
Scalable Virtual Machine Deployment
Using VM Image Caches

Kaveh Razavi
Dept. of Computer Science
VU University Amsterdam

The Netherlands
k.razavi@vu.nl

Thilo Kielmann
Dept. of Computer Science
VU University Amsterdam

The Netherlands
thilo.kielmann@vu.nl

ABSTRACT
In IaaS clouds, VM startup times are frequently perceived
as slow, negatively impacting both dynamic scaling of web
applications and the startup of high-performance computing
applications consisting of many VM nodes. A significant
part of the startup time is due to the large transfers of VM
image content from a storage node to the actual compute
nodes, even when copy-on-write schemes are used. We have
observed that only a tiny part of the VM image is needed for
the VM to be able to start up. Based on this observation, we
propose using small caches for VM images to overcome the
VM startup bottlenecks. We have implemented such caches
as an extension to KVM/QEMU. Our evaluation with up to
64 VMs shows that using our caches reduces the time needed
for simultaneous VM startups to the one of a single VM.

Categories and Subject Descriptors
D.4.2 [Storage Management]: Storage hierarchies;
C.4 [Performance of systems]: Design studies

Keywords
Infrastructure-as-a-Service, Scalability

1. INTRODUCTION
With the advent of public Infrastructure-as-a-Service (IaaS)

clouds like Amazon EC2 or Rackspace, the use of virtualized
operating systems,“virtual machines,”has gained widespread
use. Also in privately owned computing environments such
as compute clusters, the use of virtual machines (VMs) is
gaining popularity due to its benefits like elastic machine al-
location, user-controlled software installations, and the pos-
sibility to reduce energy footprints by consolidating multiple
VMs onto a single physical machine.

The promise of elastic computing is instantaneous creation
of virtual machines, according to the needs of an application
or web service. In practice, however, users face VM startup

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SC13 November 17-21, 2013, Denver, CO, USA
Copyright 2013 ACM 978-1-4503-2378-9/13/11 ...$15.00.
http://dx.doi.org/10.1145/2503210.2503274

times of several minutes, along with high variability, depend-
ing on the actual system load. Two major factors are con-
tributing to VM startup times: the resource selection pro-
cess by the cloud middleware (Amazon EC2, OpenNebula,
OpenStack, etc.), and the actual VM boot time, including
the transfer of the VM image (VMI) to the selected compute
node.

While we have noticed that there is room for improvement
in the resource selection process, e.g. in our own OpenNeb-
ula deployment, that problem is beyond the scope of this pa-
per. Here, we focus on reducing the transfer time for VMIs
from the storage node to the compute nodes. In particular,
we study the scalability of VMI transfers with respect to si-
multaneous VM startups, from a single VMI or from many
VMIs.

Our initial study shows that state-of-the-art, on-demand
transfers (“copy-on-write”) cannot sustain performance for
10 or more simultaneous image transfers when using a 1Gb
Ethernet connection to the storage node. When using 32Gb
InfiniBand (IB) instead, simultaneous startup of up to 64
machines (the size of our cluster) can be done in constant
time, as long as all machines boot from the same VMI. When
increasing the number of VMIs used, the storage node itself
becomes the bottleneck, and startup times rise linearly with
the number of images.

While investigating this problem, we have observed that
during the boot process, virtual machines actually read only
a small fraction (we have seen up to 200 MB) of the total
VMI, typically sized at several GB. Based on this obser-
vation, we propose to use VMI caches to mask the actual
transfer bottlenecks. Depending on the location of the bot-
tleneck, VMI caches can be placed either on the disks of the
compute nodes (when the network is the bottleneck, e.g.
with 1Gb Ethernet), or in main memory of the storage node
(when disk access is the bottleneck, e.g. with an IB network).

We have implemented our VMI caches as an extension to
KVM/QEMU. (A similar extension could be implemented
for Xen as well.) As such, our caching scheme is independent
of the cloud middleware in use and could be deployed on a
wide range of cloud infrastructures. We have evaluated our
caching scheme on our DAS-4 cluster [6] at VU Amsterdam.
Our results show that using our caches, with either network,
reduces the time needed for (up to 64) simultaneous VM
startups to the time needed for booting a single VM.

This paper is organized as follows. In Section 2, we demon-
strate the limited scalability of on-demand VMI transfers.
In Section 3, we present the design and in Section 4 the im-
plementation of VMI caches to overcome these limitations.

The results of our experimental evaluation are shown in Sec-
tion 5. Based on the results of our evaluation, we recommend
cache placement strategies in Section 6. Section 7 discusses
related work; in Section 8 we conclude.

2. SCALABILITY OF ON-DEMAND
TRANSFERS

The simplest way of deploying a VMI on a compute node
is to copy the VMI onto the compute node before booting
the VM from it. As VMIs typically comprise one or more GB
of data, this approach obviously is slow and easily consumes
large amounts of network bandwidth in between the storage
node and the compute nodes.

The current state-of-the-art is to reduce the amount of
data transfer to those blocks of the VMI that are actually
need during the boot process, called on-demand transfers.
With on-demand transfers, VM writes go to a second, copy-
on-write (CoW) image. VM reads, if not already in the
CoW image, come from the original VMI (base), accessed
through a remote file-system like NFS. In this scheme, the
base VMI is read-only and can be shared simultaneously by
an arbitrary number of nodes.

QCOW2 [11] is an example image format that supports
CoW images. The base image can be of any supported for-
mat. The read and write granularity of QCOW2 is defined
by QCOW2’s cluster size with the default value of 64KB.
Figure 1 shows the operation of QCOW2’s CoW mechanism.
QEMU’s implementation of QCOW2 is used by KVM and
partly Xen, two commonly used virtual machine monitors
(VMMs) in public and private IaaS clouds.

KVM

Mem

Disk

Base

Read

Read

Storage node Compute node

CoW

VM

Read Write

Write

Figure 1: Copy-on-write with on-demand transfers in action. The
VM writes go to a local CoW image, and reads are fetched from a
Base image over a remote file-system like NFS.

Using QCOW2 with a remote base image is a good exam-
ple of CoW with on-demand transfers. This approach sig-
nificantly reduces the booting delay and the pressure on the
network by voiding the need for the complete VMI trans-
fer in the beginning. On-demand transfers, however, can
have scalability problems of their own, which we are going
to discuss in the remainder of this section.

2.1 Single VMI
In a single-VMI scenario, the content of one VMI needs to

be transfered to many compute nodes on demand. This is
a common case either for popular VMIs in public clouds, or
for high-performance computations with many worker nodes
of the same type, as with parameter sweep applications [19].

Figure 2 shows the booting time of a CentOS Linux VM
on compute nodes1. When there are more than eight con-
current boots, the booting time increases linearly with the

1Machine details of the experiments presented in this section
are explained along with our evaluation in Section 5.

