of triggers for all unique errata and
grouped them by the trigger classes. Overall, the representation
of each trigger class is highly similar between the two vendors,
which is interesting given that not only the designs are different,
but also the vendors, testing and validation processes certainly
substantially differ. Only the trigger classes related to external
stimuli and specific features vary significantly between the two
vendors.

(O10) Observation. The representation of trigger classes
over the errata corpora is very similar for Intel and AMD.

Figures 15 and 16 show a more specific analysis of the
two latter trigger classes and clearly indicate the more specific



ct
x

PR
V

vm
g

ct
x

FE
A

se
c

ct
x

PH
Y

tm
p

ct
x

PR
V

bo
o

ct
x

PR
V

sm
m

ct
x

PR
V

vm
h

ct
x

PH
Y

vo
l

ct
x

C
FG

sg
c

ct
x

PH
Y

pk
g

0.0

2.5

5.0

7.5

A
ff

ec
te

d
er

ra
ta

(%
)

6.7

4.6
3.5 3.5

1.8 1.7 1.2
0.4 0.3

Fig. 17. Most frequent contexts of all errata.

ef
f

C
R

P
re

g

ef
f

H
N

G
hn

g

ef
f

H
N

G
un

p

ef
f

C
R

P
pr

f

ef
f

FL
T

m
ca

ef
f

FL
T

fs
p

ef
f

E
X

T
pc

i

ef
f

FL
T

fm
s

ef
f

E
X

T
us

b

ef
f

E
X

T
ra

m

ef
f

E
X

T
m

m
d

ef
f

FL
T

fid

ef
f

FL
T

un
c

ef
f

H
N

G
bo

o

ef
f

H
N

G
cr

h

0

10

20

A
ff

ec
te

d
er

ra
ta

(%
) 19.6

17.3
13.7 13.5

8.7 7.9 7.4 6.7
4.5 4.3 4 3.2 2.5 1.2 1.2

Fig. 18. Most frequent effects for all errata.

differences between Intel and AMD errata. Concerning the
triggers related to external stimuli, it is important to note that
some CPUs offload certain peripheral functionalities to an
external chipset whose errata are not necessarily included in
the documents under study. Concerning the triggers related
to specific features, we observe a clear overrepresentation of
triggers related to custom features and tracing features in Intel
compared to AMD.

Contexts. In the next step of our study, we want to determine
the context that most of the bugs require. Similar to the triggers,
this knowledge is crucial for efficiently testing designs as
certain bugs may only occur in specific contexts.

Figure 17 shows the most frequent contexts among Intel
and AMD errata. Our data shows that running from within
a virtual machine (ctx_PRV_vmg) is particularly prone to
bugs. An explanation for this could be that today’s hardware
virtualization extensions (e.g., Intel’s VT-x or AMD’s SVM)
are complex and deeply rooted in the CPU’s design, making
their rigorous testing more challenging.

(O11) Observation. Most errors occur in the context of
hardware support for virtual machine guests.

Effects. Next, we investigated which effects are the most
valuable indicators for determining whether a bug was triggered.
Figure 18 shows the most frequent observable effects in
Intel and AMD designs. Most bugs manifest themselves as a
corrupted register (eff_CRP_reg), a hang (eff_HNG_hng),
or an unpredictable behavior (eff_HNG_unp). While an
unpredictable behavior is not clear (vendors do not provide
more information in these cases), the first two cases can easily
be observed and may provide useful indicators for discovering
new bugs.

M
C

x
ST

A
T

U
S

M
C

x
A

D
D

R

IB
S

O
P

D
A

TA
x

IB
S

FE
T

C
H

C
T

L

C
PU

ID
PW

R
T

H
E

R
M

PE
R

F
L

E
G

A
C

Y
C

T
L

3

PE
R

F
L

E
G

A
C

Y
C

T
L

0

IB
S

O
P

C
T

L

B
R

IN
ST

R
E

T
IR

E
D

R
T

IT
ST

A
T

U
S

0

2

4

6

A
ff

ec
te

d
er

ra
ta

(%
)

6.9

1.6 1.2 1.2 0.9 0.8 0.8 0.8 0.6 0.6

Intel

M
C

x
ST

A
T

U
S

M
C

x
A

D
D

R

IB
S

O
P

D
A

TA
x

IB
S

FE
T

C
H

C
T

L

PE
R

F
L

E
G

A
C

Y
C

T
R

IB
S

O
P

C
T

L

H
W

C
R

M
C

x
M

IS
C

PS
ta

te
D

ef

M
C

x
C

T
L

4.2

2.9
1.9 1.6 1.3 1.1 1.1 1.1 0.8 0.5

AMD

Fig. 19. Most frequent MSR containing observable effects for
Intel and AMD.

(O12) Observation. Corrupted registers and hangs are the
most common observable effect on Intel and AMD designs.

Model Specific Registers. Based on our previous observation
that corrupted registers are the most common observable
effect, we wanted to know which registers provide information
about unexpected behavior. Figure 19 shows the most frequent
observable effects in Intel and AMD designs. For both
vendors, the machine check status registers (MCx_STATUS
and MCx_ADDR) witness a bug in most cases (7.1% to 8.5%
of all unique errata), followed by Instruction Based Sampling
(IBS) registers and performance counters.

(O13) Observation. Among MSRs, Machine Check Status
Registers most often indicate a bug’s occurrence.

In summary, we designed a new hierarchical errata clas-
sification scheme that helps underlining new insights about
reported bugs in complex designs. In Section VI, we concretely
discuss how these insights may lead to improvements in design
validation methodologies and toolchains.

VI. APPLICATIONS TO DESIGN TESTING

In this section, we answer two questions. First, why do
design testing and validation tools and methodologies, widely
used in the industry, fail at detecting bugs reported in errata?
Second, how would they benefit from RemembERR to detect
past, present, and future bugs? We focus on how Remem-
bERR can improve different families of testing and validation
methodologies rather than focusing on specific tools, given that
vendors often make use of in-house tools [17].