 0

 20

 40

 60

 80

 100

 120

 140

 1 4 8 16 32 64

B
o
o
ti

n
g
 t

im
e
 (

se
co

n
d
)

nodes

Scaling the number of nodes

QCOW2 - 1GbE
QCOW2 - 32GbIB

Figure 2: Booting time of a CentOS Linux VM on many compute
nodes simultaneously using a single VMI. The reads are fetched from
a remote base image and the writes go to a local CoW image.

number of nodes in the case of a 1GbE network, suggesting
that the network is becoming the bottleneck. This result al-
ready shows the need for some sort of efficient caching of the
VMI at compute nodes. In the case of a 32Gb IB network,
the booting time remains constant, suggesting that booting
these CentOS VMs is not saturating the network.

2.2 Many VMIs
In this scenario, many VMIs need to be transferred to

many compute nodes. This is a common case for public
IaaS clouds, where many users may boot different VMIs si-
multaneously.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1 4 8 16 32 64

B
o
o
ti

n
g
 t

im
e
 (

se
co

n
d
)

VMIs

Scaling the number of VMIs - 64 nodes

QCOW2 - 1GbE
QCOW2 - 32GbIB

Figure 3: Booting time of a CentOS Linux VM on many compute
nodes simultaneously using different number of VMIs. The reads are
fetched from the assigned remote base image and the writes go to a
local CoW image.

Figure 3 shows the booting time of 64 CentOS Linux VMs,
scaling the number of VMIs used. (For this test, we have
created 64 identical but independent copies of the CentOS
VMI.) Regardless of the network speed, as the VMs use more
independent VMIs, the booting time increases significantly.
This is due to the disk queueing delay at the storage node,
suggesting the use of VMI caches in between storage-node
disk and compute-node memory.

Two possible locations for VMI caches are the storage
node’s memory or the compute nodes’ disks. We will inves-
tigate both in the next section. Before doing so, we verify the
feasibility of such caches by analyzing their required sizes.

2.3 VMI boot working set size
The basic idea for using VMI caches is to have those parts

of the VMI in the cache that are required for booting the
VM, leaving accesses to the remaining VMI parts for the
actual service or application runtime, a period with much
weaker performance requirements towards the VMI storage
node. For this purpose, we have measured the amount of
data that is read from the base image for three different
VMIs. The results are in Table 1, and suggest that with
a modestly sized cache, it is possible to boot many VMs
while avoiding the potential bottlenecks described earlier in
this section. From these values we can conclude that a VMI
cache entry would need to have in the order of 250 MB (pro-
viding some margin). This size is small enough to build
caches for multiple VMIs, either on the disks of the com-
pute nodes or on the main memory of the storage node. In
Section 3, we present our design of such a caching mecha-
nism.

Table 1: Read working set size of various VMIs for booting the VM.

VMI Size of unique reads

CentOS 6.3 85.2 MB
Debian 6.0.7 24.9 MB

Windows Server 2012 195.8 MB

3. VMI CACHES
We will now present the design of our VMI caching scheme.

We begin by summarizing the underlying, fundamental re-
quirements.

The first requirement for the cache is being a VMI itself.
A VMI can then be created/stored on any desired medium
(i.e., disk, memory) at any desired location (i.e., storage
node, compute node). This also means that the cache is
standalone; a VM can start booting using it. In the case of
missing data however, the cache should be able to recurse
to the base image.

The second requirement is support for quota. If the caching
medium is a scarce resource like memory, a quota makes sure
that it is not overly used by the cache. Further, it provides
a fine-grained resource accounting of the cache per-VMI.

The third requirement is immutability with respect to the
base image. An immutable cache, once created, can be
reused many times in the future as long as the base image
remains unchanged.

3.1 VMI chaining

KVMBase
Write

Read

CoW

VM

Read

Cache

Write
ReadRead

Figure 4: The new architecture with a VMI cache in between the base
and CoW images.

To support these requirements, we have come up with an
intermediate image between the base image and the CoW
image, called the VMI cache.

Figure 4 shows how the image chain looks like with a
VMI cache. The VMI cache is a VMI by definition, and
with enough data blocks, a VM can boot using it. Since the
cache image is separate from the CoW image, it is possible
to enforce quota on it, satisfying the second requirement. To
make the cache immutable with respect to the base image,
we only write the data that comes from the base image into
the cache. (All writes coming from the VM itself go to the
CoW image.)

3.2 Cache creation

KVMBase

Read

CoW

VM

Read

Cache

Read

Read

Write

Figure 5: The process creating the cache. Every read from the base
image incurs an additional write to the cache.

We now describe how we populate the cache with data.
The first time a VM boots, an empty cache is created. Fig-
ure 5 shows the process of warming the cache. Every read
that is fetched from the base image is also copied into the
cache (copy-on-read or CoR). The first n blocks of data are
stored in the cache until the quota is reached or the VM
does not need any more data to be fetched from the base
image. This CoR caching strategy ensures that the blocks
that are needed for the booting process will be available in
the cache.

The VMI caches can be created in variety of ways. The
system can boot a sample VM upon a new VMI registration
to create the cache. It is also possible to create the cache
lazily when a VM is booted from a VMI for the first time.

3.3 Caching medium
Another design decision is the caching medium. Since the

cache is a VMI by itself, it is possible to store it at compute
or storage nodes. The quota allows a fine-grained control
over how much resources should be dedicated to the cache
image.

In the case of a slower network, caching on the compute
nodes is an interesting option to reduce the load on the net-
work. The small size of these cache images, makes it possible
to store many of them within a modest amount of disk re-
sources at compute nodes.

Another interesting medium is the storage node’s memory
to save on the limited performance of its disk(s). The read
requests coming from different VMs are mostly random in
nature and rotational disks do not handle this well. Memory
(or a solid-state drive) provides a much better performance
under a random access workload, but is scarcer in terms of
capacity. The small size of our VMI caches can use this
capacity effectively under the VM boot workload. Further-
more, it is possible to store many of these cache images on

the storage node’s memory. This is not possible with normal
VMIs due to the fact that their size is usually in the order
of gigabytes. In Section 6, we will compare various cache
placement strategies based on the results of our evaluation.

3.4 Cache-aware cloud scheduler
We discuss design considerations for a cache-aware cloud

scheduler. Cloud schedulers are designed with various or-
thogonal goals. As an example, OpenNebula [12], an off-the-
shelf cloud stack, has the following options for its scheduler:

• Packing: tries to minimize the number of nodes in-use
by packing the VMs in the same host.

• Striping: tries to allocate VMs to nodes in a strip-
ing fashion in order to provide maximum available re-
sources for VMs.

• Load-aware mapping: tries to allocate VMs to nodes
with less load in order to provide maximum available
resources for VMs.

One of the goals of a cache-aware scheduler should be al-
location of VMs to nodes with an existing warm cache. This
heuristic can be used in conjunction with any of the above
desired strategies. One of the other tasks of a cache-aware
scheduler should be the eviction of VMI caches whenever the
allocated cache space is full for a new VMI cache. This can
be a policy such as LRU at the node or cloud level. Further
discussion on this topic is out of the scope of this paper and
is left for future work.

4. IMPLEMENTATION
We have implemented the VMI caches as an extension to

the QCOW2 block driver of QEMU. Before explaining our
solution, we first take a look at the QCOW2 image format
and block drivers in QEMU.

4.1 QCOW2 image format

...

L1 Table

Pointer to L2 Table

Pointer to L2 Table

QcowHeader

Pointer to L1 Table

Data Cluster

...

L2 Table

Pointer to Data Cluster

Pointer to Data Cluster

Figure 6: A simplified QCOW2 image structure. The choice of clus-
ter size decides the size of L1-table and the number of data cluster
pointers in L2-tables.

A QCOW2 image is a self-contained file with a number of
meta-data structures followed by the actual data in clusters.

The meta-data structures hold information about image pa-
rameters (e.g. size) and help the translation of virtual block
addresses (VBAs) to physical block addresses (PBAs).

Figure 6 shows a simplified structure of a QCOW2 image.
The first meta-data structure that is found in a QCOW2
file is the QCowHeader. Among other fields, it includes the
cluster size, the image size, the backing file (if any) and
an offset to the L1-table. QCOW2 uses a two-level look-up
system using a level 1 (L1) and level 2 tables (L2). For a
look-up operation, first the high n bits of the 64-bit VBA is
used as an offset into a L1-table to find the corresponding
L2-table. Then the next high m bits is used as an offset
within the L2-table to find the corresponding cluster offset
within the image file. The rest of the bits (cluster bits or d)
are used as an offset within the cluster. L2-tables also oc-
cupy one cluster. This means that given the cluster size, it
is easy to calculate n and m. For example, with the default
cluster size of 64KB (18 bits):

d = 18 bits
m = 18 − 3 (address size) = 15 bits
n = 64 − (18 + 15) = 31 bits

The actual size of the L1-table depends on the number of
L2-tables. The number of L2-tables depends on the image
and cluster size. More details on the QCOW2 format can
be found in [11].

4.2 Block drivers in QEMU
Like any other block driver, QCOW2 needs to implement

certain functions to be exported as a block driver in QEMU.
The most relevant of these functions are create, open, close,
read, and write. These functions are then used in two appli-
cations that come with the QEMU/KVM suite: qemu-img
and qemu-kvm.

qemu-img is used for creating and/or manipulating virtu-
alized images. As an example, when creating a new QCOW2
image, qemu-img is invoked with the relevant parameters
such as the image size or in the case of QCOW2, the cluster
size or the path to the backing file (if any). This information
is then passed to the create function of the QCOW2 driver
to prepare the requested image file.

qemu-kvm provides virtualization and device emulation.
One of the emulated devices is the disk controller. When
a VM is running under qemu-kvm, all its read and write
requests to the disk controller are handled by the relevant
block driver. In this case, the VM is completely unaware of
the underlying block driver functionalities.

Once the caching mechanism is included in the QCOW2
block driver, qemu-kvm will use it seamlessly. qemu-img,
however, must be invoked with the relevant arguments for
creating and/or manipulating the cache images. We have
explained this further in Section 4.4.

4.3 Cache extension
To support cache images, we needed to add two more

fields to the QCowHeader of the QCOW2 image. These
new 8-byte fields define the quota and the current size of
the cache. It was not possible to re-use the size field of the
QCowHeader since it has to be the same as the base image’s.
This is because the CoW image can in theory have the same
size as the base image and we decided not to propagate
the differentiation between the CoW and the cache image

throughout the source.
We now describe our modifications to QCOW2 functions

to support VMI caches:
create: If the quota passed to the create function is not

zero, it is assumed that the new image will be used as a
cache. The create function then stores the quota and the
current size of the cache (= size of the header and initial
tables) as part of a new extension to the QCowHeader in
the image file. The implementation of these new fields as an
extension is to ensure backward compatibility with normal
QCOW2 images.

open: When opening a QCOW2 image, it is checked
against our new caching extension. If the extension is de-
tected, then the two size fields are read into QEMU’s QCOW2
main data-structure and the image is treated as a cache im-
age.

read: When we get a read on the cache image, two scenar-
ios are possible. Either the data exists in the cache (warm
cache), or the data needs to be fetched from the base image
(cold cache). In the first scenario, the data is read from the
cache image and returned to image requesting it (CoW im-
age). In the second scenario, we recurse to the base image
for the data. Once the data is available, before returning it
to the CoW image, we write it to the cache. It could be that
we get a space error when trying to write to the cache due
to full quota. In this case, we stop writing to the cache for
the future cold reads.

write: In our design, described in Section 3, the cache
image is protected from writes coming from the VM. The
only writes that the cache image gets are for warming it up
(with data from the base image). Whenever we see a write
to the cache, we check whether there is enough space left by
looking at the quota and the currently used size. If there
is enough space, we write the data to the cache and update
the currently used size. If not, we return with a space error
that is handled at the read function described above.

close: When closing a QCOW2 image, if the cache quota
field is present (i.e. a cache image), the (new) current size
of the cache is written back to the image file.

Other than these modifications to the QCOW2 block driver,
we also had to change the permission flags of QEMU when
opening an image. The default flag for the backing images
is read-only and the cache image is used as a backing image
for the CoW image. The cache image, however, needs write
permission at least at its creation time. It is not known
at the opening time whether an image is a cache image or
a base image. To address this problem, we first open the
backing image with read and write permissions, and then if
we detect that the image is not a cache image, we re-open
the image with read-only permission.

Since the QCOW2 driver already has the concept of recur-
sion for its CoW feature, our introduction of cache images
required minimal changes to QEMU’s QCOW2 block driver.
A complete patch against the original QEMU/KVM modi-
fies about a hundred and fifty lines of code. With this design,
we achieve both backward compatibility with QCOW2 and
massive code reuse.

4.4 Chaining cache images with qemu-img
With normal QCOW2 operation, first a CoW image is

created using qemu-img. The base image is given to qemu-
img as CoW image’s backing file. After that, a VM is started
with qemu-kvm pointing to the CoW image as its booting

disk.
With the cache images, there is another step involved

when creating the cache image. First, qemu-img is invoked
with a cache quota and pointing to the base image as its
backing file. This step creates a cache image. Second, qemu-
img is invoked with no cache quota and pointing to the cache
image as its backing file. This step creates a CoW image.
Now the VM can be started with CoW image as its boot-
ing disk. With a warm cache, there is obviously no need to
invoke qemu-img for creating the cache.

One of the benefits of our approach, as we just discussed,
is its simplicity for chaining cache disks. This makes it ideal
for integration with any cloud stack with an already existing
support for QCOW2.