A. Dynamic methods

Dynamic methods consist of applying inputs to a simulated,
emulated, or physical (manufactured) design and verifying
compliance of signals with a specification or expected values.
While simulation [39]–[42], [77] and emulation [78], [79] are
useful to find simple bugs early in the design process, silicon
testing is necessary to find many complex bugs [26]–[30].
Two major challenges when looking for bugs with dynamic



methods are the immense input space and the vast observation
space, where state observation may interfere with attempts to
trigger bugs. In both cases, RemembERR offers potential for
improvement.

Challenge: input space. CPUs usually have many pins and
take sequential inputs over many cycles until a bug is eventually
triggered; therefore, an exhaustive exploration is infeasible. A
common response to this challenge is Constrained Random
Verification (CRV) [2]. CRV applies a series of input signals
that comply with a set of constraints, such as respecting a bus
protocol. However, while this method can find shallow bugs in
common design paths, the probability of triggering complex
bugs is comparatively small.

Today’s fuzzers have not settled on seed input corpora or
a way to generate them. For example, RFUZZ [13] requires
that “only some parameters to the fuzzer, such as the mutation
technique and seed inputs to use, need to be specified by the
user.”. While reference [80] pretends to improve over the state
of the art using an empty seed file, some successful experiments
were seeded with some input sequences that stress interesting
design features. DifuzzRTL [81] does not specify how it
chooses its initial seed corpus, while HyperFuzzing [82] only
vaguely says that it requires “an initial pool of inputs for the
fuzzer seeded with a few interesting behaviors.” TheHuzz [12]
takes its configuration instructions statically from existing
codebases, does not target specific functionalities, and samples
its test instructions uniformly. Therefore, the young movement
toward fuzzing hardware designs will seemingly profit from a
more carefully selected initial input corpus.

Active research has targeted input generation for the
pre-silicon phase [3]–[9], [20]–[23], [83]–[89], but it does
not extend to emulation or silicon testing. Therefore, input
generation for emulation or silicon testing is still an open
problem. RemembERR provides the best possible solution
that does not require modifying the design in silicon. This
is a significant advantage as modifying physical design is an
enormous effort and ends up not testing the original design
in all aspects. RemembERR precisely indicates which sets of
inputs empirically interact and could trigger bugs, as shown
in Figure 12. This knowledge can then be integrated into
automatic dynamic testing of an emulated or manufactured
design, taking the best of both worlds: targeted inputs and high
execution speed under real-world conditions.

Challenge: observation space. A too frequent and exhaustive
observation can have detrimental effects. RemembERR pro-
vides empirical observation points that indicate CPU malfunc-
tions and correlates them with the set of input types provided.
This enables a much more fine-grained observation strategy,
where the observation footprint is minimal.

In simulation, an excessive observation causes a longer
run time. In emulation and silicon testing, the observation
challenge becomes critical because almost all observations must
be performed online, e.g., by reading performance counters.
Excessive observations not only reduce testing performance
but also hinder triggering bugs because heavy inspection may

prevent timing-sensitive bugs from happening.
Besides, recent fuzzing work would benefit from enhanced

observation heuristics. RFUZZ [13] is incapable of discovering
any bug on its own [12] as it does not compare its state with any
reference. Authors of TheHuzz [12] confirmed that directing
observations is one major challenge for a synthesizable porting
of their simulator-based testing system. DifuzzRTL [10] relies
on a golden model implemented in software and may benefit
from limiting its observation volume as well. Knowledge about
which design parts to observe, in correlation with the supplied
inputs, has the potential to empower such new fuzzer proposals.

Runtime detection. Previous work proposes inserting pervasive
CPU modifications for online bug detection [14], [15], [36],
[37]. They are all data-driven, and in particular, each work
performed an ad-hoc partial and non-systematic errata study.
RemembERR provides all the necessary data to strengthen
these systems and foster future work in this area without
requiring researchers to conduct time-consuming errata studies
repetitively.

B. Formal methods

Formal methods statically analyze a design along with
properties that are usually specified manually [16]. For instance,
Formal Property Verification (FPV) [17], [18], [24], [90], [91]
ensures that a set of assertions is never violated in a given
design. This technique is often used in two design testing
stages [19]: (a) after thorough CRV to validate corner cases, and
(b) when a silicon bug happens that has not been detected before.
Another instance of a formal method is Secure Path Verification
(SPV) [90]–[94], which checks for unexpected information
flows across designs, therefore allowing for design-global
policies that are otherwise difficult to express with classical
assertions. Formal methods are subject to state explosion and
require a manual definition of the policies.

Challenge: state explosion. A common approach for tackling
the state explosion problem [16], [45]–[47] is to treat parts of
the design as a “black box” and replace them by a model [25].
However, this limits the validation to properties specific to
those parts that are not black-boxed [16]. An interesting yet
unaddressed challenge is choosing the subset of the design that
can be black-boxed to find a given class of bugs.

RemembERR provides a large amount of empirical data
for identifying modules that typically interact with each other
and could cause bugs. Our most immediate observation is that
power management modules seem to have been vastly excluded
from the parts of the design that are formally verified. We argue
that the input correlation knowledge provided by RemembERR
will substantially help to scope black-boxing more suitably.

Challenge: handwritten policies. Policies and assertions
are usually hand-written, for example, as SystemVerilog
assertions [95] or in Property Specification Language [96].
This process is manual and error-prone, and to the best of our
knowledge, no existing work proposed a way to resolve it.



RemembERR provides the necessary data to foster research
in automatic data-driven policy generation for formal verifica-
tion.

C. Manual inspection

Manual inspection is integral to design validation [16] but is
challenging for complex designs and bugs of interest. Without
any knowledge of common errors, manual inspection is deemed
to fail. For example, an engineer responsible for testing a
memory controller will benefit from the dozens of concrete
bug instances that happened in the past and in other designs
to ensure that they do not repeat. However, the current state
of RemembERR is limited by the black-box nature of errata
as they are published today. A description of the root cause
associated with each erratum would provide enormous help
in empirically distinguishing safe from dangerous hardware
design practices.

VII. DISCUSSION

We discuss selected observations we made while creating
and interpreting RemembERR and provide further information
for its future users.

Patchable errors. The errata documents do not show all known
errors present in CPUs when they are released. Two classes of
bugs are missing. First, bugs that are patchable by microcode
updates. Such updates are usually not documented but can be
reverse-engineered [97]. Second, bugs that are no longer valid,
e.g., because a re-spin has been released and the older version
is no longer officially supported. Errata of this type (about 2%)
are listed in the summary of errata documents, but details (e.g.,
the description) remain hidden.

Other microprocessor vendors. Intel and AMD are not the
only major vendors of complex microprocessors that provide
errata for their designs. ARM, for example, does so as well.
We focused our work on Intel and AMD because they produce
their design entirely from scratch, without relying on other
vendors of major blocks (e.g., complete cores). Therefore, we
expect these errata to be the most insightful as the vendors
control the whole design process chain. Besides that, Intel and
AMD microprocessors have a long history of designs, which
gives us access to valuable long-term data.

Learning from the past. The entire corpus of errata that we
analyzed relies exclusively on bugs that have already been
discovered, albeit some of them more recently. Therefore,
our analysis cannot tell much about yet undiscovered bug
classes and trigger-context-effect correlations. However, in
Section IV we showed that bugs are sometimes rediscovered
years apart, suggesting that industrial testing and validation
methods can still gain rigor from our analysis. For example,
our findings may help direct testing efforts to specific areas
(i.e., contexts) that are known to be most affected by bugs. The
efficiency of design testing can be improved by focusing on
the most common triggers of these areas and the components
where they typically have an observable effect. In addition,
the growing open-source microprocessor community will learn

Table VII. An erratum in the proposed format.
ID: [Some unique identifier shared with identical errata in other designs]
Title: x87 FDP Value May be Saved Incorrectly
Triggers:

Abstract: Trg_FEA_fpu
Concrete: Execution of FSAVE, FNSAVE, FSTENV, or FNSTENV

Contexts:
Abstract: Ctx_PRV_rea
Concrete: Operating in real-address mode or virtual-8086 mode

Effects:
Abstract: Eff_HNG_unp
Concrete: Incorrect value for the x87 FDP

Comments: This erratum does not apply if the last non-control x87 instruction
had an unmasked exception.
Root cause: [Here, an explanation of the root cause may be provided]
Workaround: None identified.
Status: No fix.

tremendously from the errors of their more mature siblings,
which will help in preventing similar mistakes.
Recommendations for errata formatting. Current errata
documents are formatted for humans, and given the mistakes
present in the documents, it is likely that vendors do not have
any form of a systematic knowledge base for erratum storage
and analysis. One vendor has confirmed not having such a
database, and that their only source of errata knowledge is the
errata documents and the employees’ experience.

We propose a new format for errata descriptions, as exem-
plified by the transformation of Table I into Table VII, because
the current state of the art for errata description (composed of
a title, a problem description, implications, workarounds, and
a status field) is unsatisfying for systematic analysis.
Root cause. The root cause information is currently absent
from almost all errata. One CPU vendor confirmed that triggers
and effects are intentionally left inaccurate to avoid revealing
design details, therefore there is limited hope for root cause
publication but such databases may be maintained internally.
With information on root causes, an errata database would go
one step further than RemembERR by providing empirical data
correlated with triggers, contexts and effects for identifying
root causes, which is known to be a difficult problem [27], [29],
[30], [33], [98]. Root cause information would additionally
first underline which design parts are the most difficult to
implement correctly and what are the most common mistakes.

VIII. RELATED WORK

Following, we present existing work that examines pub-
lic CPU bug information (Section VIII-A). Afterward, we
introduce previous work that improves silicon testing (Sec-
tion VIII-B).

A. Errata-based

Tables VIII and IX summarize work that studied errata
from open-source and commercial CPUs, respectively. Previous
work provides fragmented information extracted from errata to
provide a classification that justifies a specific approach that
solves a given problem. Unlike RemembERR, none provides



Table VIII. Summary of work that examined errata in open-source CPUs.

Year Errata Criteria Goal

Constantinides et al. [14] 2008 296 (OpenSPARC) Type Programmable module to react to errata online
Miroslav et al. [99] 2003 280 (students) Type Design a testing flow capable of catching errors
Van Campenhout et al. [98] 2000 Students & research Type Recommendations for end users

Table IX. Summary of work that examined errata in commercial CPUs.

Year Errata Criteria Goal

RemembERR 2022 2,563 Triggers, contexts, effects Provide support for data-driven design testing
Hicks et al. [15] 2015 301 Severity Monitor hardware security invariants
Wagner et al. [38] 2008 37 Location Find internal signals corresponding to bugs
Narayanasamy et al. [37] 2006 172 Type, severity Programmable module to react to errata online
Sarangi et al. [36] 2006 470 Location, severity Programmable module to react to errata online
Avižienis et al. [35] 1999 535 Location, severity Taxonomy for dependable systems
Wichmann [100] 1993 – – Recommendations for end users

clear insights on representative bug triggers and effects in
modern CPUs. Insights from RemembERR are exploitable for
future research in design testing and validation.

B. Directed silicon testing

There are two directions aiming to improve inputs and
observations for silicon testing.

Eliminating the golden model. Golden models are a bottle-
neck for silicon testing. Wagner et al. [32] propose to use
complementary pairs of instruction blocks to ensure that the
CPU’s architectural state is left untouched after execution if
no bug has been triggered on the CPU. Foutris et al. [34]
identify equivalences between instructions from different ISAs
to compare executions on largely different CPUs.

Bug observability. In some cases, it is difficult to triage a
bug. Lin et al. [33], [101] propose methods to transform
an instruction sequence to accelerate the observability of a
triggered bug. Farahmandi et al. [102] propose an observability
measure consisting of test sequences.

RemembERR is complementary to and compatible with
these directions by providing insights for more effective input
generation and guidelines about the elements to observe for
efficient testing.