5. EVALUATION
We have conducted an extensive experimental evaluation

of the VMI caching mechanism. We used the DAS4/VU [6]
cluster as our evaluation testbed. Each standard DAS4/VU
node is equipped with dual-quad-core Intel E5620 CPUs,
running at 2.4GHz, 24GB of memory and two Western Dig-
ital SATA 3.0-Gbps/7200-RPM/1-TB in software RAID-0
fashion. The nodes are connected using a commodity 1Gb/s
Ethernet and a premium Quad Data Rate (QDR) InfiniBand
providing a theoretical peak of 32Gb/s.

Our experiments use up to 65 of these nodes, one of them
acting as storage node, and up to 64 other nodes as com-
pute nodes. The storage node runs an off-the-shelf NFS-
server; the compute nodes mount the NFS location. We
have tuned the NFS rwsize to 64KB (the default cluster size
of QCOW2), as the default NFS rwsize of 1MB does not
match well with the small-sized read requests during boot
time. This rwsize has been used for all experiments. Be-
sides, we use the Linux tmpfs and tmpfs exports for backing
(remote) files by memory when necessary.

For all the experiments described below, we have used
a default installation of CentOS 6.3 as our VMI. The other
images mentioned (Debian Linux and Windows Server) have
only been used for estimating their cache size requirements.

We are mostly interested in the boot time of virtual ma-
chines. We measure the boot time as the time from invoking
KVM for starting the VM until the VM connects back (au-
tomatically) to a given port as soon as it has completed its
boot process.

5.1 Cache creation
We study the performance of cache creation, the effect of

cache quota and the reduction on the storage node transfers
with a warm cache. All these experiments use one storage
node and one compute node. The base image is on a NFS
export on the storage node and the cache is created at the
compute node. We use the 1GbE network in these experi-
ments. (The results are similar for the 32Gb InfiniBand and
are omitted for brevity.)

Figure 8 shows booting times with increasing cache quota,
hence controlling the amount of data that can be stored
in a cache image. The boot times with a warm cache are
roughly the same as with the original QCOW2 mechanism,
as expected. With a cold cache, however, writing into the
cache file during boot time significantly slows down the boot
process, due to delays from slow, synchronous writes to the
cache image. To circumvent this problem, we create the
cache in memory, such that the cache write operations do not

KVM

Mem

Disk

Base

Read

Read

Storage node Compute node

CoW

VM

Read

Cache

KVM

Mem

Disk

Base CoW

VM

Read

Cache

Read

Read

Cold cache

Warm cache

Write

Read

Figure 7: Caching the VM image on the compute node. The cache is
created on the memory of the compute node to avoid slowing the VM
down due to expensive writes. With a warm cache, there is no need
to go to the network anymore.

 0

 50

 100

 150

 200

 0 20 40 60 80 100 120 140

B
o
o
ti

n
g
 t

im
e
 (

se
co

n
d
)

Cache size (MB)

QCOW2
Cold cache - on disk

Cold cache - on mem
Warm cache

Figure 8: Cache creation overhead with increasing cache quota.

delay the reads from the booting VM. This reduces the cache
creation overhead to a negligible amount. When creating the
cache in memory, the cache still needs to be written to the
disk. We delay this actual write to the moment after the
VM has been shut down, taking it out of the critical path
for booting. Due to the small size of the cache, the transfer
to the disk takes less than one second.

 0

 40

 80

 120

 160

 200

 240

 280

 320

 360

 0 20 40 60 80 100 120 140

Tr
a
n
sf

e
r

si
ze

 f
ro

m
 t

h
e
 s

to
ra

g
e
 n

o
d
e
 (

M
B

)

Cache size (MB)

QCOW2
Cold cache - cluster = 64KB
Cold cache - cluster = 512B

Warm cache - cluster = 64KB
Warm cache - cluster = 512B

Figure 9: Observed traffic at the storage node with increasing cache
quota.

Figure 9 shows the observed traffic at the storage node.

With a warm cache, we see a smaller traffic with a bigger
cache quota. An interesting observation is that a cold cache
with the default QCOW2 cluster size of 64KB, is causing
more traffic than the original QCOW2. Investigating fur-
ther revealed that this is because small writes to the cache
need to fetch more data from the base image to meet the
cluster granularity. Reducing the cache cluster size to the
minimum of 512 bytes (sector size), circumvented a poten-
tially unscalable cold cache.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140
 0

 40

 80

 120

 160

 200

 240

 280

B
o
o
ti

n
g
 t

im
e
 (

se
co

n
d
)

Tr
a
n
sf

e
r

si
ze

 f
ro

m
 t

h
e
 s

to
ra

g
e
 n

o
d
e
 (

M
B

)

Cache size (MB)

Caching medium = memory - Cache cluster size = 512B

QCOW2 - boot time

Cold cache - boot time

Warm cache - boot time

QCOW2 - tx size

Cold cache - tx size

Warm cache - tx size

Figure 10: Final arrangement for cache creation.

Figure 10 shows the observed performance (boot time and
data transfer size) with the cold and warm cache when the
cluster size is set to 512 bytes. The results show that with
the careful choice of the cache cluster size and placement of
the cold cache on memory, it is possible to make cache cre-
ation scalable with near-zero overhead. The same arrange-
ment, also shown in Figure 7, is used with the scalability
benchmarks in the rest of this section.

According to our discussion on the QCOW2 image format
in Section 4.1, a smaller cluster size will result in more fre-
quent lookups and more L2-table entries for the cache image.
As shown in Figure 10, the frequency of lookups does not af-
fect the booting time since most reads during boot are small
and need a lookup anyway. For a cache quota of 200 MB,
only 3.1 MB is necessary for L2-tables. Thus, we believe the
smaller cluster size for the cache image is justified.

5.2 Cache quota
Table 2: Cache quota necessary for various VMIs

VMI Warm cache size

CentOS 6.3 93 MB
Windows Server 2012 201 MB

Debian 6.0.7 40 MB

Table 2 shows the necessary cache quota for various VMIs
with cache cluster size of 512 bytes. From Figure 10 it is
clear that CentOS 6.3 needs a cache size of about 90MB.
The created cache image has about the same size on the
file-system. A Debian that is taken from the services image
of an open-source PaaS [23], creates a cache image of 40MB.
A Windows Server needs a substantially bigger cache image
for the boot workload. The numbers in Table 2 are slightly
bigger than the read working set sizes shown in Table 1. The
difference is caused by the meta data added by QCOW2 at
various locations of the VMI file.

5.3 Scaling
The micro benchmarks presented so far provide us with

a good understanding of the individual caching behavior.
Now, we continue to our primary concern of this work: scal-
ability.

5.3.1 Scaling nodes
As shown in Section 2, on-demand transfers have a scala-

bility problem with commodity networks when booting one
VMI over many compute nodes. We show that this can be
resolved by our proposed cache images. In this experiment,
64 compute nodes start a VM from the same VMI simulta-
neously.