IX. CONCLUSION

We analyzed 2,563 errata from all Intel Core and AMD
CPUs since 2008. Individually, these errata provide little insight
other than a description of a particular bug, but collectively
they provide insightful information about gaps in current
design testing and validation practices. To this end, we built
RemembERR, a large-scale database of annotated errata. We
solved the challenge of unclear triggers by the observation that
triggers are almost always conjunctive. In contrast, contexts and
effects are disjunctive: observing the most convenient location
is sufficient. In our analysis using RemembERR, we discovered
the most common triggers, contexts, and effects in errata, which
we then correlated to provide concrete guidelines for the next
generation of design testing and validation tools.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their valuable feedback. This work was supported by a
Microsoft Swiss JRC grant, the Swiss State Secretariat for
Education, Research and Innovation under contract number
MB22.00057 (ERC-StG PROMISE), and the Swiss National
Science Foundation under NCCR Automation, grant agreement
51NF40 180545.

X. ARTIFACT APPENDIX

A. Abstract
Our artifacts include the annotated RemembERR database

along with the source code used to build and annotate it. We
also provide code of all experiments described in this paper, and
provide a Docker image to make reproducing the results easier.
Further, we added an example script to encourage readers to
write their own queries. Note that generating RemembERR
from scratch is a lot of work: parsing and annotating involved
tens of hours of high-focus work for two humans. Reproducing
the experiments is quick (<1 h).

The Readme.md file in our repository contains detailed
instructions.

B. Artifact check-list (meta-information)
• Data set: The RemembERR database
• Run-time environment: Python3
• Hardware: Any Linux machine
• Output: Figures and numbers
• Experiments: All data shown in the paper
• How much disk space is required? ≈3 GB (including the

software dependencies)
• How much time is needed to prepare workflow: <1h
• How much time is needed to complete experiments: <1h
• Publicly available?: Yes
• Code licenses (if publicly available)?: GPLv3
• Data licenses (if publicly available)?: GPLv3
• Workflow framework used?: Luigi (Python-based, pip package)
• Archived?: https://doi.org/10.5281/zenodo.7011959

C. Description
1) How to access: https://github.com/comsec-group/reme

mberr

https://github.com/comsec-group/rememberr
https://github.com/comsec-group/rememberr


2) Hardware dependencies: None.
3) Software dependencies: We provide instructions for

Ubuntu. The apt dependencies are the following:
build-essential
libpoppler-cpp-dev
software-properties-common
python3.8-dev
libgl1
libglib2.0-0
software-properties-common
git
cm-super
dvipng
texlive-latex-extra
texlive-fonts-recommended
python3.8
python3-pip
python3-distutils
python3-apt

The pip dependencies are the following:
camelot-py==0.10.1
colorama==0.4.4
luigi==3.0.3
numpy==1.22.3
openpyxl==3.0.9
pandas==1.4.2
pdftotext==2.2.2
pikepdf==5.1.1
readchar==3.0.5
matplotlib==3.5.1
opencv-python==4.5.5.64

See Readme.md or requirements.txt in our reposi-
tory for details.

4) Data sets: RemembERR (provided as part of our arti-
facts).

5) Models: None.

D. Installation

Clone the repository and install the apt and Python depen-
dencies. You may use a Python virtual environment:

python3 -m venv /.venv/rememberr
source /.venv/rememberr/bin/activate

Alternatively, you may find all tools preinstalled in the
Docker image that we provide.

E. Experiment workflow

Follow the instructions in Readme.md.

F. Evaluation and expected results

Numbers will be provided in stdout and figures in the
directory specified in Readme.md.

G. Experiment customization

We provide an example custom script that bootstrap the
learning process of how to use the database for custom analyses.
Please refer to Readme.md.

H. Notes

None.

I. Methodology

Submission, reviewing and badging methodology:
• https://www.acm.org/publications/policies/artifact-

review-badging
• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html

REFERENCES

[1] A. Danowitz, K. Kelley, J. Mao, J. P. Stevenson, and M. Horowitz,
“Cpu db: Recording microprocessor history: With this open database,
you can mine microprocessor trends over the past 40 years.” Queue,
vol. 10, no. 4, pp. 10–27, 2012.

[2] A. B. Mehta, Constrained Random Verification (CRV). Springer, 2018.
[3] A. Adir, E. Almog, L. Fournier, E. Marcus, M. Rimon, M. Vinov,

and A. Ziv, “Genesys-pro: innovations in test program generation for
functional processor verification,” IEEE Design & Test of Computers,
vol. 21, no. 2, pp. 84–93, 2004.

[4] A. Ahmed and P. Mishra, “Quebs: Qualifying event based search in
concolic testing for validation of rtl models,” in 2017 IEEE International
Conference on Computer Design (ICCD), 2017, pp. 185–192.

[5] A. Ahmed, F. Farahmandi, and P. Mishra, “Directed test generation
using concolic testing on rtl models,” in 2018 Design, Automation &
Test in Europe Conference & Exhibition (DATE). IEEE, 2018, pp.
1538–1543.

[6] M. Chen, P. Mishra, and D. Kalita, “Automatic rtl test generation from
systemc tlm specifications,” ACM Transactions on Embedded Computing
Systems (TECS), vol. 11, no. 2, pp. 1–25, 2012.

[7] M. Chen, X. Qin, H.-M. Koo, and P. Mishra, System-level validation:
high-level modeling and directed test generation techniques. Springer
Science & Business Media, 2012.

[8] L. Liu and S. Vasudevan, “Efficient validation input generation in rtl
by hybridized source code analysis,” in 2011 Design, Automation &
Test in Europe. IEEE, 2011, pp. 1–6.

[9] E. Sadredini, R. Rahimi, P. Foroutan, M. Fathy, and Z. Navabi,
“An improved scheme for pre-computed patterns in core-based soc
architecture,” in 2016 IEEE East-West Design & Test Symposium
(EWDTS). IEEE, 2016, pp. 1–6.

[10] S. Nilizadeh, Y. Noller, and C. S. Pasareanu, “Diffuzz: differential
fuzzing for side-channel analysis,” in 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE). IEEE, 2019, pp. 176–187.

[11] T. Li, H. Zou, D. Luo, and W. Qu, “Symbolic simulation enhanced
coverage-directed fuzz testing of rtl design,” in 2021 IEEE International
Symposium on Circuits and Systems (ISCAS). IEEE, 2021, pp. 1–5.

[12] A. Tyagi, A. Crump, A.-R. Sadeghi, G. Persyn, J. Rajendran, P. Jauernig,
and R. Kande, “Thehuzz: Instruction fuzzing of processors using golden-
reference models for finding software-exploitable vulnerabilities,” in
31st USENIX Security Symposium (USENIX Security 22), 2022.

[13] K. Laeufer, J. Koenig, D. Kim, J. Bachrach, and K. Sen, “Rfuzz:
Coverage-directed fuzz testing of rtl on fpgas,” in ICCAD). IEEE,
2018, pp. 1–8.

[14] K. Constantinides, O. Mutlu, and T. Austin, “Online design bug
detection: Rtl analysis, flexible mechanisms, and evaluation,” in 2008
41st IEEE/ACM International Symposium on Microarchitecture. IEEE,
2008, pp. 282–293.

[15] M. Hicks, C. Sturton, S. T. King, and J. M. Smith, “Specs: A
lightweight runtime mechanism for protecting software from security-
critical processor bugs,” in Proceedings of the Twentieth International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2015, pp. 517–529.

https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html


[16] G. Dessouky, D. Gens, P. Haney, G. Persyn, A. Kanuparthi, H. Khattri,
J. M. Fung, A.-R. Sadeghi, and J. Rajendran, “{HardFails}: Insights
into {Software-Exploitable} hardware bugs,” in 28th USENIX Security
Symposium (USENIX Security 19), 2019, pp. 213–230.

[17] L. Fix, “Fifteen years of formal property verification in intel,” 25 Years
of Model Checking, pp. 139–144, 2008.

[18] L. Fix and K. McMillan, “Formal property verification,” in EDA for IC
System Design, Verification, and Testing. CRC Press, 2018, pp. 20–1.

[19] D. S. Vincenzoni, “Formal property verification: A tale of two methods,”
https://www.edn.com/formal-property-verification-a-tale-of-two-
methods/, accessed: 2022-06-21.

[20] M. R. Fadiheh, J. Urdahl, S. S. Nuthakki, S. Mitra, C. Barrett, D. Stoffel,
and W. Kunz, “Symbolic quick error detection using symbolic initial
state for pre-silicon verification,” in 2018 Design, Automation & Test
in Europe Conference & Exhibition (DATE). IEEE, 2018, pp. 55–60.

[21] E. Singh, K. Devarajegowda, S. Simon, R. Schnieder, K. Ganesan,
M. Fadiheh, D. Stoffel, W. Kunz, C. Barrett, W. Ecker et al.,
“Symbolic qed pre-silicon verification for automotive microcontroller
cores: Industrial case study,” in 2019 Design, Automation & Test in
Europe Conference & Exhibition (DATE). IEEE, 2019, pp. 1000–1005.

[22] K. Ganesan, F. Lonsing, S. S. Nuthakki, E. Singh, M. R. Fadiheh,
W. Kunz, D. Stoffel, C. Barrett, and S. Mitra, “Effective pre-silicon
verification of processor cores by breaking the bounds of symbolic
quick error detection,” arXiv preprint arXiv:2106.10392, 2021.

[23] V. M. Suryasarman, S. Biswas, and A. Sahu, “Automation of test
program synthesis for processor post-silicon validation,” Journal of
Electronic Testing, vol. 34, no. 1, pp. 83–103, 2018.

[24] Cadence, “Jasper fpv app,” https://www.cadence.com/en US/home/too
ls/system-design-and-verification/formal-and-static-verification/jasper-
gold-verification-platform/formal-property-verification-app.html,
accessed: 2022-06-21.

[25] O. Demir, W. Xiong, F. Zaghloul, and J. Szefer, “Survey of approaches
for security verification of hardware/software systems.” IACR Cryptol.
ePrint Arch., vol. 2016, p. 846, 2016.

[26] A. Adir, M. Golubev, S. Landa, A. Nahir, G. Shurek, V. Sokhin,
and A. Ziv, “Threadmill: A post-silicon exerciser for multi-threaded
processors,” in Proceedings of the 48th Design Automation Conference,
2011, pp. 860–865.

[27] O. Friedler, W. Kadry, A. Morgenshtein, A. Nahir, and V. Sokhin,
“Effective post-silicon failure localization using dynamic program
slicing,” in 2014 Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, 2014, pp. 1–6.

[28] H. D. Foster, “Trends in functional verification: A 2014 industry study,”
in Proceedings of the 52nd Annual Design Automation Conference,
2015, pp. 1–6.

[29] J. Keshava, N. Hakim, and C. Prudvi, “Post-silicon validation challenges:
How eda and academia can help,” in Design Automation Conference.
IEEE, 2010, pp. 3–7.

[30] D. Lin, E. Singh, C. Barrett, and S. Mitra, “A structured approach to
post-silicon validation and debug using symbolic quick error detection,”
in 2015 IEEE International Test Conference (ITC). IEEE, 2015, pp.
1–10.

[31] D. Josephson, “The good, the bad, and the ugly of silicon debug,” in
Proceedings of the 43rd annual Design Automation Conference, 2006,
pp. 3–6.

[32] I. Wagner and V. Bertacco, “Reversi: Post-silicon validation system for
modern microprocessors,” in 2008 IEEE International Conference on
Computer Design. IEEE, 2008, pp. 307–314.

[33] D. Lin, T. Hong, F. Fallah, N. Hakim, and S. Mitra, “Quick detection
of difficult bugs for effective post-silicon validation,” in DAC Design
Automation Conference 2012. IEEE, 2012, pp. 561–566.

[34] N. Foutris, D. Gizopoulos, M. Psarakis, X. Vera, and A. Gonzalez,
“Accelerating microprocessor silicon validation by exposing isa
diversity,” in Proceedings of the 44th Annual IEEE/ACM International
Symposium on Microarchitecture, ser. MICRO-44. New York, NY,
USA: Association for Computing Machinery, 2011, p. 386–397.
[Online]. Available: https://doi.org/10.1145/2155620.2155666

[35] A. Avizienis and Y. He, “Microprocessor entomology: a taxonomy of
design faults in cots microprocessors,” in Dependable Computing for
Critical Applications 7, 1999, pp. 3–23.