 0

 20

 40

 60

 80

 100

 120

 140

 1 4 8 16 32 64

B
o
o
ti

n
g
 t

im
e
 (

se
co

n
d
)

nodes

Scaling the number of nodes - Network = 1GbE

QCOW2
Cold cache

Warm cache

Figure 11: Caching a single VMI image at compute nodes over a
1GbE.

Figure 11 shows the average booting time of the VMs.
With a cold cache, it takes about the same time to boot
the VMs as the original QCOW2. With a warm cache, the
booting time over many compute nodes is similar to that of
a single VM. These results suggest that the VMI caches are
effective in resolving the network bottleneck.

In a real-life scenario, we do not expect that all the nodes
start from a cold or a warm cache. Depending on the cloud
node scheduler, it can be that some of the nodes start from
the cold cache and some from a warm cache. A cache-
aware scheduler should always prefer the nodes with a warm
cache. Studying a cache-aware node scheduler is left for fu-
ture work. Regardless of the node allocations, the nodes
with a warm cache contribute to reducing the network load
on the storage node(s). (We do not present quantitative
results for such mixed scenarios, however, in this paper.)

5.3.2 Scaling VMIs
Networks are getting much faster than they used to be

and disk-based storage is not catching up. We have shown
in Section 2 that the disks at the storage node become a
severe scalability bottleneck when many VMs are booted
from many VMIs simultaneously. In this set of experiments,
we show how VMI caches can help addressing this problem.
In all the points in the graphs, 64 nodes are booting VMs
while they share various number of VMIs. The caching setup
is the same as in Figure 7, where compute nodes store VMI
caches on their local disk.

Figure 12 shows the effect of caching the VMIs at the disk
of the compute nodes. For the 1GbE network, with a single
VMI, the difference between warm caches and QCOW2 is

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1 4 8 16 32 64

B
o
o
ti

n
g
 t

im
e
 (

se
co

n
d
)

VMIs

Scaling the number of VMIs - 64 nodes - Network = 1GbE

QCOW2
Cold cache

Warm cache

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1 4 8 16 32 64

B
o
o
ti

n
g
 t

im
e
 (

se
co

n
d
)

VMIs

Scaling the number of VMIs - 64 nodes - Network = 32GbIB

QCOW2
Cold cache

Warm cache

Figure 12: Caching many VMIs at the compute nodes’ disk over the
two different networks.

the cost of the network bottleneck. This is the same bottle-
neck that we observed in Figure 11 at 64 nodes. Starting
from 16 VMIs, the storage node’s disk is becoming the pri-
mary source of the scalability bottleneck. The VMI caching
at the compute nodes avoids both scalability bottlenecks at
the network and at the storage node’s disk. For the 32GbIB
network, the caching avoids the scalability bottleneck of the
storage node’s disk. Since the network is not a scalability
bottleneck in this scenario, the difference in booting time
with more than a single VMI is only due to the bottleneck
at the storage node’s disks.

Since the storage nodes’ disks are proving to be a more
severe scalability problem than that of the network, another
attractive caching strategy is caching over the memory of
the storage node. Figure 13 shows a possible setup where
the VMI caches are created on the compute nodes and then
transferred back to the storage node’s memory before being
used as a warm cache.

In this set of experiments, we have added the time of cache
transfers to the booting time with the cold cache to reflect on
the fact that the cache image transfers are now a necessary
part of the system. When VMIs are shared between VMs,
only one of the VMs creates and transfers the cache back to
the storage node while other VMs just proceed with normal
QCOW2.

Figure 14 shows the results over the two networks. In the
case of the 1GbE network, this caching strategy does not
solve the network scalability bottleneck, but it does solve
that of the storage nodes’ disk. With the cold cache, the
booting delay is slightly higher with 64 nodes, due to the
transfer time. In the case of the 32GbIB network, the only

Cache

Warm cache

KVM
CoW

VM

Read

Read

Transfer

Transfer file

Read

Mem

Disk

Base

Cache

Mem

Disk

Base

Cache

KVM

Mem

Disk

Base

Read

Read

Storage node Compute node

CoW

VM

Read

Cache

Cold cache

Write

Read

Figure 13: Caching the VM image in the memory of storage node.
The cache is created in the memory of the compute node and then
transferred to the memory of storage node. With a warm cache in
memory, there is no need to go to the storage disk anymore.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1 4 8 16 32 64

B
o
o
ti

n
g
 t

im
e
 (

se
co

n
d
)

VMIs

Scaling the number of VMIs - 64 nodes - Network = 1GbE

QCOW2
Cold cache

Warm cache

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1 4 8 16 32 64

B
o
o
ti

n
g
 t

im
e
 (

se
co

n
d
)

VMIs

Scaling the number of VMIs - 64 nodes - Network = 32GbIB

QCOW2
Cold cache

Warm cache

Figure 14: Caching many VMI on the storage node’s memory over
the two different networks.

scalability bottleneck is resolved without any overhead.
With VMI caches on the storage node’s memory, there

needs to be a mechanism that decides on the eviction policy
from the cache pool. Strategies similar to the ones discussed
in Section 3.4 can be applied here.

In the next section, we further discuss cache placement
considerations based on the evaluation of this section.

6. CACHE PLACEMENT
In the previous section, we showed that VMI caches can be

placed either on the compute nodes’ disks or on the storage
node’s memory.

There are certain advantages for placing the caches on the
storage node’s memory, compared to compute nodes’ disk:

• The compute nodes do not need to reserve any disk
space for the VMI caches.

• There are fewer security concerns, regarding the con-
tent of the VMIs cached at any time at any compute
node.

• The storage node’s memory is efficiently used for the
task at hand; transferring blocks of VMI data.

• A cache-aware scheduler can treat all compute nodes
equally as the VMI cache is centrally available at the
storage node.

Thus, in scenarios where the network is fast enough to
handle on-demand transfers of many simultaneous VM star-
tups, using solely the storage node’s memory for placing the
VMI caches is the superior solution.

The only remaining problem is the question whether a
certain network is able to handle such a workload. If this
is not the case, caching on the compute node’s disk is one
possibility. Caching only on the compute node’s disk, how-
ever, still leaves the possibility that the storage nodes’ disks
become a bottleneck in a multi-VMI scenario. To address
this, we recommend using caches at both storage and com-
pute nodes. Algorithm 1 uses chaining to the cache at the
proper location, or creates one if necessary.

Algorithm 1: Chaining to a proper cache VMI

Input: Compute node C, Storage node S, VMI Base
Output: A VMI to be chained to a CoW image
if CacheBase exists in C then

return CacheBase

if CacheBase exists in S then
if CacheBase is on disk then

Copy Basecache to tmpfs

Create NewCacheBase on C
Chain NewCacheBase to Cachebase
return NewCacheBase

Create CacheBase on C
Chain CacheBase to Base
Copy CacheBase to S on VM shutdown
return CacheBase

We assume that there is a cache eviction policy, as de-
scribed in Section 3.4, that removes caches in case the re-
served cache space is full. Algorithm 1 prefers chaining to
a local cache (if it exists) to avoid the network as much as
possible. In case the cache does not exist at the compute
node, it tries to create one while chaining to another cache
at storage node’s memory, avoiding the storage node’s disks.

Since, with a fast network, random access on remote mem-
ory can be faster than on local disk, a VM might boot faster

from the storage node’s memory. This might conflict with
Algorithm 1. We have investigated the severeness of this ef-
fect with our machine setup from Section 5, using a CentOS
VMI. Our results show at most 1 % difference in startup
times between a cache on the compute node’s disk, compared
to the storage’s memory. We hence consider the difference
to be negligible.

7. BACKGROUND AND RELATED WORK
We distinguish different research work related to VMI

caches in four overlapping categories:

1. Efficient VMI transfer deals with the problem of mov-
ing VMIs from storage nodes to compute nodes.

2. Efficient VM migration deals with efficient migration
of VMs along with their state from a node to another.
The goal is reduction in downtime to improve user-
perceived experience.

3. Caching storage data is on the mature field of caching
data in storage layers. We focus on the relevant work
to VMIs.

4. Virtualized disk performance discusses the advances in
virtualized storage that are directly applied to VMIs.

Below, we discuss each category separately. Whenever
appropriate, we make comparisons to our VMI caches or
discuss how our solution complements a different work.

7.1 Efficient VMI transfer
There are two different scenarios in which efficient VMI

transfer becomes a primary concern. In the first scenario, a
single VMI needs to be transferred to many physical nodes.
In the second scenario, many VMIs need to be transferred
to many physical nodes concurrently and start executing
on behalf of different users. Different techniques have been
adopted for these two different scenarios.

7.1.1 Single VMI
Peer-to-peer networking is a common technique for trans-

ferring a single VMI to many compute nodes [4, 18, 27].
The main issue so far has been the considerable delay of
startup time in order of tens of minutes. This is because
the complete VMI needs to be present before starting the
VM. A recent work by Reich et al. [24] combines on-demand
access with peer-to-peer streaming to reduce this delay sig-
nificantly.

While peer-to-peer transfer is a good match to this prob-
lem in slower networks, it uses substantial network resources
to deliver the VMI to the compute nodes. In a shared en-
vironment, this can become problematic for other users of
the cloud. VMI caches are orthogonal to these peer-to-peer
techniques. The small cache size makes it possible to store
many of them simultaneously on the compute nodes, effec-
tively reducing the total bandwidth used in the peer-to-peer
transfers. Further, the networks are becoming faster, and as
we discussed in Section 2, the workload of on-demand trans-
fers is easily handled by premium networks, voiding the need
for peer-to-peer networking in near future.

LANTorrent [17], from the Nimbus project, combines si-
multaneous VMI requests and builds a pipeline for streaming
complete VMIs from the storage node to all requesting com-
pute nodes. This is very adequate for applications or services

starting up with many VMs at the same time. For small,
private clouds, where all nodes are connected to a single net-
work switch, this chaining maximizes the throughput. Our
VMI caches serve this case too, but also work well in other
situations, like an already running service requesting one or
a few more VMs when scaling out, while the cloud infras-
tructure is under stress by other users. The main advantage
of caching and reading VMIs on demand comes from the fact
that only small parts of a VMI are needed while booting the
machine. The small number of remote reads that happen af-
ter the initial booting, while slower, are transient and largely
being offset by the gain in the booting time. Amazon reports
similar behavior for their EBS-backed images.2

SnowFlock [10] can start many stateful worker VMs un-
der one second. It introduces VMFork and VM descriptor
primitives that fork child VMs that are in the same state as
the parent VM when they start. SnowFlock achieves good
performance by multicasting the requested data to all work-
ers and uses a set of avoidance heuristics at child VMs to
reduce the amount of memory traffic from the parent to the
children. While SnowFlock is a good solution to the single
VMI scenario, it uses substantial multicast traffic for de-
livery. Furthermore, almost all layers from the application
up to the VMM require substantial changes. We envision a
possibility of building a system with memory caches, with
similar ideas to VMI caches, to be used for efficient stateful
VM creation without much changes to the stack.

7.1.2 Many VMIs
Schmidt et al. [25] use Unionfs, a stacked file-system, to in-

crementally prepare the VMI. The base VMI that contains a
big chunk of the final VMI, remains constant among different
VMIs. By caching the base VMI on the compute nodes and
transferring the rest using a sophisticated transfer method
like multicast, they achieve startup delays that would not
have been possible otherwise. There are two distinct ways
that VMI caches can be beneficial for this method. First,
a much smaller cache image can be created out of the base
VMI and be stored on the compute nodes instead of the
base VMI itself. This effectively reduces storage resources
of the compute nodes that are used for caching. Second, the
read-only nature of VMI caches can relax the requirement
for a stacked file-system. VMI caches can be created for
any type of image in any state. The user-customized part
can be transferred in the form of a copy-on-write image to
the compute nodes that recurses to the cache image when
necessary.

VDN [22] is a network hierarchy-aware system for trans-
ferring VMIs to compute nodes. Each VMI is divided into
chunks and each compute node has a cache for these chunks.
When booting a new VM, the compute node fetches the
VMI chunks that it lacks in its local cache from its peers in
a network topology-aware fashion. Again, VMI caches can
help in such situations because of their smaller size. Fur-
ther, VMI caches have an implicit knowledge about future
accesses when they are being created. This can help priori-
tizing fetching of different chunks.

Nicolae et al. [15] stripe VMIs’ chunks into the disks of
many compute nodes. During VM boot, if a chunk is re-
quired and missing, it is fetched from a peer that has that
chunk. They further improve their approach in [16] by means

2http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
ComponentsAMIs.html

of prefetching the chunks required for VM startup. The
access-pattern knowledge used in prefetching is retrieved
from the peers that boot a little faster. In most scenar-
ios, only a small number of data blocks is required for a
VM to boot from multi-GB VMIs. Striping our VMI caches
with exactly these blocks can help saving disk resources at
compute nodes.

7.2 Efficient VM migration
While VM migration is a different problem than that of

VMI transfer, both share many of the same obstacles due to
the requirement for sizable transfer of data.

Internet Suspend/Resume [9] is one of the earliest systems
that looks at the possibility of using a VM with explicit state
transfer over a distributed file system to achieve seamless
migration of personal user desktops over space and time.
The idea of using very small files instead of huge transfers
in the beginning to hide the network latency is very similar
to today’s on-demand transfer technologies.