[36] S. R. Sarangi, A. Tiwari, and J. Torrellas, “Phoenix: Detecting and
recovering from permanent processor design bugs with programmable
hardware,” in 2006 39th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO’06). IEEE, 2006, pp. 26–37.

[37] S. Narayanasamy, B. Carneal, and B. Calder, “Patching processor design
errors,” in 2006 International Conference on Computer Design. IEEE,
2006, pp. 491–498.

[38] I. Wagner, V. Bertacco, and T. Austin, “Using field-repairable control
logic to correct design errors in microprocessors,” IEEE Transactions
on computer-aided design of integrated circuits and systems, vol. 27,
no. 2, pp. 380–393, 2008.

[39] F. Solt, B. Gras, and K. Razavi, “Cellift: Leveraging cells for scalable
and precise dynamic information flow tracking in rtl,” in 31st USENIX
Security Symposium (USENIX Security 22), 2022, pp. 2549–2566.

[40] Siemens, “Modelsim,” https://eda.sw.siemens.com/en-US/ic/modelsim/,
accessed: 2022-06-21.

[41] Synopsys, “Vcs,” https://www.synopsys.com/verification/simulation/vcs
.html, accessed: 2022-06-21.

[42] Cadence, “Xcelium logic simulation,” https://www.cadence.com/ko KR/
home/tools/system-design-and-verification/simulation-and-testbench-
verification/xcelium-simulator.html, accessed: 2022-06-21.

[43] J. Balkind, K. Lim, F. Gao, J. Tu, D. Wentzlaff, M. Schaffner, F. Zaruba,
and L. Benini, “Openpiton+ ariane: The first open-source, smp linux-
booting risc-v system scaling from one to many cores,” in Workshop on
Computer Architecture Research with RISC-V (CARRV), 2019, pp. 1–6.

[44] S.-H. Chen and J.-Y. Lin, “Implementation and verification practices
of dvfs and power gating,” in 2009 International Symposium on VLSI
Design, Automation and Test. IEEE, 2009, pp. 19–22.

[45] E. M. Clarke, W. Klieber, M. Nováček, and P. Zuliani, “Model checking
and the state explosion problem,” in LASER Summer School on Software
Engineering. Springer, 2011, pp. 1–30.

[46] F. Erata, S. Deng, F. Zaghloul, W. Xiong, O. Demir, and J. Szefer,
“Survey of approaches for security verification of hardware/software
systems,” Cryptology ePrint Archive, 2016.

[47] F. Farahmandi, Y. Huang, and P. Mishra, “Formal approaches to
hardware trust verification,” in The Hardware Trojan War. Springer,
2018, pp. 183–202.

[48] A. Gupta, M. KiranKumar, and R. Ghughal, “Formally verifying graph-
ics fpu,” in International Symposium on Formal Methods. Springer,
2014, pp. 673–687.

[49] T. Schubert, “High-level formal verification of next-generation micro-
processors,” in Proceedings 2003. Design Automation Conference (IEEE
Cat. No. 03CH37451). IEEE, 2003, pp. 1–6.

[50] M. M. Wilding, D. A. Greve, R. J. Richards, and D. S. Hardin, “Formal
verification of partition management for the aamp7g microprocessor,” in
Design and Verification of Microprocessor Systems for High-Assurance
Applications. Springer, 2010, pp. 175–191.

[51] A. Armstrong, T. Bauereiss, B. Campbell, A. Reid, K. E. Gray,
R. Norton-Wright, P. Mundkur, M. Wassell, J. French, C. Pulte et al.,
“Isa semantics for armv8-a, risc-v, and cheri-mips,” POPL, 2019.

[52] T. Bourgeat, I. Clester, A. Erbsen, S. Gruetter, A. Wright, and
A. Chlipala, “A multipurpose formal risc-v specification,” arXiv preprint
arXiv:2104.00762, 2021.

[53] S. Greenberg, J. Rabinowicz, and E. Manor, “Selective state retention
power gating based on formal verification,” IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 62, no. 3, pp. 807–815,
2014.

[54] A. M. Gharehbaghi and M. Fujita, “Specification and formal verification
of power gating in processors,” in Fifteenth International Symposium
on Quality Electronic Design. IEEE, 2014, pp. 604–610.

[55] H. Choi, M.-K. Yim, J.-Y. Lee, B.-W. Yun, and Y.-T. Lee, “Formal
verification of an industrial system-on-a-chip,” in Proceedings 2000
International Conference on Computer Design. IEEE, 2000, pp. 453–
458.

[56] N. Reddy, S. Menon, and P. D. Joshi, “Validation challenges in recent
trends of power management in microprocessors,” in 2020 IEEE
International Symposium on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems (DFT). IEEE, 2020, pp. 1–6.

[57] M. Dusanapudi, S. Fields, M. S. Floyd, G. L. Guthrie, R. Kalla,
S. Kapoor, L. Leitner, C. F. Marino, J. McGill, A. Nahir et al.,
“Debugging post-silicon fails in the ibm power8 bring-up lab,” IBM
Journal of Research and Development, vol. 59, no. 1, pp. 12–1, 2015.

[58] P. Mishra, R. Morad, A. Ziv, and S. Ray, “Post-silicon validation in the
soc era: A tutorial introduction,” IEEE Design & Test, vol. 34, no. 3,
pp. 68–92, 2017.