Clark et al. [5] introduce a low-overhead mechanism for
live migration of virtual machines. They use techniques
such as pre-copying of VM state and the subsequent transfer
of the memory write working size to the destination node.
Hines and Gopalan [8] report on improvements with post-
copying of VM state on a faster network while using two
optimizations: 1.) self-ballooning of guests to release free
memory pages back to the VMM and 2.) pre-paging [20] to
intelligently push future pages to the migrated guest. The
ideas presented in that research work can be effective for
caching the VM state, a future direction for our VMI caches.

7.3 Caching storage data
The collective [3] uses a VM appliance to ease up the

administration of many users over the network. VM images
get cached locally at the client’s host and methods like copy-
on-write and prefetching are employed to improve the user
experience. In the collective, the VM appliance does not
change often and only a small number of VMI versions are
available and stored locally, voiding the need for the selective
caching technique that we have used in our implementation
of VMI caches to make it suitable for a cloud environment.

Dm-cache [1] partitions a fast storage device (i.e., SSD)
between many concurrently running, co-hosted VMs to im-
prove the observed I/O performance. Dm-cache can improve
booting performance if many VMs boot from the same VMI.
There is, however, a considerable performance penalty when
VMs are booting from a cold cache.

Content-based block caching [13] is a caching method that
takes into account the content of data blocks to improve the
efficacy and efficiency of the cache by means of deduplica-
tion and silent writes. Since VMIs created from the same
operating system distribution share content, this method
can be deployed to reduce the effective size of cache images
of different VMIs on the compute nodes even further. The
performance implications on the booting time with content-
based caching and data deduplication is a subject for future
research.

Patterson et al. [21] show that by using application pro-
vided disclosures, one can parallelize the otherwise sequen-
tial disk access by prefetching the blocks that are going to be
accessed in future. Disclosures also help to balance prefetch-
ing against caching. A possible optimization for VMI caches
is prefetching based on disclosures to speedup VM boot-

ing. A fundamental difference is that the disclosures of the
cache images can be inferred automatically at their creation
time. Our preliminary experience with prefetching, however,
showed no substantial benefit. For example, in the CentOS
case, the VM only waits 17% of its total boot time on reads
and prefetching can only mask that.

7.4 Virtualized disk performance
Ming et al. [28] suggest that simply using NFS to transfer

VMIs is sub-optimal. By adding a module to NFS to cache
a number of NFS requests at the compute nodes or a proxy,
they improve the VM booting process with a warm cache.
They further improve the performance of the virtual disk
by doing copy-on-write in an NFS proxy that is running
inside the VM [2]. In contrast, VMI caches provide a clean
caching abstraction at VMI-level. This makes it possible to
do resource accounting per VMI. It would have been difficult
otherwise to decide, for example, which NFS requests should
remain in the memory cache of the storage node (or the
cache proxy), or the disk at compute nodes.

FVD [26] is a new image format that makes the choice
of different features and their implementations orthogonal
while providing high performance. While there are many
interesting independent features, copy-on-read and copy-on-
write are co-dependent, making the FVD image format un-
suitable for persistent read caching. Our implementation of
the VMI caches is providing an immutable cache which is
backward compatible with QCOW2.

8. CONCLUSIONS
Virtualized operating systems (VMs) have recently be-

come popular due to their use in IaaS cloud environments,
as well as in privately-owned compute clusters. The promise
of elastic computing is instantaneous creation of such virtual
machines, according to the needs of scalable web services or
high-performance applications. In practice, however, virtual
machine startup times typically take several minutes, facing
strong variability depending on the actual system load.

Virtual machine startup delays come from two sources.
One is the time that the cloud middleware (EC2, OpenStack,
OpenNebula, etc.) needs for selecting a suitable physical
machine. Those delays are beyond the scope of this paper.
Here, we have dealt with the other major source for startup
delays, the time for transferring the virtual machine image
(VMI) from a storage node to the selected compute nodes.

The state-of-the-art technique transfers the VMI during
the actual boot process in an on-demand fashion, a tech-
nique known as copy-on-write. We have investigated copy-
on-write for simultaneously booting up to 64 VMs and dis-
covered serious slowdowns when using a 1Gb Ethernet be-
tween the storage node and the compute nodes. Using a
32Gb InfiniBand connection, copy-on-write only scales when
the VMs read from the same VMI. Booting 64 VMs from
more than one VMI simultaneously, the storage node itself
becomes a bottleneck, and copy-on-write slows down signif-
icantly.

The key observation from our tests is that VMs actually
read only small fractions of the huge (multi-GB) VMI during
the boot process, with ≈200 MB being the biggest size we
have observed (from a Windows Server 2012 image). This
small size allows to create VMI caches that, once warmed
up, can significantly reduce the amount of network traffic
for booting a VM. We have implemented VMI caches as an

extension to QCOW2, QEMU’s implementation of copy-on-
write. Our VMI caches go logically in between the CoW
image and the base image on the storage node. Physically,
caches can be placed either on the disks of the compute
nodes or in main memory of the storage node. We have
proposed a simple algorithm that chains VMI caches on
both possible locations, combining the benefits of both ap-
proaches.

Our performance evaluation shows that using warm caches
reduces the startup time of up to 64 VMs to roughly the
startup time of a single VM, independent of how many dif-
ferent VMIs are used for booting. Also, the initial creation
of a cache image requires only negligible runtime overhead,
compared to booting a VM with the vanilla copy-on-write
mechanism. Placing the VMI caches in the main memory
of the storage node is the most elegant solution, combining
high performance with minimal administrative overhead and
the absence of storage requirements on the compute nodes.
Only with slow network interconnects (like the 1Gb Eth-
ernet), placing the VMI caches on the compute node disks
performs somewhat better as they avoid bulk network trans-
fers altogether.

Our results have shown that using VMI caches signifi-
cantly speeds up the time needed for concurrently booting
virtual machines. The next step of our work is to integrate
this scheme into the cloud scheduler, like the OpenNebula
package on our DAS-4 system. This includes hints for the
node selection process for using VMI caches on the compute
nodes themselves. Another interesting line of work is to
apply our caching scheme to memory snapshots of already
booted virtual machines, starting from which instead of the
VM image could improve the VM starting time even fur-
ther. Finally, we think it is worthwhile to investigate data
compression and deduplication techniques that have been
developed for VMI storage (e.g. [7, 14]) in the context of
VMI caches to gain even more storage efficacy.

Acknowledgments
This work is partially funded by the FP7 Programme of the
European Commission in the context of the Contrail project
under Grant Agreement FP7-ICT-257438, and by the Dutch
public-private research community COMMIT/. The authors
would like to thank Kees Verstoep for providing excellent
support on the DAS-4 clusters.

9. REFERENCES
[1] D. Arteaga, M. Zhao, P. V. Riezen, and L. Zwart.

Dynamic Block-level Cache Management for Cloud
Computing Systems. Poster, 10th USENIX conference
on File and Storage Technologies, FAST’12, 2012.

[2] V. Chadha and R. J. Figueiredo. ROW-FS: a
user-level virtualized redirect-on-write distributed file
system for wide area applications. In Proceedings of
the 14th international conference on High performance
computing, HiPC ’07, pages 21–34, 2007.

[3] R. Chandra, N. Zeldovich, C. Sapuntzakis, and M. S.
Lam. The collective: a cache-based system
management architecture. In Proceedings of the 2nd
Symposium on Networked Systems Design &
Implementation - Volume 2, NSDI ’05, pages 259–272,
2005.

[4] Z. Chen, Y. Zhao, X. Miao, Y. Chen, and Q. Wang.
Rapid Provisioning of Cloud Infrastructure Leveraging
Peer-to-Peer Networks. In Proceedings of the 2009
29th IEEE International Conference on Distributed
Computing Systems Workshops, ICDCSW ’09, pages
324–329, 2009.

[5] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield. Live migration
of virtual machines. In Proceedings of the 2nd
Symposium on Networked Systems Design &
Implementation - Volume 2, NSDI ’05, pages 273–286,
2005.

[6] DAS-4 clusters.
http://www.cs.vu.nl/das4/clusters.shtml.
[Online; accessed 22-April-2013].

[7] L. Garces-Erice and S. Rooney. Scaling OS Streaming
through Minimizing Cache Redundancy. In 31st
International Conference on Distributed Computing
Systems Workshops (ICDCSW), pages 47–53, 2011.

[8] M. R. Hines and K. Gopalan. Post-copy based live
virtual machine migration using adaptive pre-paging
and dynamic self-ballooning. In Proceedings of the
2009 ACM SIGPLAN/SIGOPS international
conference on Virtual execution environments, VEE
’09, pages 51–60, 2009.

[9] M. Kozuch and M. Satyanarayanan. Internet
Suspend/Resume. In Proceedings of the Fourth IEEE
Workshop on Mobile Computing Systems and
Applications, WMCSA ’02, 2002.

[10] H. A. Lagar-Cavilla, J. A. Whitney, A. M. Scannell,
P. Patchin, S. M. Rumble, E. de Lara, M. Brudno,
and M. Satyanarayanan. SnowFlock: rapid virtual
machine cloning for cloud computing. In Proceedings
of the 4th ACM European conference on Computer
systems, EuroSys ’09, pages 1–12, 2009.

[11] M. McLoughlin. The QCOW2 Image Format.
http://people.gnome.org/~markmc/

qcow-image-format.html, 2008. [Online; accessed
16-April-2013].

[12] D. Milojic̆ić, I. Llorente, and R. S. Montero.
OpenNebula: A Cloud Management Tool. IEEE
Internet Computing, 15(2):11–14, 2011.

[13] C. B. Morrey and D. Grunwald. Content-Based Block
Caching. In 23rd IEEE, 14th NASA Goddard
Conference on Mass Storage Systems and
Technologies, MSST ’06, 2006.

[14] C.-H. Ng, M. Ma, T.-Y. Wong, P. P. C. Lee, and
J. C. S. Lui. Live Deduplication Storage of Virtual
Machine Images in an Open-Source Cloud. In Proc.
Middleware 2011, number 7049 in LNCS, pages
81–100, 2011.

[15] B. Nicolae, J. Bresnahan, K. Keahey, and G. Antoniu.
Going Back and Forth: Efficient Multideployment and
Multisnapshotting on Clouds. In Proceedings of the
20th International Symposium on High Performance
Distributed Computing (HPDC ’11), pages 147–158,
2011.

[16] B. Nicolae, F. Cappello, and G. Antoniu. Optimizing
multi-deployment on clouds by means of self-adaptive
prefetching. In Proceedings of the 17th international
conference on Parallel processing - Volume Part I,
Euro-Par ’11, pages 503–513, 2011.

[17] Nimbus Project. LANTorrent.
http://www.nimbusproject.org/docs/current/

admin/reference.html#lantorrent, 2010. [Online;
accessed 4-August-2013].

[18] C. M. O’Donnell. Using BitTorrent to distribute
virtual machine images for classes. In Proceedings of
the 36th annual ACM SIGUCCS fall conference:
moving mountains, blazing trails, SIGUCCS ’08, pages
287–290, 2008.

[19] A.-M. Oprescu and T. Kielmann. Bag-of-Tasks
Scheduling under Budget Constraints. In 2010 IEEE
Second International Conference on Cloud Computing
Technology and Science, CloudCom ’10, pages
351–359, 2010.

[20] S. Osman, D. Subhraveti, G. Su, and J. Nieh. The
design and implementation of Zap: a system for
migrating computing environments. SIGOPS
Operating Systems Review, 36(SI):361–376, 2002.

[21] R. H. Patterson, G. A. Gibson, E. Ginting,
D. Stodolsky, and J. Zelenka. Informed prefetching
and caching. In Proceedings of the fifteenth ACM
Symposium on Operating Systems Principles, SOSP
’95, pages 79–95, 1995.

[22] C. Peng, M. Kim, Z. Zhang, and H. Lei. VDN: Virtual
machine image distribution network for cloud data
centers. In 29th Conference on Computer
Communications, INFOCOM ’10, pages 181–189,
2012.

[23] G. Pierre and C. Stratan. ConPaaS: a Platform for
Hosting Elastic Cloud Applications. IEEE Internet
Computing, 16(5):88–92, 2012.

[24] J. Reich, O. Laadan, E. Brosh, A. Sherman, V. Misra,
J. Nieh, and D. Rubenstein. VMTorrent: scalable P2P
virtual machine streaming. In Proceedings of the 8th
international conference on Emerging networking
experiments and technologies, CoNEXT ’12, pages
289–300, 2012.

[25] M. Schmidt, N. Fallenbeck, M. Smith, and
B. Freisleben. Efficient Distribution of Virtual
Machines for Cloud Computing. In 18th Euromicro
International Conference on Parallel, Distributed and
Network-Based Processing (PDP), PDP ’10, pages
567–574, 2010.

[26] C. Tang. FVD: a high-performance virtual machine
image format for cloud. In Proceedings of the 2011
USENIX conference on USENIX annual technical
conference, USENIXATC ’11, pages 18–18, 2011.

[27] R. Wartel, T. Cass, B. Moreira, E. Roche,
M. Guijarro, S. Goasguen, and U. Schwickerath.
Image Distribution Mechanisms in Large Scale Cloud
Providers. In 2010 IEEE Second International
Conference on Cloud Computing Technology and
Science, CloudCom ’10, pages 112–117, 2010.

[28] M. Zhao, J. Zhang, and R. Figueiredo. Distributed
File System Support for Virtual Machines in Grid
Computing. In Proceedings of the 13th IEEE
International Symposium on High Performance
Distributed Computing, HPDC ’04, pages 202–211,
2004.