[59] D. Petrisko, F. Gilani, M. Wyse, D. C. Jung, S. Davidson, P. Gao,
C. Zhao, Z. Azad, S. Canakci, B. Veluri et al., “Blackparrot: An agile

https://www.edn.com/formal-property-verification-a-tale-of-two-methods/
https://www.edn.com/formal-property-verification-a-tale-of-two-methods/
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform/formal-property-verification-app.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform/formal-property-verification-app.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform/formal-property-verification-app.html
https://doi.org/10.1145/2155620.2155666
https://eda.sw.siemens.com/en-US/ic/modelsim/
https://www.synopsys.com/verification/simulation/vcs.html
https://www.synopsys.com/verification/simulation/vcs.html
https://www.cadence.com/ko_KR/home/tools/system-design-and-verification/simulation-and-testbench-verification/xcelium-simulator.html
https://www.cadence.com/ko_KR/home/tools/system-design-and-verification/simulation-and-testbench-verification/xcelium-simulator.html
https://www.cadence.com/ko_KR/home/tools/system-design-and-verification/simulation-and-testbench-verification/xcelium-simulator.html


open-source risc-v multicore for accelerator socs,” IEEE Micro, vol. 40,
no. 4, pp. 93–102, 2020.

[60] F. Zaruba and L. Benini, “The cost of application-class processing:
Energy and performance analysis of a linux-ready 1.7-ghz 64-bit risc-
v core in 22-nm fdsoi technology,” IEEE VLSI, vol. 27, no. 11, pp.
2629–2640, 2019.

[61] C. Celio, D. A. Patterson, and K. Asanovic, “The berkeley out-of-order
machine (boom): An industry-competitive, synthesizable, parameterized
risc-v processor,” EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2015-167, 2015.

[62] S. Mitra, S. A. Seshia, and N. Nicolici, “Post-silicon validation
opportunities, challenges and recent advances,” in Design Automation
Conference. IEEE, 2010, pp. 12–17.

[63] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin et al., “Meltdown: Reading
kernel memory from user space,” in 27th USENIX Security Symposium
(USENIX Security 18), 2018, pp. 973–990.

[64] S. Van Schaik, A. Milburn, S. Österlund, P. Frigo, G. Maisuradze,
K. Razavi, H. Bos, and C. Giuffrida, “Ridl: Rogue in-flight data load,”
in 2019 IEEE Symposium on Security and Privacy (SP). IEEE, 2019,
pp. 88–105.

[65] M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina,
T. Prescher, and D. Gruss, “Zombieload: Cross-privilege-boundary data
sampling,” in Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, 2019, pp. 753–768.

[66] A. Carelli, A. Vallero, and S. Di Carlo, “Performance monitor counters:
interplay between safety and security in complex cyber-physical systems,”
IEEE Transactions on Device and Materials Reliability, vol. 19, no. 1,
pp. 73–83, 2019.

[67] T. Zhang, Y. Zhang, and R. B. Lee, “Cloudradar: A real-time side-
channel attack detection system in clouds,” in International Symposium
on Research in Attacks, Intrusions, and Defenses. Springer, 2016, pp.
118–140.

[68] M. Chiappetta, E. Savas, and C. Yilmaz, “Real time detection of
cache-based side-channel attacks using hardware performance counters,”
Applied Soft Computing, vol. 49, pp. 1162–1174, 2016.

[69] S. Ferracci, “Detecting cache-based side channel attacks using hardware
performance counters,” Ph.D. dissertation, Sapienza, University of Rome,
2019.

[70] M. Alam, S. Bhattacharya, D. Mukhopadhyay, and S. Bhattacharya,
“Performance counters to rescue: A machine learning based safeguard
against micro-architectural side-channel-attacks,” Cryptology ePrint
Archive, 2017.

[71] X. Wang, C. Konstantinou, M. Maniatakos, and R. Karri, “Confirm:
Detecting firmware modifications in embedded systems using hardware
performance counters,” in ICCAD). IEEE, 2015, pp. 544–551.

[72] X. Wang, C. Konstantinou, M. Maniatakos, R. Karri, S. Lee, P. Robison,
P. Stergiou, and S. Kim, “Malicious firmware detection with hardware
performance counters,” IEEE Transactions on Multi-Scale Computing
Systems, vol. 2, no. 3, pp. 160–173, 2016.

[73] R. Elnaggar, K. Chakrabarty, and M. B. Tahoori, “Run-time hardware
trojan detection using performance counters,” in 2017 IEEE Interna-
tional Test Conference (ITC). IEEE, 2017, pp. 1–10.

[74] Y. Xia, Y. Liu, H. Chen, and B. Zang, “Cfimon: Detecting violation
of control flow integrity using performance counters,” in IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN
2012). IEEE, 2012, pp. 1–12.

[75] C. Li and J.-L. Gaudiot, “Online detection of spectre attacks using
microarchitectural traces from performance counters,” in 2018 30th
International Symposium on Computer Architecture and High Perfor-
mance Computing (SBAC-PAD). IEEE, 2018, pp. 25–28.

[76] H. Sayadi, H. Wang, T. Miari, H. M. Makrani, M. Aliasgari, S. Rafatirad,
and H. Homayoun, “Recent advancements in microarchitectural security:
Review of machine learning countermeasures,” in 2020 IEEE 63rd
International Midwest Symposium on Circuits and Systems (MWSCAS).
IEEE, 2020, pp. 949–952.

[77] Veripool, “Verilator, the fastest verilog/systemverilog simulator,” https:
//veripool.org/verilator/, accessed: 2022-06-21.

[78] T. Feist, “Vivado design suite,” White Paper, vol. 5, p. 30, 2012.
[79] I. K. Ganusov, M. A. Iyer, N. Cheng, and A. Meisler, “Agilex™

generation of intel® fpgas,” in 2020 IEEE Hot Chips 32 Symposium
(HCS). IEEE Computer Society, 2020, pp. 1–26.
Security Symposium (USENIX Security 22). Boston, MA: USENIX

[80] T. Trippel, K. G. Shin, A. Chernyakhovsky, G. Kelly, D. Rizzo,
and M. Hicks, “Fuzzing hardware like software,” in 31st USENIX

Association, Aug. 2022, pp. 3237–3254. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity22/presentation/trippel

[81] J. Hur, S. Song, D. Kwon, E. Baek, J. Kim, and B. Lee, “Difuzzrtl:
Differential fuzz testing to find cpu bugs,” in 2021 IEEE Symposium
on Security and Privacy (SP). IEEE, 2021, pp. 1286–1303.

[82] S. K. Muduli, G. Takhar, and P. Subramanyan, “Hyperfuzzing for soc
security validation,” in ICCAD, 2020, pp. 1–9.

[83] F. Corno, E. Sanchez, M. Reorda, and G. Squillero, “Automatic test
program generation: a case study,” IEEE Design & Test of Computers,
vol. 21, no. 2, pp. 102–109, 2004.

[84] G. Squillero, “Microgp—an evolutionary assembly program generator,”
Genetic programming and evolvable machines, vol. 6, pp. 247–263,
2005.

[85] G. Squillero and G. Squillero, “Evolving assembly programs: how games
help microprocessor validation,” IEEE Transactions on Evolutionary
Computation, vol. 9, pp. 695–706, 2005.

[86] P. Bernardi, E. E. S. Sánchez, M. Schillaci, G. Squillero, and M. S.
Reorda, “An effective technique for the automatic generation of
diagnosis-oriented programs for processor cores,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 27,
no. 3, pp. 570–574, 2008.

[87] E. Sánchez, M. S. Reorda, and G. Squillero, “Efficient techniques
for automatic verification-oriented test set optimization,” International
Journal of Parallel Programming, vol. 34, no. 1, pp. 93–109, 2006.

[88] D. Gizopoulos, M. Psarakis, M. Hatzimihail, M. Maniatakos,
A. Paschalis, A. Raghunathan, and S. Ravi, “Systematic software-based
self-test for pipelined processors,” IEEE VLSI, vol. 16, no. 11, pp.
1441–1453, 2008.

[89] J. Hudec and E. Gramatová, “An efficient functional test generation
method for processors using genetic algorithms,” Journal of Electrical
Engineering, vol. 66, no. 4, p. 185, 2015.

[90] Synopsys, “Vc formal,” https://www.synopsys.com/verification/static-
and-formal-verification/vc-formal.html, accessed: 2022-06-21.

[91] Siemens, “Questa formal verification apps,” https://eda.sw.siemens.com
/en-US/ic/questa/formal-verification/, accessed: 2022-06-21.

[92] G. Cabodi, P. Camurati, S. F. Finocchiaro, C. Loiacono, F. Savarese,
and D. Vendraminetto, “Secure path verification,” in 2016 1st IEEE
International Verification and Security Workshop (IVSW). IEEE, 2016,
pp. 1–6.

[93] W. Hu, X. Wang, and D. Mu, “Security path verification through joint
information flow analysis,” in 2018 IEEE Asia Pacific Conference on
Circuits and Systems (APCCAS). IEEE, 2018, pp. 415–418.

[94] Cadence, “Jasper spv app,” https://www.cadence.com/ko KR/home/too
ls/system-design-and-verification/formal-and-static-verification/jasper-
gold-verification-platform/security-path-verification-app.html, accessed:
2022-06-21.

[95] E. Cerny, S. Dudani, J. Havlicek, D. Korchemny et al., SVA: the power
of assertions in systemVerilog. Springer, 2015.

[96] R. Armoni, L. Fix, A. Flaisher, R. Gerth, B. Ginsburg, T. Kanza,
A. Landver, S. Mador-Haim, E. Singerman, A. Tiemeyer et al.,
“The forspec temporal logic: A new temporal property-specification
language,” in International Conference on Tools and Algorithms for the
Construction and Analysis of Systems. Springer, 2002, pp. 296–311.

[97] P. Koppe, B. Kollenda, M. Fyrbiak, C. Kison, R. Gawlik, C. Paar,
and T. Holz, “Reverse engineering x86 processor microcode,” in 26th
USENIX Security Symposium (USENIX Security 17), 2017, pp. 1163–
1180.

[98] D. Van Campenhout, T. Mudge, and J. P. Hayes, “Collection and analysis
of microprocessor design errors,” IEEE Design & Test of Computers,
vol. 17, no. 4, pp. 51–60, 2000.

[99] M. N. Velev, “Collection of high-level microprocessor bugs from formal
verification of pipelined and superscalar designs,” in International Test
Conference, 2003. Proceedings. ITC 2003. Citeseer, 2003, pp. 138–138.

[100] B. A. Wichmann, “Microprocessor design faults,” Microprocessors and
Microsystems, vol. 17, no. 7, pp. 399–401, 1993.

[101] D. Lin, T. Hong, Y. Li, S. Eswaran, S. Kumar, F. Fallah, N. Hakim,
D. S. Gardner, and S. Mitra, “Effective post-silicon validation of system-
on-chips using quick error detection,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 33, no. 10, pp.
1573–1590, 2014.

[102] F. Farahmandi and P. Mishra, “Observability-aware post-silicon test
generation,” in Post-Silicon Validation and Debug. Springer, 2019, pp.
111–123.

https://veripool.org/verilator/
https://veripool.org/verilator/
https://www.usenix.org/conference/usenixsecurity22/presentation/trippel
https://www.usenix.org/conference/usenixsecurity22/presentation/trippel
https://www.synopsys.com/verification/static-and-formal-verification/vc-formal.html
https://www.synopsys.com/verification/static-and-formal-verification/vc-formal.html
https://eda.sw.siemens.com/en-US/ic/questa/formal-verification/
https://eda.sw.siemens.com/en-US/ic/questa/formal-verification/
https://www.cadence.com/ko_KR/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform/security-path-verification-app.html 
https://www.cadence.com/ko_KR/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform/security-path-verification-app.html 
https://www.cadence.com/ko_KR/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform/security-path-verification-app.html 

	Introduction
	Background
	Bug detection methods
	Errata

	Motivation: Learn from the Past
	RemembERR
	Methodology
	Observations
	Timeline
	Heredity
	Workarounds
	Fixes


	Classification
	Categories
	Classification methodology
	Triggers
	Contexts
	Observable Effects

	Insights

	Applications to Design Testing
	Dynamic methods
	Formal methods
	Manual inspection

	Discussion
	Related Work
	Errata-based
	Directed silicon testing

	Conclusion
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models

	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment customization
	Notes
	Methodology

	References

